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Abstract 24 

Background: India has a rising rate of malaria as well as a high mortality rate despite awareness 25 

and efforts being focused on the issue. Some regions are profoundly affected than others, such as 26 

in Odisha, where the prevalence of malaria is nearly a third of the whole country. This study 27 

investigated the influence of climate factors on the incidence of malaria in the Sundargarh 28 

district in the state of Odisha, India.  29 

Methods: Block-wise observed station rainfall data was sourced from the Special Relief 30 

Commissioners' (SRC) web portal. Gridded surface maximum temperature and relative humidity 31 

data were accessed from the European Center for Medium-range Weather Forecast (ECMWF) 32 

reanalysis data archive. Malaria incident data were collected from the Directorate of Public 33 

Health, Government of Odisha. WEKA machine learning tool with two classifier techniques, 34 

Multi-Layer Perceptron (MLP) and J48 with 10-fold cross-validation, percentile split (66%), and 35 

supplied test options, were used for the Malaria prediction. A comparative analysis was carried 36 

out on both techniques to ascertain the superior model amongst the two, concerning the 37 

prediction accuracy of malaria in the context of a varying climate. Classifier accuracy, Root 38 

Mean Square Error (RMSE), Kappa, and ROC scores were the indicators used for the analysis.  39 

Results: The results suggested that J48 had exhibited a better skill to MLP and illustrated less 40 

error with a positive kappa. In particular, the 10-fold cross-validation method had better 41 

performance over the percentile Spilt (66%) and supplied test options. J48 demonstrated less 42 

error (RMSE = 0.6), better kappa = 0.63, and higher accuracy = 0.71), suggesting it as most 43 

suitable model. Further, seasonal temperature and humidity variation had shown a better 44 

association with malaria incidents in comparison to rainfall. 45 
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Conclusion: The performance of the machine learning methods for Sundargarh was particularly 46 

better during the monsoon and post-monsoon when the events are at the peak. The results were 47 

encouraging for the utilization of climate forecast for prediction of malaria incidences. It is thus 48 

recommended that the J48 classifier machine learning technique could be adopted for the 49 

development of malaria early warning system.  50 

Keywords: Machine Learning, Malaria prediction, J48 Decision Tree, WEKA, Multilayer 51 

Perceptron 52 

 53 

Background 54 

Malaria remains one of the perennial public health concerns in many parts of the world, even 55 

with the efforts put in place by the World Health Organization (WHO) and other international 56 

and national bodies to curb it [1]. According to Kovats et al. [2], malaria is characterized by 57 

seasonal transmission and distribution of vectors and is influenced by seasonal climatic 58 

variations [3]. This is because both vectors and parasites tend to be sensitive to changes in 59 

atmospheric temperature and moisture [4]. The distribution of malaria is limited by the climate 60 

tolerance of the mosquito vectors, and the biological restrictions that limit the incubation and the 61 

survival of the infective agent in the vector population [5]. The examination of how climate 62 

conditions could affect the spreading of malaria can be approached by closely monitoring 63 

various aspects that change in the climate and the surrounding environment. Van et al. [6] 64 

examined the spatio-temporal effects of climate change on malaria. They established that 65 

significant changes in the temperature and rainfall patterns could lead to an increase in the 66 

spreading of malaria.  67 
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Malaria prevalence depends on the parasite Plasmodium and population dynamics of Anopheles 68 

mosquito [7]. The development, as well as the survival rates of both Plasmodium parasites and 69 

the Anopheles mosquitoes, is dependent on weather. As Kakmeni et al. [8] explain, more 70 

specifically, the temperature is key to the persistence of these parasites. Current evidence 71 

suggests that inter-decadal and inter-annual variability of the climate have a direct effect on the 72 

epidemiology of some of the critical vector-borne diseases [2]. Odisha, an eastern coastal state in 73 

India, has the maximum number of incidents of malaria and causalities since 2014, compared to 74 

other states (provinces) of India, as per the statistics (as shown in Figure 1) provided by the 75 

National Vector Borne Disease Control Programme [9]. The figure shows only the states with 76 

the highest number of incidents. The geographical positioning of the state made it susceptible to 77 

climate extremes and adversely affecting human health. 78 

 79 

Figure 1. Malaria incidents across six different states of India for the period of 2014-2017. 80 

(Source: NVBDCP Malaria situation reports) 81 

The current research performs an analysis using advanced machine learning approaches to 82 

determine how different climate conditions are related to the transmissions of malaria and the 83 
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possibility of accurately predicting malaria incidence for the Sundargarh district in Odisha, India. 84 

Sundargarh district has the second-highest malaria incidents in the state, followed by the 85 

Rayagada district. Block-wise cumulative incidence map for the district is presented in Figure 2, 86 

which suggest the eastern region is severely affected by Malaria, in particular. The study has 87 

evaluated the efficiency of the machine learning algorithms by determining the accuracy level at 88 

which they were able to predict the malaria incidents. Further, the findings would also encourage 89 

better utilization of climate forecasts to predict potential malaria risk.  90 

 91 

Figure 2. Cumulative malaria incidence map for the period 2002 to 2017 (Data Source: 92 

Directorate of Public Health, Odisha) 93 

Malaria as a Public Health Concern 94 

There were 219 million cases of malaria globally in 2017 [1], and an estimated 228 million cases 95 

of malaria occurred worldwide in 2018 [10]. The burden was most substantial in the African 96 

region, where an estimated 93% of all malaria deaths occurred, and in children aged under five 97 

years, who accounted for 61% of all deaths [1]. Almost 85% of all malaria cases globally were in 98 
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19 countries, including India and 18 African countries. In India, seven states accounted for 90% 99 

of the estimated cases in 2018, counting to 5.7 million cases [10]. Malaria is prevalent in eastern, 100 

central, and north-eastern states, especially in ethnic groups, usually, dominate these tribal areas. 101 

Inequality and poverty in this area play a crucial role in the spreading as well [11,12]. The most 102 

vulnerable community to malaria is the tribal populations in India habitually reside in remote 103 

areas with complex topography and dense forest with limited to no access to basic facilities [13].  104 

Influence of Climate on Malaria 105 

Statistical methods were used by several researchers to investigate the association of climatic 106 

factors and malaria incidents which included the multiple polynomial regression to model 107 

malaria incidents in India [14], semi-parametric Poisson distribution methods to model the 108 

influence of temperature and rainfall on malaria incidence in Zambia [15], distributed non-linear 109 

lag model to associate malaria to meteorological factors in China [16], hierarchical Bayesian 110 

framework to model effects of weather and climate on malaria distributions in West Africa [17] 111 

and the time series regression models [18,19]. All the models have shown reasonable skills over 112 

the respective regions. Neter et al. [20] recommend the use of Multiple Linear Regression (MLR) 113 

in the analysis of data because this model can determine the relative influence of one or more 114 

predictor variables. Other advanced computational models include Artificial Neural Network 115 

(ANN) models, which are relatively simple to interpret [21] and, as such, require less formal 116 

training. They also can, implicitly, detect complex non-linear relationships between the set of 117 

variables being investigated. Yao et al. [22] demonstrated that using neural network for data 118 

analysis could detect all possible interactions among the predictors.  119 

This research acknowledges the existing problem of the malaria epidemic in the region and the 120 

influence of increased frequency of extreme climate events such as floods, heatwaves, drought, 121 
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which contribute further to the escalation of malaria spreading. Malaria is no doubt a significant 122 

threat to human life, and climate variability plays a key role in the survival and abundance of the 123 

disease vectors. The researchers analyzed the data using the machine learning methods and 124 

quantify the accuracy and skill level for predicting the incidence. 125 

Methods  126 

Study Area  127 

The statistics from the National Vector Borne Disease Control Programme revealed that Odisha, 128 

a coastal province in India, records the maximum number of causalities due to vector-borne 129 

diseases and especially from malaria [9]. This research targeted the Sundargarh district, which 130 

records one of the highest numbers of cases of malaria incidents in the state. The geographical 131 

location of Odisha made it susceptible to increased occurrences of climate extremes and 132 

adversely affecting human health due to the environmental changes. Sundargarh district forms 133 

the north-western part of Odisha state and is the second-largest district in the state, accounting 134 

for 6.23% of the total area. The geographical area of the district is 9712 square km. The district 135 

spreads from 21°36′N to 22°32′N and 83°32′E to 85°22′E [23]. 136 

 137 
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Figure 3. Study area with elevation for Sundargarh district in Odisha, India 138 

 139 

Topography 140 

The district exhibits an ideal ecological condition for the malaria transmission topographically 141 

with its undulating uplands intersected by forested hills and widely diversified tracts of 142 

mountains. The areas covered by western blocks are long undulating tracts of about 700 ft. (213 143 

mt.) above the sea level, dotted with hill-ranges and isolated peaks of considerable height. At the 144 

same time, the far eastern and southern-central blocks are mostly an isolated hilly tract with an 145 

average elevation of about 800 ft. (244 mt.) above sea level.  146 

Climate of Sundargarh 147 

From the southwest monsoon, the area received rainfall between June and September and 148 

characterized as a tropical humid climate region (shown in Figure 4 (a) and (b)). The average 149 

annual temperature ranges between 22°C and 27°C and the average annual rainfall ranges 150 

between 1600 and 2000 mm. The weather seasons are hot and dry summer from April to mid-151 

June, monsoon from mid-June to September, autumn from October to November, winter from 152 

December to January, and spring from February to March. The maximum temperature during 153 

summer rises to 40–45°C and the minimum temperature during winter falls to 5-10°C.  154 

 155 

 156 
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 157 

(a) 158 

 159 

(b) 160 

 161 

(c) 162 
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Figure 4. Average monthly rainfall (in mm) (a), maximum surface temperature (in °C), relative 163 

humidity (in %) (b), and incidents reported (c) for the period of 2002 to 2017.  164 

Seasonal variation in temperature plays an important role as far as vector diseases, and their 165 

transmission is concerned. According to Servadio et al. [24], the most significant effect of 166 

climate change on the transmission of malaria would be felt at the extreme temperature ranges. 167 

This reiterates the importance of studying climate variability and determining how its changes 168 

can affect the transmission of malaria, not just in places that are already affected by the disease, 169 

but also in fresher areas. Figure 4 provides the seasonal influence of the incidents to the rainfall, 170 

maximum temperature, and relative humidity, and Figure 5 shows the trend of incidents for 2002 171 

to 2017 and its relationship with the three climate factors under consideration in this study. 172 

 173 

(a) 174 
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 175 

(b) 176 

 177 

(c) 178 

 179 

(d) 180 
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Figure 5. The trend of annual incidents (a); and comparison with average annual rainfall (b); 181 

temperature (c); and relative humidity (d) for the period of 2002 to 2017 182 

Data Used  183 

The variables used in this research were climate parameters like rainfall (RF), relative humidity 184 

(RH), and surface (2-meter height from ground) maximum temperature (T2max) and malaria 185 

incidents. While the climate parameters are treated as independent variables, the malaria incident 186 

records are considered the dependent variable. For this analysis, historical meteorological rainfall 187 

data from 17 blocks for the district are accessed from the Odisha Government portal of special 188 

relief commissioner (http://srcodisha.nic.in/rain_fall.php), which is a publicly accessible portal. 189 

Surface maximum temperature and relative humidity data with a horizontal resolution of 0.1-190 

degree was obtained from the Copernicus Climate data store (CDS) of the European Center for 191 

Medium-Range Weather Forecast (ECMWF). The most recent ECMWF Reanalysis (ERA5-192 

Land) is a reanalysis of the global atmosphere covering the data-rich period since 1981 and 193 

continuing in real-time. More details about the dataset can be found from the Copernicus climate 194 

data store 195 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview). The 196 

data was taken at daily temporal time scales for both climate parameters. Many studies have 197 

demonstrated use of gridded reanalysis data in the absence of actual ground observation [25, 26, 198 

27, 28] as it is the closest possible representation of the actual observations. Monthly malaria 199 

incident datasets at block level were collected from the Directorate of Public Health Services, 200 

Government of Odisha. For consistency in the analysis, all data were collected for the identical 201 

period of 2002-2017. Table 1 summarizes the data used in the study.  202 

Table 1. Data Source and the Attributes 203 

http://srcodisha.nic.in/rain_fall.php
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Data Preparation 204 

The data received were at different temporal scales and required to be brought to a standard 205 

spatial and temporal scale. As the malaria incidents are the parameter to be predicted and were 206 

available at a monthly scale, the climate data (which are at daily time scales) were statistically 207 

averaged over the month. The ERA5-Land data for maximum temperature and relative humidity 208 

were extrapolated to produce average spatial data for the blocks. The percentile (p=25, p=50, 209 

p=75, and p=95) were computed for each sample to define the spread of the variables. The next 210 

step in the analysis was changing the historical data into range values, and turning it from 211 

numerical to nominal (Low, Medium, High, and Very High). A sample conversion is shown in 212 

Table 2. 213 

Table 2. Conversion of Numeric data to Nominal data 214 

Year RF (mm) T2max (°C) RH (%) Incidents RF. T2max R.H. Incidents 

Numeric Data Nominal Data 

2002 24 24.7 82.6 111 L L L L 

Type of Data Data Source Period Spatial Scale 

Temporal 

scale 

Malaria Incidents 

The Directorate of Public 

Health, Odisha 

2002 -2017 Block Monthly 

Rainfall 

Special Relief 

Commissioner, Odisha 

2002-2017 Block/Station Daily 

Surface Max. 

Temperature 

ECMWF Reanalysis land 

data (ERA5-Land) 

2002-2017 

Gridded. 0.1°x0.1°; Native 

resolution is 9 km 

Daily 

Relative Humidity 

ECMWF Reanalysis land 

Data (ERA5-Land) 
2002-2017 

Gridded. 0.1°x0.1°; Native 

resolution is 9 km 

Daily 
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2002 15 32.8 66.1 129 L M L M 

2002 43 36.3 72.0 175 M H L M 

2002 308 28.8 98.1 250 H L VH H 

2002 169.5 29.5 96.9 195 H L H H 

2002 84.4 30.5 92.9 177 M M M M 

L=Low, M=medium, H=High, VH=Very High 215 

Weka Machine Learning Tool 216 

Waikato Environment for Knowledge Analysis (WEKA) is a collection of machine learning 217 

algorithms that accurately perform data mining tasks [29]. WEKA contains tools that facilitate 218 

data preparation, regression, classification, association rules mining, clustering, and 219 

visualization. WEKA, through its machine learning platform, enables the algorithm to learn 220 

about data as samples and with or without the interference of any other explicit programs 221 

[30,31]. More detail about the tool is available at https://www.cs.waikato.ac.nz/~ml/weka/. 222 

Multilayer Perceptron (MPL) and J48 classifier techniques in the Weka tool recently being used 223 

in successfully predicting malaria incidents [32-34]. Researchers around the globe also used it 224 

for prediction of dengue [35-38] and other public health issues such as Cholera [39], diabetes 225 

[40-42], heart diseases [43, 44].  226 

Multiple Layer Perceptron 227 

A Multilayer Perceptron (MLP) is a class of feed-forward artificial neural networks [45]. It 228 

constitutes at least three layers of nodes, a hidden layer, an input layer, and an output layer. Each 229 

of these nodes, except the input nodes, is a neuron that uses a non-linear activation function. 230 

ANN has, for a long time, been a robust perceptive classifier for tasks not just in medical 231 

diagnosis, but also for early detection of diseases [46]. MLP uses a supervised learning technique 232 

that is referred to as propagation for training the network [45]; it is a modification of the standard 233 

https://www.cs.waikato.ac.nz/~ml/weka/
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linear perceptron. As such, it can distinguish data that is not separable. A perceptron produces a 234 

single output based on several real-valued inputs by forming a linear combination using its input 235 

weights [46]. Which can be represented in the following form: 236 𝑦 =  𝜑 (∑ 𝑤𝑖𝑥𝑖 + 𝑏 ) =  𝜑 (𝑤𝑇𝑛𝑖=1 𝑥 + 𝑏), (1) 

Where w denotes the vector of weights, x is the vector of inputs, b is the bias, and 𝝋 is the non-237 

linear activation function. 238 

MLP is composed of an input layer to receive the signal, an output layer that decides or predict 239 

the input, and in between those two, an arbitrary number of hidden layers that are the actual 240 

computational engine of the MLP. They train on a set of input-output pairs and learn to model 241 

the Correlation (or dependencies) between those inputs and outputs [46]. Training involves 242 

adjusting the parameters, or the weights and biases, of the model to minimize error. Back-243 

propagation is used to make those weight and bias adjustments relative to the error, and the error 244 

itself can be measured in a variety of ways. 245 

J48 Classifier Model – A Decision Tree Based Method 246 

J48 in WEKA is the implementation of the C4.5 decision tree [45, 47]. Dangare & Apte [44] 247 

defined J48 classification as building models of classes from records that contain class labels. A 248 

decision tree algorithm is used to find how the attribute-vector is likely to behave for an array of 249 

instances. The algorithm generates rules that would be used for the prediction of the targeted 250 

variables and accounts for any missing values present in the model and the output. Some 251 

algorithms perform classification recursively until each leaf has been deemed pure [45]. In other 252 

words, the classification of data would be as perfect as possible. The objective of the J48 253 

classification is to reduce the impurity or uncertainty in data as much as possible. A subset of 254 

data is pure if all instances belong to the same class. The heuristic is to choose the attribute with 255 
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the maximum Information Gain or Gain Ratio based on information theory. Entropy is a measure 256 

of the uncertainty associated with a random variable. We choose the attribute with the highest 257 

gain to split the current tree. Assuming the attributes are categorical, a tree is constructed in a 258 

top-down recursive manner. At the start, all the training samples are at the root, and samples are 259 

partitioned recursively based on selected attributes. Attributes are selected based on an impurity 260 

function (e.g., information gain). This process uses the "Entropy," i.e., a measure of the disorder 261 

of the data [45, 47, 48]. The Entropy of  𝑬⃗⃗  is calculated as: 262 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐸⃗ ) =  −∑|𝐸𝑗||𝐸⃗ |𝑛
𝑗=1 log |𝐸𝑗||𝐸⃗ |  (2) 

iterating over all possible values of  𝑬⃗⃗ . The conditional Entropy is  263 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑗 | 𝐸⃗ ) =  |𝐸𝑗||𝐸⃗ | log |𝐸𝑗||𝐸⃗ |  (3) 

and finally, the gain is 264 𝑔𝑎𝑖𝑛(𝐸⃗ , 𝑗) =  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ( 𝐸⃗ − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑗|𝐸⃗ )) (4) 

The aim is to maximize the gain, dividing by overall Entropy due to split argument 𝑬⃗⃗  by value j.  265 

Predictive Modeling using MLP and J48 266 

The steps followed for the predictive modelling using MLP and J48 are presented in Figure 6. 267 

The climate datasets collected from the respective sources were reprocessed to monthly scale as 268 

the prediction of malaria incidents was expected to be carried out at a monthly time scale. The 269 

numerical monthly malaria incident and climate data were then, transformed to nominal range, 270 

before they were fed to the MLP and J48 classifier models. The WEKA tool [30] was used as a 271 

base platform for all the analyses. The datasets were split into two sets; first set for training of 272 

the model and the second set for testing or the prediction. Different test options used include; (a) 273 
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10-fold cross-validation method, in which all samples were divided as ten equal sets, from which 274 

1 set is used for testing, and the rest nine sets for the training of the model; (b) percentage split 275 

method, in which the data is distributed as a percent of the total number of samples with 34% 276 

data are used for testing and rest 66% data are for training; and (c) a supplied test set, which 277 

enables users to decide on the distribution of the samples for training and prediction. Various 278 

indicators including the RMSE, Kappa, ROC, accuracy was used to evaluate the performance of 279 

the techniques used for the prediction. From the investigation, the better performing technique 280 

with the most appropriate test option was identified. Further, the technique and test methods 281 

would be used as a malaria prediction engine for the prediction of malaria though a Malaria early 282 

warning system.  283 
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Data Range Classification 
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J48 Model
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MLP model

Climate data 

(RF, T2max, RH)

Malaria Incident 

data

 Data Collection

 284 

Figure 6. Detailed Methodology for Predictive Modeling of Malaria 285 

Performance Indicators  286 

With the classifiers, we investigate how good both the models are, and this is done by examining 287 

the number of correctly classified instances to the number of incorrectly classified cases from the 288 

supplied datasets. The performance of the machine learning analysis methods was evaluated 289 

though different indicators which were inbuilt in the tool. These include the Root Mean Square 290 
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Error (RMSE), the accuracy, the kappa, and the Receiver Operating Characteristics (ROC) 291 

values. This section provides a brief about each of these indicators and its significance. The 292 

confusion matrix (Table 3 and Table 4) provides a simplified structure of the representation of 293 

the observed and exptected samples to segregate the classifications into four classes: True 294 

Positives (a), False Positives (b), False Negatives (c) and True Negatives (d). 295 

Table 3. Confusion Matrix for observed agreement 296 

  Observed  

Expected  Positive Negative Total 

Positive a (TP) b (FP) a+b 

Negative c (FN) d (TN) c+d 

 Total  a+c b+d N 

TP=True positives; FP = False Positives; FN=False Negatives; TN=True Negatives 297 

The observed agreement is the frequency with which the two variants (observed and expected) 298 

agreed. From the confusion matrix, the observed agreement can be determined as: 299 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = 𝒂 + 𝒅𝑵  (5) 

Table 4. Confusion Matrix for expected agreement 300 

  Observed  

Expected  Positive Negative Total 

Positive (a+b)(a+c)/N (a+b)(b+d)/N a+b 

Negative (a+c)(c+d)/N (c+d)(b+d)/N c+d 

Total  a+c b+d N 

 301 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 = expected (𝒂) + expected (𝒅)𝑵  (6) 

Where, expected (𝒂) = (𝒂 + 𝒃)(𝒂 + 𝒄)/𝑵  and expected (𝒅) = (𝒄 + 𝒅)(𝒃 + 𝒅)/𝑵 302 
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Accuracy 303 

The percentage of correctly classified instances is often called accuracy. The basic formula for 304 

calculation of prediction accuracy can be described as (referring to the confusion matrix for 305 

observed agreement): 306 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝒂 + 𝒅𝑵  (7) 

Where 𝒂 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 and d = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠. 307 

Kappa Coefficient 308 

Kappa is the measurement of the inter-rater reliability, which represents the extent to which the 309 

data collected in the study are correct representations of the variables measured [49]. The 310 

formula for kappa is: 311 

𝐾𝑎𝑝𝑝𝑎 = 𝑃𝑜 − 𝑃𝑒1 − 𝑃𝑒  (8) 

Where, 𝑷𝒐  = Observed agreement; 𝑷𝒆  = Expected agreement 312 

Kappa coefficients are interpreted using the guidelines outlined by [50], where the strength of the 313 

kappa coefficients is interpreted in the following manner: 0.01-0.20 slight; 0.21-0.40 fair; 0.41-314 

0.60 moderate; 0.61-0.80 substantial; 0.81-1.00 almost perfect. A negative kappa would indicate 315 

agreement worse than that expected by chance. 316 

Root Mean Square Error (RMSE) 317 

RMSE is used to measure the difference between the expected and the observed values from the 318 

environment that is being modeled [51]. The RMSE values can be used to distinguish model 319 

performance in a training period with that of a validation period as well as to compare the 320 

individual model performance to that of other predictive models. The RMSE of a model prediction 321 

for the estimated variable Xpred is defined as the square root of the mean squared error: 322 
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𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑝𝑟𝑒𝑑, 𝑖)2𝑛𝑖=1 𝑛  (9) 

Where Xobs = observed values  323 

Xpred = modelled values at time/place i. 324 

n = total number of sample datasets 325 

Receiver Operating Characteristics (ROC) 326 

ROC is a curve that characterizes the randomly chosen probability of positive instance over 327 

negative instances [51]. It is a measure of the skill of different classifiers with the true positives 328 

(TP) to the false-positive rates (FPR). Setting P1,j as the prediction probability for the j
th

 329 

observed event, and P0,i as the prediction probability of an event for the i
th

 non-event, the ROC 330 

score, A, can be 331 

𝐴 = 1𝑛0𝑛1  ∑∑𝐼(𝑃0,𝑖, 𝑃1,𝑗)𝑛1
𝑗=1

𝑛0
𝑖=1  (10) 

where n0 is the number of non-events and n1 the number of events and the scoring rule I (P0,i, 332 

P1,j) is defined as; 333 

𝐼(𝑃0,𝑖, 𝑃1,𝑗) =  {0.0 𝑖𝑓 𝑃1,𝑗  < 𝑃0,𝑖0.5 𝑖𝑓 𝑃1,𝑗  = 𝑃0,𝑖1.0 𝑖𝑓 𝑃1,𝑗  > 𝑃0,𝑖 (11) 

In the ROC score, a hit is the selected observations are events. The proportion of all events thus 334 

selected is calculated, and is known as the hit rate (HR):  335 

𝐻𝑅 = 𝑁𝑜. 𝑜𝑓 𝑇𝑃𝑁𝑜. 𝑜𝑓 𝐸𝑣𝑒𝑛𝑡  (12) 

Some non-events may have been selected incorrectly; these are known as false positives. The 336 

proportion of non-events incorrectly chosen [the false-positive rate (FPR)] is: 337 
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𝐹𝑃𝑅 = 𝑁𝑜. 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑁𝑜. 𝑜𝑓 𝑛𝑜𝑛 𝐸𝑣𝑒𝑛𝑡  (13) 

The ROC classifications are excellent, good, fair, poor, fail having range of [0.90-1], [0.80-0.90], 338 

[0.70-0.80], [0.60-0.70], [0.50–0.60], respectively [51]. 339 

Taylor Diagram 340 

Taylor Diagram [52], provides a concise statistical summary and illustrates the matching patterns 341 

of data, for their Coefficients of Correlation, the root-mean-square, and their variances and ratio. 342 

Plots are patterned that precisely indicate measures and scores. The statistical display of the three 343 

factors on Taylor Diagram mathematically represented using the following formula: 344 𝐸′2 = 𝜎𝑟2 + 𝜎𝑡2 − 2𝜎𝑟𝜎𝑡 𝜌 (14) 

Where; 𝝆 = Correlation Coefficient  345 

E′ = Centered RMS difference between the observation and the prediction  346 𝝈𝒓,𝝈𝒕= Variances of the observation and the prediction respectively 347 

Results and Discussion 348 

This section presents the analyzed data, and it constitutes the examination of how different 349 

climatic conditions influence the incidence of malaria. The comparisons between the two 350 

classifier methods were made for each of the 17 blocks in the district, and performance accuracy 351 

was evaluated month wise. The focus of this study, however, is to find the climatic influence of 352 

these incidents using some advanced machine learning techniques and ways to provide early 353 

warning about the possible future outbreaks. 354 

Comparison of MLP and J48 Results 355 

All three test options were used to assess the performance of both MLP and J48 methods, a) 10-356 

fold cross-validation, and b) percent split (66%) and the user-supplied test sets. The following 357 

section discussed the outcome of the model prediction. An initial evaluation was completed over 358 
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the Sundargarh district to investigate which of the machine learning method performed better 359 

compared to the others, before going for block-wise performance. All evaluations were done for 360 

the different months of the year to understand the prediction skill based on the monsoonal 361 

rainfall, temperature variation. While the results for prediction accuracy shows that the 362 

performance of both MLP and J48 is not very significantly different, but J48 shows better 363 

performance to MLP. In a similar study conducted by Gupta, Kumar & Sharma [53], where more 364 

attributes were analyzed and larger volumes of data used, the prediction using J48 has also 365 

turned out to be better. Besides, for both the classifiers, the 10-fold cross-validation classification 366 

testing option outperforms the percentage split (66%) method for the whole district, as shown in 367 

Figure 6 (Accuracy), Figure 7 (Kappa) and Figure 8 (RMSE), respectively. 368 

 369 

Figure 7. Month-wise Comparison of the Accuracy of the J48 (Cross-validation & Percent Split 370 

model) to the Multi-Layer Perceptron model for Accuracy for Sundargarh District 371 

Figure 7 suggests that while the prediction accuracy for both the cross-validation method (J48 372 

and MLP) has improved during the mid-monsoon (July-August period) to late monsoon 373 
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(September-October) at the same time the prediction accuracy for the split method has declined. 374 

For all models, the dry season has less accuracy. 375 

 376 

Figure 8. Month-wise Comparison of Kappa of the J48 (Cross-validation & Percent Split model) 377 

to the Multi-Layer Perceptron model for Accuracy for Sundargarh District 378 

If we consider kappa, the J48 cross-validation method has significantly better kappa in 379 

comparison to the other three methods, visibly after the monsoon onset, it shows a better 380 

agreement. While almost all methods have shown poor agreement during the drier summer 381 

period, results suggest the superiority of the J48 with cross-validation over the MLP percent 382 

split, MLP Cross-validation, and J48 Percent split (Figure 8).  383 
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 384 

Figure 9. Month-wise Comparison of RMSE of the J48 (Cross-validation & Percent Split model) 385 

to the Multi-Layer Perceptron model for Accuracy for Sundargarh District 386 

The prediction error (Figure 9) depicts that the cross-validation method has much less error 387 

compared to the percentage split method. The MLP percent split method consistently depicts the 388 

largest errors across seasons. Table 5 shows that the MLP has better accuracy, especially during 389 

the wet season, while less agreement to the observed condition as depicts comparatively lower 390 

kappa. For this, J48 has better performance during the wet season. Errors are more substantial for 391 

both the models during the wet period, and RMSE is low during the dry period. Since the data 392 

was analyzed monthly, J48 can be considered a more reliable predictor of malaria for the weather 393 

variables. During the monsoon and post-monsoon seasons, it has comparable RMSE and higher 394 

kappa (with highest values in September = 0.79 and October =0.70) indicated that it performed 395 

better compared to MLP with Kappa (September = 0.62 and October=0.66).  396 

Table 5. Month-wise Performance metrics for RMSE, KAPPA, and Accuracy for the cross-397 

validation Classifier 398 

Month Accuracy Kappa RMSE 
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 J48 MLP J48 MLP J48 MLP 

Jan 0.68 0.61 0.56 0.44 0.69 0.70 

Feb 0.63 0.63 0.68 0.55 0.66 0.68 

Mar 0.62 0.62 0.58 0.45 0.67 0.68 

Apr 0.68 0.64 0.58 0.45 0.66 0.66 

May 0.73 0.68 0.58 0.44 0.67 0.68 

Jun 0.63 0.73 0.59 0.45 0.67 0.68 

Jul 0.71 0.77 0.61 0.49 0.71 0.72 

Aug 0.73 0.76 0.67 0.50 0.72 0.73 

Sep 0.83 0.80 0.79 0.62 0.70 0.72 

Oct 0.89 0.83 0.70 0.66 0.69 0.71 

Nov 0.72 0.71 0.66 0.51 0.71 0.72 

Dec 0.60 0.72 0.54 0.56 0.71 0.72 

Highlighted values are for Accuracy  0.70; Kappa  0.60; RMSE   0.70 399 

ROC score, as explained earlier, is generally a measure of the skill of the classifier. Evaluation 400 

with ROC requires the grouping of the prediction models into three distinct prediction categories, 401 

e.g., 1) High, 2) medium, and 3) Low. The evaluation shows how well the three categories of 402 

events can be predicted. 403 

 404 
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 405 

(a) 406 

 407 

(b) 408 
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 409 

(c) 410 

Figure 10. Month-wise Comparison of ROC for ((a) Low, (b) medium, and (c) High prediction 411 

category) of the J48 (Cross-validation & Percent Split model) to the Multi-Layer Perceptron 412 

model for Accuracy for Sundargarh District 413 

Figure 10 shows the performance of the three different event categories, and it is evident that the 414 

skill of the J48 method is comparatively better than MLP. Table 6 lists the ROC scores of all the 415 

four classifiers and provides a comparative analysis of the three-event categories.  416 

Table 6. Month-wise ROC prediction skill scores for all four classifiers for both J48 and MLP 417 

Month J48 MLP 

 Cross-validation  Split (66.0%) Cross-validation  Split (66.0%) 

 High Med Low High Med Low High Med Low High Med Low 

Jan 0.79 0.81 0.82 0.70 0.65 0.70 0.73 0.69 0.76 0.66 0.66 0.74 

Feb 0.84 0.78 0.83 0.71 0.64 0.73 0.81 0.63 0.72 0.77 0.59 0.75 

Mar 0.77 0.79 0.78 0.68 0.68 0.68 0.72 0.66 0.74 0.79 0.70 0.74 

Apr 0.77 0.78 0.77 0.68 0.68 0.68 0.74 0.78 0.81 0.70 0.83 0.79 

May 0.60 0.76 0.77 0.69 0.54 0.56 0.56 0.65 0.70 0.57 0.68 0.86 
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Jun 0.87 0.77 0.84 0.79 0.69 0.77 0.79 0.63 0.74 0.81 0.67 0.72 

Jul 0.82 0.68 0.84 0.73 0.67 0.74 0.74 0.64 0.74 0.73 0.70 0.75 

Aug 0.80 0.74 0.83 0.72 0.63 0.73 0.72 0.66 0.73 0.74 0.70 0.81 

Sep 0.89 0.65 0.91 0.88 0.66 0.81 0.80 0.60 0.82 0.88 0.65 0.86 

Oct 0.84 0.77 0.91 0.78 0.72 0.83 0.81 0.74 0.86 0.80 0.74 0.85 

Nov 0.80 0.80 0.83 0.77 0.73 0.81 0.74 0.72 0.80 0.78 0.74 0.82 

Dec 0.85 0.82 0.85 0.74 0.69 0.73 0.75 0.76 0.79 0.76 0.75 0.72 

Highlighted values are ROC scores  0.75 418 

The J48 cross-validation method has better performance in terms of predicting the high and low 419 

events across the year. During the post-monsoon season prediction skill for high events 420 

(Sep=0.89, Oct=0.84, Nov=0.80, Dec=0.85) and (Sep=0.91, Oct=0.91, Nov=0.83, Dec=0.85) for 421 

skill for predicting “low” events. At the same time, the percent split method has comparatively 422 

less skill. This probably could be because of the fewer sample datasets used in the Percent split 423 

methods for the training of the model, which might not be adequate. MLP has even poorer results 424 

depicting skill for high events with ROC=0.56 for May and consistently poor throughout the 425 

year. This shows that the models are generally poor during the early to the mid-monsoon period 426 

(May-August), irrespective of the model classifier technique used. At the same time, the 427 

prediction of the medium category event is challenging for both models as well. For J48 cross-428 

validation, the lowest value (ROC=0.65) in September and for percent split method ROC=0.54 429 

in May. While in the MLP cross-validation ROC=0.60 in September and ROC=0.59 in February 430 

month, respectively. 431 

Performance Evaluation of the Models at smaller Administrative Units  432 

The final exercise for the prediction model was to supply the classifiers with a user-defined set of 433 

datasets for training and isolate a specific year or years for prediction at block level. So, for this 434 
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test, data from 2002 till 2015 was used for training and 2016 and 2017 for prediction. The results 435 

presented in Table 7 suggest the method has comparable performance to J48 and MLP. It has 436 

less RMSE and better accuracy and higher kappa values. Further investigating the performance 437 

of the Supplied test set, it was found that its accuracy of prediction is better compared to the 438 

cross-validation method, especially for central and western blocks, including Sundargarh, 439 

(Accuracy =1.0, Kappa=1.0, RMSE=0.19), Tangarpali (Accuracy =1.0, Kappa=1.0, 440 

RMSE=0.17), and Kutra (Accuracy =1.0, Kappa=1.0, RMSE=0.16). The block-wise comparison 441 

was presented in Table 7. 442 

Table 7. Comparisons of Accuracy, RMSE, and Kappa for all blocks for J48 cross-validation 443 

and supplied set classifiers 444 

Blocks  J48 Cross-Validation J48 Supplied test set 

 Accuracy Kappa RMSE Accuracy Kappa RMSE 

Hemgiri 0.57 0.40 0.89 0.71 0.16 0.37 

Lephripara 0.69 0.33 0.88 0.83 0.00 0.34 

Tangarpali 0.94 0.55 0.76 1.00 1.00 0.17 

Sundargarh 0.88 0.51 0.80 1.00 1.00 0.19 

Subdega 0.71 0.60 0.86 0.71 0.26 0.36 

Baragaon 0.81 0.63 0.81 0.79 0.17 0.32 

Balisankara 0.55 0.31 0.89 0.79 0.00 0.40 

Kutra 0.98 0.52 0.72 1.00 1.00 0.16 

Rajgangpur 0.69 0.51 0.86 0.63 0.00 0.39 

Kuanrmunda 0.63 0.57 0.87 0.63 0.30 0.41 

Nuagaon 0.58 0.55 0.90 0.29 0.08 0.53 

Bisra 0.53 0.38 0.89 0.58 0.39 0.49 

Lathikata 0.72 0.50 0.86 0.42 0.13 0.50 
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Bonai 0.57 0.50 0.91 0.46 0.18 0.48 

Lahunipara 0.70 0.60 0.86 0.54 0.47 0.48 

Gurundia 0.53 0.45 0.90 0.17 0.07 0.58 

Koira 0.51 0.39 0.90 0.17 0.29 0.58 

Highlighted values are for Accuracy  0.70; Kappa  0.55; RMSE   0.50 445 

ROC scores for both the classifiers of the J48 model were compared, and the results are 446 

presented in Table 8. The results suggest that the model performance is satisfactory for the 447 

central blocks like Kutra (High=0.99, Med=0.80, low=0.90), Subdega (High=0.91, Med=0.76, 448 

Low=0.86), Rajgangpur (High=0.82, Med=76, Low=84). While blocks such as Bonai 449 

(High=0.76, Med=0.63, Low=0.78), Koira (High=0.77, Med=0.75, Low=0.72), Gurundia 450 

(High=0.89, Med=0.71, Low=0.76), and Balisankara (High=0.73, Med=0.69, Low=0.74), 451 

depicts considerably lower accuracy and prediction skills. While blocks with plain land and 452 

forest cover performed much better compared to the highly elevated regions. 453 

Table 8. Comparative analysis of ROC scores for all blocks in the District for J48 cross-454 

validation and supplied set classifiers 455 

Blocks Cross-Validation Supplied Test 

 High Med Low High Med Low 

Hemgiri 0.83 0.73 0.72 0.76 0.74 0.94 

Lephripara 0.75 0.76 0.72 0.79 0.61 0.68 

Tangarpali 0.69 0.75 0.75 0.81 0.79 0.85 

Sundargarh 0.62 0.74 0.70 0.45 0.69 0.81 

Subdega 0.91 0.76 0.86 0.98 0.84 0.93 

Baragaon 0.93 0.77 0.90 0.73 0.76 0.60 

Balisankara 0.73 0.69 0.74 0.12 0.34 0.64 

Kutra 0.99 0.80 0.90 0.86 0.94 0.88 
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Rajgangpur 0.82 0.76 0.84 0.92 0.89 0.77 

Kuanrmunda 0.97 0.71 0.84 0.93 0.65 0.83 

Nuagaon 0.81 0.67 0.81 0.60 0.71 0.53 

Bisra 0.88 0.70 0.84 0.49 0.79 0.73 

Lathikata 0.88 0.89 0.66 0.65 0.87 0.43 

Bonai 0.76 0.63 0.78 0.46 0.82 0.59 

Lahunipara 0.90 0.76 0.94 0.31 0.39 0.39 

Gurundia 0.89 0.71 0.76 0.53 0.20 0.33 

Koira 0.77 0.75 0.72 0.25 0.21 0.34 

Highlighted values are ROC scores  0.75 456 

Figure 11 demonstrates the comparison of the three test options used in both classifier techniques 457 

J48 and MLP using the Taylor diagram. All three indicators (Accuracy, Kappa, and RMSE) were 458 

represented in three different axes. RMSE in X-axis, Kappa in Y-axis, and accuracy in the arc, 459 

respectively.  460 

 

 

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 11. Block-wise accuracy (arc), RMSE (x-axis) and Kappa (Y-axis) for the J48 and the 461 

Multi-Layer Perceptron model with a Supplied test set, 10-fold Cross-validation & Percent Split 462 

classifiers 463 

While the numbers 1 to 17 represent each block of the district, its position in the plotting space 464 

determines its corresponding Accuracy, RMSE, and Kappa. Block-wise analysis with all the 465 

results suggests that with the 10-fold cross-validation and the supplied test set option has yielded 466 

promising results in comparison to the percent split and supplied test options. Especially blocks 467 

(8=Kutra, 3=Tangarapali, 4=Sundargarh) from the central to western plain have better 468 
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performance to the blocks with varying topography (17=Koira, 1=Hemgiri, 14=Bonai). The 469 

supplied test options depicted smaller RMSEs but also have inconsistency with Accuracy and 470 

Kappa (either Accuracy=1.0 or very low), making it unreliable for use in predictions. So, it is 471 

evident that flat terrains with lower variability in the rainfall, temperature, and humidity provides 472 

reliable performance than to the regions with higher variability.  473 

Month-wise Nominal Relationship 474 

Establishing a conventional relationship between the monthly and seasonal variation of the 475 

climatic parameters to the incidents using the nominal range was beneficial to the evaluation 476 

process. The nominal range derived from the continuous numeric data range [54] is represented 477 

in Table 9. Based on the spectrum, Table 10 provides a summary of the relationship between the 478 

nominal rainfall, temperature, and humidity range to that of the malaria incidents. 479 

Table 9. Climate and Incident data range Evaluation 480 

Range RF T2max RH Incidents 

Low 0 - 23 28.3 - 30.3 68.3 - 82.6 35 - 78 

Medium 23.1 - 178 30.4 - 33.6 82.7 - 93 78.1 - 173 

High 178.1 - 445 33.7 - 38.3 93.1 - 96.7 173.1 - 460 

Very High > 445 > 38.3 > 96.7 > 460 

 481 

Table 10. Month-wise nominal relationship between incident data and climate data 482 

Month RF T2max RH Incidents 

January Low Low Low Low 

February Low Low Low Low 

March Low Medium Low Medium 

April Low Very High Low Medium 
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May Medium Very High Medium Medium 

June High High Medium Medium 

July High Medium High High 

August  Very High Medium High High 

September Very High Low High Medium 

October Medium Low Medium Medium 

November Low Low Medium High 

December Low Low Low High 

 483 

As shown in the table, periods of low temperature (28°-30°), low rainfall (0 -23mm), and low 484 

relative humidity (68-82%) during the drier and cooler months of January and February are 485 

characterized by lower cases of malaria. During the months of March-April-May, a period of low 486 

precipitation, medium to higher temperature with lower relative humidity, there is an increase in 487 

the number of incidences of malaria. This also agrees with the findings of Lee et al. [55], a study 488 

conducted in the humid Arunachal Pradesh, India, that suggests decreasing precipitation and 489 

increasing temperature resulted in increasing malaria incidence. With the arrival of the monsoon 490 

and during the June-July-August-September, the period of high to very high rainfall, higher 491 

temperature, and medium to high relative humidity, the malaria incidents were further on the 492 

rise. Surprisingly, malaria incidents climbed even after the withdrawal of the monsoon, fall in the 493 

temperature and humidity significantly during the November-December winter period. So, there 494 

is possibly a lag-effect of the climatic phenomenon on the incidents.  495 

Based on the results, it can be concluded that relative humidity and temperature showed a strong 496 

association with malaria incidence, which is consistent with the study by Srimath-Tirumula [56], 497 

in Vishakhapatnam, in India, which experiences similar climate compared to Sundargarh. In 498 
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contrast, rainfall showed a relatively weaker association, which is in line with the study by 499 

Bomblies [3], which argues that during the rainy season, the breeding habitats of mosquitoes are 500 

flushed away temporarily. Still, they start breeding again when the rains stop, and water becomes 501 

stagnant, and the environmental condition is conducive for breading.  502 

This study found that extremely high temperature is one of the crucial triggers of the higher 503 

number of malaria incidents in Sundargarh district. Therefore, this agrees with the argument of 504 

Smith et al. [57], when the temperatures increase, it reduces the time taken by the mosquito 505 

parasite to complete its development. Furthermore, relative humidity also affects the 506 

transmission of the malaria vector in agreement with [58], found out that mosquitoes survive 507 

better under high humidity conditions. During high humid seasons, the number of malaria 508 

incidents increases compared to the less humid conditions. The time series plots (Figure 12) for 509 

the rainfall (a), temperature (b), and humidity (c) submit its direct association with the incidents 510 

reported. 511 

 512 

(a) 513 
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 514 

(b) 515 

 516 

(c) 517 

Figure 12. Time series plot for Monthly Rainfall (a), Maximum Temperature (b), and Relative 518 

Humidity (c) in comparison with malaria incidents for the period of 2002-2017 519 

It is concluded that relative humidity and temperature showed a significant relationship to 520 

malaria incidences in the district, especially for some blocks, those are in flat terrain and near 521 

dense vegetation like the forest. Additionally, rainfall also affects the transmission of malaria 522 

vector incidence. However, the rate of vector transmission during the rainy season is relatively 523 

lower, suggesting the influence of rain on malaria incidents may happen in a time lag mode as 524 

well. 525 
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Discussions 526 

A malaria early warning system and risk mapping tool is necessary to provide adequate support 527 

to the public health workers to take preparedness measures and remain prepared for any possible 528 

outbreaks in near real-time [59-61]. Several such attempts were proposed, such as a spatial 529 

decision support system for Karnataka [62] or the operational system in Kenya [60], but not all 530 

are very successful and useful. Statistical regression-based analysis like the multiple polynomial 531 

regression, semiparametric Poisson distribution methods, distributed non-linear lag model, 532 

hierarchical Bayesian framework and the time series regression models [14-19, 20-22, 56], or use 533 

of ANN or machine learning as discussed by researchers, provides an opportunity to process the 534 

dataset and establish an association between climate and the malaria incidents. Considering the 535 

climate dimension only in malaria early warning is not adequate and requires a deep 536 

understanding of the influence of all other facets, including climate in the establishment of an 537 

effective and operational warning system. 538 

Model Selection and Model Evaluation 539 

Appropriate selection of model, algorithm, and model evaluation techniques are vital in machine 540 

learning. The evaluation intends to estimate the performance of a model or algorithm on future 541 

data. Running a learning algorithm over a training dataset with different hyperparameter settings 542 

will result in different models [63]. Since we are typically interested in selecting the best-543 

performing model, estimation helps in choosing the best model to fit the purpose though, the 544 

estimation of the absolute performance of a model is one of the most challenging tasks in 545 

machine learning [63]. Working with small sample sizes in machine learning is acceptable but 546 

choosing the correct sampling method is vital [64, 65].  Considering the sample size in this study 547 

is smaller, and for parameter optimization, 10-fold cross-validation and Leave-One-Out cross-548 
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validation are recommended as the best sampling mechanisms and generally would yield better 549 

results [65].   550 

Assessments made by researchers to evaluate different classifier performances [66] 551 

recommended the use of leave-one-out cross-validation method as a preferred method of 552 

prediction. Thus, this study put an effort to assess the 10-fold cross-validation method, which 553 

incidentally also performed well. With more in-depth analysis, the reason would be linked to the 554 

data sampling and training strategy implemented by the method in comparison to the others. A 555 

list of explanations is provided below, which considers the mechanism with which the cross-556 

validation method works. 557 

a) Utilized all the data samples for training and test and takes care of the multi-class issue 558 

that arises in the percentage split method, where the sample sizes are static, and 559 

generating multiple classes means a reduction in test sets. 560 

b) We defined more metrics for the learning algorithm than other methods. If we have, n 561 

samples there can n-1 models to predict one instance of the predictand.    562 

c) Through model stacking and back-propagation models are processed in a pipeline 563 

allowing model prediction by learning from the previous model in the forward direction 564 

and feedback and model training in the backward direction. The model bias (error) is also 565 

handled better in this process. 566 

d) Finally, parameter fine-tuning, a process by which the parameters were tuned with an 567 

independent validation set, that suggested the ideal number of trees in a classifier, hidden 568 

layer size (activation function) in the Neural network. 569 

The probable explanation for the model not performing well for some of the blocks and months 570 

could be a factor that is external to the climate influence. Furthermore, the interventions in place 571 
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in parts of the district and other regions [67] and the socio-economic status of the significant 572 

population in the eastern belt, being tribe and access to necessary facilities is limited as also 573 

explained by Sundararajan et al. [13]. These factors influence the increase or decrease in the 574 

cases, and not truly reflect the direct influence of climate. The other reflection from the analysis 575 

is that the model's performance dips down significantly, especially during July, August. It picks 576 

up during September October and then again shows lower accuracy during November and 577 

December months (this is depicted in Figure 7). The poor performance of the model could be 578 

because of the varying topography, which affects the intra-seasonal rainfall variability as well as 579 

the spatial variation of the temperature and humidity could influence the results strongly. For 580 

example, blocks such as Bonai, Koira, Gurundia, and Hemgiri are with higher elevation and 581 

depict considerably lower accuracy for the prediction. In comparison, blocks with plain land and 582 

forest cover had better performance. 583 

Conclusion 584 

The climatic condition of Odisha, especially the Sundargarh district, makes it vulnerable to 585 

malaria y. Monsoon rainfall, maximum surface temperature ranging from 27° to 40° Celsius 586 

during the summer, and relative humidity in the range of 60% to 85% provide a more favorable 587 

climatic condition for the breeding of the malaria larva during the monsoon and post-monsoon 588 

period. It was found that the increase in malaria incidents is significantly attributed to climatic 589 

factors such as temperature, humidity, and monthly rainfall variability. Among the two classifier 590 

models used, J48 has shown comparatively better skills over the MLP. J48 demonstrated less 591 

error (RMSE = 0.6), better kappa = 0.63, and higher accuracy = 0.71), suggesting it to be a 592 

suitable model.  593 
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J48 model has provided a greater insight into the predictability of malaria when compared in 594 

seasonal scale. During the pre-monsoon (Mar-Apr-May) period it has accuracy = 0.68, kappa = 595 

0.58 and RMSE = 0.67, for monsoon (Jun-July-Aug-Sep) period with accuracy = 0.73, kappa = 596 

0.67 and RMSE = 0.70, post-monsoon (Oct-Nov) period with highest accuracy = 0.81, kappa = 597 

0.68 and RMSE = 0.70 and during the winter (Dec-Jan-Feb) period with lowest accuracy = 0.64, 598 

kappa = 0.59 and RMSE = 0.69, respectively. This suggests that the model performance is 599 

particularly good during the monsoon and post-monsoon when the malaria incidents are at the 600 

peak. Besides, non-climatic factors play a significant role in the malaria spreading, which was 601 

reflected with a lower accuracy. However, climate being an extremely complex and variable 602 

factor to predict, the results provided promising signal for the prediction of future malaria 603 

incidents. Therefore, it is recommended that the public health department could adopt the J48 604 

classifier machine learning technique in the malaria early warning system for the early detection 605 

of malaria. 606 

Even though the models have shown better performance in terms of predicting malaria incidence, 607 

it is constrained by the non-availability of datasets for an elongated period. More finer scale 608 

datasets (both climate and malaria cases) would have provided an opportunity for deeper analysis 609 

to understand the phases and lags within a month as well. Furthermore, non-climatic factors such 610 

as the demography, immunity within the population, the socio-economic structure of society, 611 

availability of affordable public health facilities, and other environmental modifications 612 

initiatives are strongly recommended to be factored in, while developing a malarial early 613 

warning system. 614 
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Figures

Figure 1

Malaria incidents across six different states of India for the period of 2014-2017.

Figure 2

Cumulative malaria incidence map for the period 2002 to 2017 (Data Source: Directorate of Public Health,
Odisha)



Figure 3

Study area with elevation for Sundargarh district in Odisha, India

Figure 4



Average monthly rainfall (in mm) (a), maximum surface temperature (in °C), relative humidity (in %) (b),
and incidents reported (c) for the period of 2002 to 2017.

Figure 5

The trend of annual incidents (a); and comparison with average annual rainfall (b); temperature (c); and
relative humidity (d) for the period of 2002 to 2017



Figure 6

Detailed Methodology for Predictive Modeling of Malaria

Figure 7

Month-wise Comparison of the Accuracy of the J48 (Cross-validation & Percent Split model) to the Multi-
Layer Perceptron model for Accuracy for Sundargarh District



Figure 8

Month-wise Comparison of Kappa of the J48 (Cross-validation & Percent Split model) to the Multi-Layer
Perceptron model for Accuracy for Sundargarh District

Figure 9

Month-wise Comparison of RMSE of the J48 (Cross-validation & Percent Split model) to the Multi-Layer
Perceptron model for Accuracy for Sundargarh District



Figure 10

Month-wise Comparison of ROC for ((a) Low, (b) medium, and (c) High prediction category) of the J48
(Cross-validation & Percent Split model) to the Multi-Layer Perceptron model for Accuracy for Sundargarh
District



Figure 11

Block-wise accuracy (arc), RMSE (x-axis) and Kappa (Y-axis) for the J48 and the Multi-Layer Perceptron
model with a Supplied test set, 10-fold Cross-validation & Percent Split classi�ers



Figure 12

Time series plot for Monthly Rainfall (a), Maximum Temperature (b), and Relative Humidity (c) in
comparison with malaria incidents for the period of 2002-2017


