

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Solid-state Thermoelectric Characteristics of Nill, Fell, Coll, and Cull Borohydrides

Isam M. Arafa (⊠isamaraf@just.edu.jo)

Jordan University of Science and Technology https://orcid.org/0000-0001-9231-4098

Mazin Y. Shatnawi

Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

Yousef N. Obeidallah

Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

Ahmed K. Hijazi

Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

Yaser A . Yousef

Department of Chemistry, Yarmouk University, Irbid, Jordan

Research Article

Keywords: metal borohydrides, thermoelectricity, energy harvesting, waste heat, Seebeck, figure of merit, power factor

Posted Date: May 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-521859/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Solid-State Thermoelectric Characteristics of Ni^{II}, Fe^{II}, Co^{II}, and Cu^{II} Borohydrides

Isam M. Arafa^{a*}, Mazin Y. Shatnawi^a, Yousef N. Obeidallah^a, Ahmed K. Hijazi^a, Yaser A. Yousef^b

^a Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.

^b Department of Chemistry, Yarmouk University, Irbid, Jordan

* Corresponding Author, Fax: 962-2-7201071, E-mail: <u>isamaraf@just.edu.jo</u>

ABSTRACT

Four transition metal borohydrides (M_TBHs , $M_T = Ni$, Fe, Co, and Cu) were prepared by sonicating a mixture of the desired M_T salt with excess NaBH₄ in a nonaqueous DMF/CH₃OH media. The process afforded bimetallic (Ni-BH₄), trimetallic (Fe-BH₄, Co-BH₄), and mixed-valence (Cu-H, Cu-BH₄) amorphous, ferromagnetic nanoparticles as identified by thermal, ATR-IR, X-Ray diffraction, and magnetic susceptibility techniques. The electrical conductivity (σ) of cold-pressed discs of these M_TBHs shows a nonlinear increase while their thermal conductivity (κ) decreases in the temperature range of $303 \le T \le 373$ K. The thermal energy transport occurs through phonon lattice dynamics rather than electronic. The σ/κ ratio shows a nonlinear steep increase from 9.4 to 270 KV⁻² in Ni-BH₄, while a moderate-weak increase is observed for Fe-BH₄, Co-BH₄, and Cu-BH₄. Accordingly, the corresponding thermoelectric (TE) parameters S, PF, ZT, and η were evaluated. All TE data shows that the bimetallic Ni-BH₄ (S, 80 μ VK⁻¹; PF, 259 μ Wm⁻¹K⁻²; ZT 0.64; η , 2.56%) is a better TE semiconductor than the other three M_T -BHs investigated in this study. Our findings show that Ni-BH₄ is a promising candidate to exploit low-temperature waste heat from body heat, sunshine, and small domestic devices for small-scale TE applications.

Keywords: metal borohydrides, thermoelectricity, energy harvesting, waste heat, Seebeck, figure of merit, power factor.

1.0 Introduction

Current research and commercialization on renewable energy focus mainly on solar photovoltaic (**PV**), geothermal, and wind sources as viable energy sources for large-scale electricity production [1-2]. However, to a much lesser extent was the interest in utilizing waste heat through thermoelectric (**TE**) techniques [3-27]. In this straight-forward technology, the temperature gradient (Δ **T**) is directly related to the induced DC thermal voltage (Δ **V**) and *vice-versa* as described by Seebeck power function (**1**) and Peltier refrigeration functions (**2**),

$$\Delta \mathbf{V} = -\mathbf{S} \left(\Delta \mathbf{T} \right) \tag{1}$$

$$\mathbf{Q} = \Delta \pi \left(\mathbf{I} \right) \tag{2}$$

where S, $\Delta \pi$, Q, and I are the Seebeck coefficient, difference in Peltier factors, heat, and electric current, respectively [3,11-13]. However, the ability of a material to produce TE power is determined by its power factor (**PF**), and the dimensionless figure of merit (**ZT**), **Equations 3** and **4**.

$$\mathbf{PF} = (\mathbf{\sigma}) \, \mathbf{S}^2 \tag{3}$$

$$ZT = (\sigma/\kappa) S^2 T$$
(4)

Although TE technology is direct, simple, and environmentally friendly, its sluggish progress over the past few decades is partly due to the lack of efficient TE semiconducting materials and the low conversion efficiencies ($\eta < 5\%$) [4-7,11-15,20-23]. Nevertheless, for TE technology to be practically viable and competitive with PV technology for harvesting solar energy, the TE semiconductors should exhibit ZT values ≥ 1 or PF ≥ 4 mW/m.K² [3,4,7,11-15]. Today, TE technology development becomes a top priority to harvest waste heat associated with fuel engines, small domestic devices, solar thermal radiation, and other heat sources. Current research in this field is unfolding on utilizing solar thermal energy to build solar-based TE systems [24,25]. However, the success of this technology relies on obtaining p-type and n-type TE semiconductors that are characterized by narrow bandgap exhibiting sufficiently high σ and S values while displaying low κ [3-7,11-19,20-23]. Recent reports showed that the microstructure of TE materials as displayed by the grain size and morphology (texture, crystallinity, dimensionality) significantly affect the transport of charge carriers and phonons scattering. Different authors showed that the κ could be reduced through grain boundary scattering, phonon-glass electron crystals, formation of nanocomposites, and introduction of sublattice crystalline defects. At the same time, σ can be enhanced through low dimensional structure, structural modification, and increase charge carrier concentration [4,6,7,20-23]. In this respect, polycrystalline materials with a large-sized grain (> 2 mm) offer transport pathways for electrons but cannot scatter phonons efficiently at the interfaces, resulting in increasing σ and κ_{lattice} as well. On the contrary, nanoscale grains particles (>500 nm) scatter phonons to maintain a low κ_{lattice} while the σ increases, thus enhancing ZT values. These findings also showed that the carrier mobility can be enhanced through microstructure where 1-D linear and 2-D layer structural arrays are preferred to 3-D bulk materials.

To date, the quest for new n-type and p-type semiconductors, composites, and C-based materials for TE applications continue [8-19,22,27]. However, inorganic TE semiconductors are generally classified as metal chalcogenides (Bi₂Te₃, Bi₂Se₃, PbTe, SnSe, MoSe₂/MoS₂...), metal oxides (LaMo₈O₁₄, ZnO, Na_xCo₂O₄, Ca₃Co₄O₉, CaMnO₃, SrTiO₃, In₂O₃), borides (ZrB₂, HfB₂), lead-based perovskites (CH₃NH₃PbI₃), and others (Si_{1-x}Ge_x) [3,8-10,26,27]. The highest PF value of 2.8 mW/m.K² at 773 K was reported for n-type SnSe semiconductor. On the other hand, interest in C-based materials, including C_{graphite}, C_{nanotube}, C_{graphene} nanoparticles, and thin films, is constantly rising [12-19]. The highest reported PFs for such nanoparticles are within 2.71 and 2.46 mW/mK for p-type and n-type, respectively. Recently, Kanahashi *et al.* reported still higher PF values for p-doped (6.93 mW/ mK) and n-doped (3.29 mW/mK)

graphene films [19]. This class is extended to their composites with conducting polymers (PEDOT, PANI,...) [12-15].

On the other hand, metal borides (M-Bs) [26-34] and metal borohydrides (M-BHs) [35-45] of p-, d-, and f-block elements have become in the spotlight as solid-state materials. Nevertheless, these two classes of materials are closely related where M-BHs undergo dehydrogenation to yield M-Bs when subjected to heat (300-400 °C) under an inert atmosphere [35-38,40]. These M-Bs are generally classified as boron-rich (MB₁₂ - MB₇₀) and metal-rich $(M_2B-to-M_5B)$, exhibiting a variety of structures, including isolated B atoms, chains, layer, and clusters [26-34]. Currently, the exceptional structural, hardness and thermal properties of M-Bs receive increasing attention as hard refractory (TiB₆), hard magnets (Nd₂Fe₁₄B), battery electrodes, conducting ceramics (ZrB₂, HfB₂), electro-catalysis, and superconducting (MgB₂) materials [26-34]. Meanwhile, solid-state M-BHs continue to attract attention as H-storage materials in solid fuels, electrolytes in batteries, and luminescence and magnetic applications [35-42]. Given these characteristics, both M-BHs and M-Bs are anticipated to play a key role in the future's sustainable energy. Although M_T-Bs and M-BHs tend to form thermally stable materials, their utilization in TE applications is limited [26,27]. Our current research is directed towards the synthesis and applications of materials that possess the potential to convert lowtemperature heat $(303 \le T \le 373 \text{ K})$ resulting from body heat, sunshine, and domestic devices for small-scale TE applications. This work reports the synthesis, characterization, and utilization of four transition metal borohydrides (M_T-BH₄ = Ni-BH₄, Fe-BH₄, Co-BH₄, Cu-BH₄) semiconductors for TE applications. The M_T-BHs were prepared by mixing and sonicating the transition metal salts with NaBH₄ in the DMF/MeOH mixed solvent system. The individual products were characterized by thermo-oxidative, vibrational spectroscopy (ATR-**IR**), X-Ray diffraction (**P-XRD**), and magnetic (μ_{eff}) techniques. The thermal (κ), electrical

 (σ) conductivities and the corresponding TE parameters (**S**, **PF**, **ZT**) were evaluated at ambient conditions.

2.0 Materials and Methods:

All chemicals and solvents were reagent grade and used as received unless otherwise stated (NiCl₂·6H₂O, Aldrich; CoCl₂·6H₂O, Janssen Chimica; CuCl₂·2H₂O, Scharlau; FeSO₄·7H₂O, Codex; NaBH₄, Aldrich). Prior to each preparation, the transition metal salts were soaked in absolute alcohol for ~10 min., decanted, and dried. This step helps to minimize the presence of water in the reaction system. Thermo-oxidation was performed in a muffle furnace (open-air, steps of 100 °C, 25 < T < 1100 °C). The magnetic susceptibility measurements were carried out using a Sherwood Static magnetic susceptibility balance. The P-XRD was performed on a RIGAKU (Cu_{α} λ = 1.5408 Å, 40 kV, 40 mA, K- β filter, scintillation counter, scan speed = $3.00 \text{ deg./min. sampling width: } 0.0200 \text{ deg, Scan range } 2 \theta = 5.00 - 90.00$ deg.). The positions of the diffraction peaks were determined by RIGAKU curve-fitting software. The ATR-IR spectra were recorded using a Bruker ATR-IR (Alpha, OPUS-7.5.1.8) spectrometer (Range: 4000-400 cm⁻¹, Scans: 24, Resolution: 4 cm⁻¹). The TE characteristics of the products were performed on cold-pressed circular discs (10 ton/cm², 2 minutes, radius = 6.51 mm, area, $\pi r^2 = 1.33 \times 10^{-4} m^2$, thickness 1-1.1 mm) of 0.500 g of dry fine samples, sandwiched between two polished brass electrodes, Figure 1. The lower brass disc was gradually heated, and the ΔT between the two brass discs was monitored using a digital K-type thermocouple. The developed voltage (ΔV) was monitored as a function of (ΔT) in the range of 300-373 K using a digital K-type multimeter and thermocouple. Thermal conductivity ([$\kappa =$ $\mathbf{Q}/((\Delta \mathbf{T}/\mathbf{L}) * \mathbf{A})$], WK⁻¹m⁻¹) was evaluated from the heat flux (Q, W) passing from the hot disc to the cold disc through M_T -BHs discs. Electrical conductivity (σ , Siemen m⁻¹) was determined

for nonohmic behavior from Ln I *vs*. Ln V plot where the intercept gives Ln G (conductance, [G = A * σ/L].

Figure 1: Device for thermoelectric properties.

2.1 Synthesis of Transition Metal Borohydride (M_T-BHs):

2.1.1 Nickel Borohydride (Ni-BH4)

A freshly prepared solution of NaBH₄ (1.513 g, 40 mmol) in 50 mL of methanol was dropwise added within 15 min. to a solution of NiCl₂·6H₂O (2.377 g, 10 mmol) dissolved in 50 mL of DMF. The reaction mixture was sonicated for 90 min. at about 70 °C. The obtained Ni-BH₄ precipitate was filtered off, washed with distilled water and acetone, dried in an oven (80 °C, 12 hrs.), and stored under vacuum for further analysis. Yield = 56%; Color/State: lustrous black solid. Density cold-pressed disc: 2.72 g/cm³. **ATR-IR**: 3350 (br, v_{O-H}); 2073 (m, v_{B-Ht}); 2002 (m, v_{B-Hb}); 1149 (w, δ_{BH2}); 470 (w, $v_{aym Ni-HBH}$) cm⁻¹.

2.1.2 Copper Borohydride (Cu-BH₄):

The **Cu-BH**₄ was prepared and isolated as described above employing CuCl₂·2H₂O (1.34 g, 10 mmol) and NaBH₄ (1.513 g, 40 mmol). Yield = 55%; Color / State: lustrous black solid. Density cold-pressed disc: 3.73 g/cm³. **ATR-IR**: 2319, 2100 (w, Cu-H); 2026 (m, v_{B-Ht}); 1975 (m, v_{B-Hb}); 1036 (m, δ_{BH2}); 429 (w, v_{Cu-HBH}) cm⁻¹.

2.1.3 Cobalt Borohydride (Co-BH₄):

The same reaction steps and workup procedure were employed using $CoCl_2 \cdot 6H_2O$ (2.379 g, 10 mmol) and NaBH₄ (1.513 g, 40 mmol). Yield = 59%; Color/State: lustrous black solid. Density cold-pressed disc: 2.24 g/cm³. **ATR-IR**: 3354 (br, υ_{O-H}); 2168, 2071 (m, υ_{B-Ht}); 2000 (m, υ_{B-Hb}); 1056 (w, δ_{BH2}); 431 (w, υ_{Co-HBH}) cm⁻¹.

2.1.4 Iron Borohydride (Fe-BH₄):

A solution of FeSO₄·7H₂O (2.78 g, 10 mmol) in 100 mL of H₂O: DMF (1:1 mixture) was reacted with NaBH₄ (1.513 g, 40 mmol) in 50 mL methanol. The reaction procedure and workup were as described above. FeSO₄·7H₂O was used instead of FeCl₂·6H₂O to minimize the amount of iron oxide byproducts that might form in the process. Yield = 52%; Color / State: lustrous black solid. Density cold-pressed disc: 2.76 g/cm³. **ATR-IR**: 3237 (br, ν_{O-H}); 2110, 2075 (m, ν_{B-Ht}); 2001 (m, ν_{B-Hb}); 1064 (w, δ_{BH2}); 420 (w, ν_{Fe-HBH}) cm⁻¹.

3.0 Results and Discussion:

3.1 Formation and Characterization of Transition Metal Borohydrides (M_T-BHs)

In general, M_T -BHs are synthesized in various compositions, structures, and properties, as exemplified by their general chemical formula of $M_x(BH_n)_y$ [36,38]. In this work, the desired M_T -BHs were prepared by mixing the desired metal salt with fourfold excess of NaBH₄ in a nonaqueous DMF/MeOH solvent system, **Equation 5** [38-45]. This complex reaction process is generally affected by the M_T :BH₄⁻ ratio, solvent, pH, and slow/rapid mixing of reagents. Due to the presence of traces of moisture, two main side reactions may be encountered during the reaction, the formation of metallic element (M_T^0) and metal oxides /borates (M_TO , M_TBO_3 **Equation 6** [39, 43,45]. To overcome these possible side reactions, our reactions were carried out in DMF/MeOH solvent mixtures using excess NaBH₄.

$$M_{T}Cl_{2} \cdot xH_{2}O + NaBH_{4} \xrightarrow{DMF/CH_{3}OH} M_{T}(BH_{4})_{x} + NaCl + B(OH)_{3} + H_{2}$$
(5)
(~ 70 °C)

$$M_{T}^{2+}(aq) + x BH_{4}^{-}(aq) \xrightarrow{H_{2}O} M_{T}^{0}(s) + M_{T}BO_{3}(aq) + 2 H_{2}(g)$$
 (6)

The obtained lustrous black solids are insoluble in a common organic solvent. They are thermally stable at ambient conditions but degrade readily under thermo-oxidative (200-300 °C) and low pH conditions. The physicochemical characteristics of these M_T-BHs were established by thermo-oxidative analysis, magnetic susceptibility, P-XRD, and ATR-IR techniques. Their thermal (κ) and electrical (σ) conductivities and TE parameters (S, PF, ZT) were determined.

3.1.1 Thermo-oxidation of the Prepared M_T-BHs

M-BHs are prone to three main pyrolysis steps in the air through dehydrogenation forming metal borides (M-Bs), taking up oxygen to give metal borates (M-BO₃), which decompose upon further heating eliminating B_2O_3 to ultimately afford the corresponding metal oxides (M-O) [31,35,40,47]. This characteristic property was exploited to establish the composition of the prepared M_T-BHs by subjecting them to step-wise pyrolysis in an air draft in the temperature range of 30 < T < 1100 °C, **Equation 7**.

$$M_{T}(BH_{4})_{x} \xrightarrow{Heat} M_{T}-B + B_{2}H_{6} + x H_{2}$$

$$\downarrow Heat, O_{2}$$

$$\downarrow 500-800 ^{\circ}C$$

$$M_{T}-BO_{3} \xrightarrow{>} 800 ^{\circ}C \qquad M_{T}O + B_{2}O_{3} \qquad (7)$$

A first look at the obtained thermo-oxidation curves in **Figure 2** suggests that Cu-BH₄ exhibits different behavior from the other three M_T-BHs. Close analysis of Fe-BH₄, Co-BH₄, and Ni-BH₄ thermograms shows that Fe-BH₄ is stable below 400 °C while Co-BH₄ and Ni-BH₄ underwent two-step mass losses (~ 20%). At 400-800 °C range, the three M_T-BHs underwent similar two-step dehydrogenation processes to yield the corresponding M_T-Bs residues (Fe-B, ~81%; Co-B, 68%; Ni-B, 41%). These borides uptake oxygen in the temperature range of 800-1000 °C to yield the corresponding borates (FeBO₃, 4.7%; CoBO₃, 12.0; NiBO₃, 7.4%) where the mass gains represent the oxygen uptake. Upon further heating to 1100 °C, the just-formed M_T-BO₃ decomposes, eliminating dense white fumes of B₂O₃, leaving behind Fe₂O₃, Co₂O₃, and NiO residues. To ensure complete degradation of M_T-BO₃, the resulting residues

Figure 2: Thermo-oxidative curves of the obtained M_T -BHs ($M_T = Ni^{II}$, Fe^{II}, Co^{II}, Cu^{II}).

were treated three times with deionized water and calcined to a constant weight (1100 °C, one hr.), leaving behind the oxide residues (Fe₂O₃, 78.6%; Co₂O₃, 72.0%; NiO, 61.9%). The obtained thermo-oxidative data in **Table 1** allowed us to deduce their molecular formula in accordance with the general formula, $M_x(BH_n)_y$, reported in the literature [35,36,38].

On the other hand, a close look at the thermo oxidative data of Cu-BH₄ shows that the early mass gain (5.6 %) observed at ~250 °C is attributed to the oxidation of the Cu-H phase forming Cu₂O/CuO [35,39]. This step is followed by the dehydrogenation of Cu-BH₄ phase forming Cu-B (250-500 °C), which consequently oxidized (500-600 °C) to generate the Cu-BO₃ intermediate where it degrades upon further heating (600-900 °C) by releasing B₂O₃ fumes leaving behind a total mass gain of 7.9% CuO residues. Considering the amounts of CuO

formed due to the Cu-H oxidation early in the process (5.6%); thus, the amount corresponding to oxidation of the Cu-BH₄ phase can be deduced from the difference (2.3%). The molar ratio of these two phases can be calculated from the obtained data and found to be 2.9 Cu^I-H: 1.0 Cu^{II}(BH₄)₂, which is consistent with the obtained magnetic data (*vide infra*).

M _T BHs	M _T -BHs (g)	M _T -oxide Residue (g)	M _T : BH ₄ mole Ratio	Formula
Fe-BH ₄	0.210	0.175	1: 2.7	Fe(BH ₄) _{2.7}
Co-BH ₄	0.225	0.185	1: 2.7	Co(BH ₄) _{2.7}
Ni-BH ₄	0.240	0.185	1: 2.6	Ni(BH4)2.6
Cu-BH ₄	0.280	0.300	1: 0.71	2.9 CuH:1Cu(BH ₄) ₂

Table 1: Thermo-oxidative data and the predicted formula of the investigated M_T-BHs*.

*Mass metal = mass of M_TO * (At. mass of M_T / molar mass of M_TO residue). Ni (0.145 g, 00247 mol); Fe (0.122 g, 00219 mol); Co (0.131 g, 00223 mol); Cu (0.240 g, 00378 mol). Mass of BH₄ = mass of M_T -BHs – mass M_T ; moles BH₄ = mass/molar mass of BH₄.

3.1.2 ATR-IR Spectroscopy of the Prepared M_T-BHs

The structural complexity of M-BHs is reflected in their FT-IR spectra [46-49]. The ATR-IR vibrational frequencies of the obtained M_T -BHs and their tentative assignments based on common M-BH₄ and M-H complexes are given in the experimental section and displayed in **Figure 3**. The recorded ATR-IR spectra carry diagnostic evidence that allows the interpretation of relevant structural information about the presence of B-H and M-H bonds. In all cases, the formation $M_T(BH_4)_x$ is evident from the medium intense stretching bands of the terminal (v_{B-Ht}) and bridging (v_{B-Hb}) of B-H in the range 2075-2026 cm⁻¹ and 2026-2002 cm⁻¹,

respectively, **Figure 4**. In all cases, the terminal H (v_{B-Ht}) stretching bands are associated with shoulders at the high-frequency region of 2100-2320 cm⁻¹, reflecting the presence of different

Figure 3: ATR-IR spectra of the prepared M_T -BHs (M_T = Ni^{II}, Fe^{II}, Co^{II}, Cu^{II}).

Figure 4: Schematic structure showing terminal and bridging H in M-BH₄. coordination modes [46]. The bands due to bending (δ_{BH2}) appear in the 1149-1036 cm⁻¹ range. However, the low energy bands due to the stretching vibration of M-H in the four-membered M-H-B-H rings (ν_{M-HBH}), which typically occur in the low-frequency region of 200-600 cm⁻¹ are observed as weak bands in the 420-470 cm⁻¹ region [39,47-49]. A close look at the ATR spectra of Cu-BH₄ shows the stretching frequencies of Cu-H at 2100 and 2121 cm⁻¹ [39].

3.1.3 Powder X-Ray Diffraction of the Prepared M_T-BHs (p-XRD)

The p-XRD profiles in **Figure 5** were analyzed by inspecting the diffraction patterns, peak position, peak shape, and peak width, which are significant in deducing structural information about the obtained M_T -BHs. The profiles are further analyzed for the presence/absence of metallic (M_T^0) and metal oxide (M_T -O) impurities common in such preparations. A first look at these profiles shows that their structures vary from highly amorphous Fe-BH₄ and Co-BH₄ to predominantly crystalline, as displayed by Cu-BH₄. The featureless nature of p-XRD of these M_T -BHs is indicative of the formation of vitreous material, which explains their lustrous appearance.

A close inspection of these M_T-BHs diffraction patterns shows Ni-BH₄ and Cu-BH₄ display sharp diffraction peaks superimposed on broad diffraction features, suggesting vitreous

lattice structures, **Figure 5**. Nevertheless, the co-existence of two different structural phases for Ni-BH₄ and Cu-BH₄ implies that they exhibit clear tendencies to form an amorphous glassy structure upon heat/compression treatment through vitrification/devitrification process bearing in mind the thermal stability of the materials [35,36,40]. On the contrary, Fe-BH₄ and Co-BH₄ analogs exhibit amorphous structures with small broad features at 2 θ of 44.3° and 36.8°, respectively. Close analysis of these diffraction patterns show no detectable amounts of sharp peaks due to metallic Cu⁰ (50°), Ni⁰ (44°, 52°), Fe⁰ (45°, 65°), and Co⁰ (41°, 44°, 51°) and their oxides Cu₂O/CuO (11-20°), NiO (37°,43°,63°), FeO (33°-35°,49°), CoO (33°,37°,62°) which permits us to conclude that no metallic and metal oxides impurities are detected in these M_T-BHs preparations[35,41,43-45,47].

Figure 5: P-XRD profiles of the prepared M_T-BHs (M_T = Ni^{II}, Fe^{II}, Co^{II}, Cu^{II}).

The diffraction parameters are summarized in **Table 2**. The crystalline phase in the structure was estimated from the area under the broad peaks in the P-XRD profiles. The corresponding interspatial distances (d-spacing) were calculated from the position of the most intense peak as given by Bragg's Law ($\mathbf{n} \ \lambda = 2 \ \mathbf{d} \ \sin \theta$) where \mathbf{n} , λ , and θ are the diffraction order, wavelength of the X-ray beam, and diffraction angle, respectively. The interspatial distances were found to range from 2.04 to 2.47 Å. Furthermore, the crystallite size (t) was calculated as described in the Scherer formula ($\mathbf{t} = \mathbf{K} \ \lambda / \beta \cos \theta$) where K (Scherer constant, 0.95), λ (wavelength of the X-Ray), θ (Bragg's angle of the most intense peak) and β (peak width at half-height in radians). It is clear from the crystallite/grain size in **Table 2** that the prepared M_T-BHs are nano-scaled particles in the range of 6.4-26.2 nm.

M _T -BHs	Diffraction Angle 2 θ (degrees) ^a	Crystallinity % ^b	d-Spacing (Å) ^c	Grain Size (nm) ^d
Fe-BH ₄	14.9-16.3 (55%), 17.8-18.7 (40%), 44.3 (100%)	~ 4%	2.04	6.4
Co-BH ₄	36.8 (broad)	~1%	2.44	7.7
Ni-BH ₄	12.2-13.4 (28%), 19.9-20.4 (21%), 37.5-38.1 (31%), 44.4 (100%), 60.9 (26%)	~ 45%	2.04	24.1
Cu-BH ₄	35.3 (30%), 36.3 (100%), 38.6 (5%), 43.1 (25%), 61.3(20%)	~ 73%	2.47	26.2

Table 2: P-XRD data for the investigated M_T -BHs ($M_T = Ni^{II}$, Fe^{II} , Co^{II} , Cu^{II}).

^{a.} The relative peak heights (I/I_o) are given in brackets. The most intense peak is given in bold. Here, we report the lines that give a relative intensity of more than 20%.

^{b.} Estimated from the area under the diffraction peaks.

^{c.} Calculated from $\mathbf{n} \lambda = 2\mathbf{d} \sin \theta$.

^{d.} Calculated from Scherer formula ($\mathbf{t} = \mathbf{K} \lambda / \beta \cos \theta$).

3.1.4 Magnetic Characteristics of the Prepared M_T-BHs

The magnetic characteristics of the prepared M_T -BHs were investigated using a static magnetic susceptibility method at room temperature. The magnetic data in **Table 3** shows that the determined magnetic moment (μ_{eff}) per molecular formula for Fe-BH4, Co-BH4, Ni-BH4, and Cu-BH4 are, respectively, 15.91, 10.98, 5.50, 0.64 BM. Comparing these μ_{eff} values to their μ_{spin} values (Fe^{II}, 4.89; Co^{II}, 3.87; Ni^{II}, 2.83; Cu^{II}, 1.73 BM) suggest that Fe-BH4, Co-BH4, and Ni-BH4 belong to multi-center systems while but not Cu-BH4 is an exception. The observed magnetic data for Ni^{II}-BH4 demonstrates that the Ni^{II} is situated in an octahedral environment ($t_{2g}^{6}e_{g}^{2}$) rather than the diamagnetic square planar geometry ($t_{2g}^{6}d_{z2}^{2}$). Applying the semiempirical scaling laws of μ_{eff} of clusters per magnetic site where their magnetic properties depend on different inherited structural factors, including cluster size, bonding, and geometry, we conclude that Fe-BH4 and Co-BH4 belong to trimetallic ferromagnetic aggregates, while the Ni-BH₄ belongs to bimetallic ferromagnetic class [50,51]. This conclusion is supported by the fact that M_T-BHs may adopt tetragonal clusters but not layer structures as supported by the P-XRD [26,35-38, 41,44].

On the contrary, the low μ_{eff} value of Cu-BH₄ clusters (0.64 BM) compared to the μ_{spin} value of Cu^{II} sites (d⁹, 1.73 BM) suggests that this material comprises diamagnetic Cu^I (d¹⁰) centers. This conclusion of biphasic Cu^I-Cu^{II} structure is consistent with the thermo-oxidative that the prepared Cu-BH₄ material comprises Cu-H and Cu(BH₄)₂ phases. The molar ratio of Cu^I: Cu^{II} calculated from the magnetic data was found to be 2.7: 1, consistent with the molar ratio calculated in the thermo-oxidative section of 2.9: 1.

Table 3: Gram magnetic susceptibility (χ_g), effective and spin magnetic moments (μ_{eff} , μ_{spin}), magnetic sites per formula, and clustering of the investigated M_T -BHs ($M_T = Ni^{II}$, Fe^{II}, Co^{II} , Cu^{II}).

M _T BHs	$\chi_{g} (10^{6})$ (cm ³ g ⁻¹) ^a	χm ^a	μ_{eff} (BM) ^b	μ _{spin} / d ⁿ (BM) ^c	No. Magnetic Sites ^d	Cluster
Fe-BH ₄	1100	0.1054	15.91	4.89 / d ⁶	3.25	Trimetallic
Co-BH ₄	507	0.0502	10.98	3.87 / d ⁷	2.84	Trimetallic
Ni-BH ₄	130	0.0126	5.50	2.83 / d ⁸	1.94	Bimetallic
Cu-BH ₄	1.83	0.00017	0.64	1.73 / d ⁹	0.37	2.7Cu ^I : 1Cu ^{II} Biphasic

 χ_m represents the molar magnetic susceptibility [$\chi_m = \chi_g * M.wt$], diamagnetic contribution is neglected. Average molecular mass as calculated from thermo-oxidative data. Ni(BH₄)_{2.6}; (97.2 g/mol); Fe(BH₄)_{2.7}; (110.7 g/mol); Co(BH₄)_{2.7} (98.9 g/mol); 2.9 Cu-H :1Cu(BH₄)₂ (94.7 g/mol).

^b μ_{eff} is the effective magnetic moments [$\mu_{eff} = 2.83 (\chi_m * T)^{1/2}$] at 298 K. ^c $\mu_{spin} = g[S (S + 1)]^{1/2}$, g is the gyromagnetic ratio = 2.0023, S total spin.

^{d.} The number of magnetic sites per formula is deduced from μ_{eff}/μ_{spin} .

^{e.} Deduced from the number of metal sites per formula; The Cu-BH₄ comprises two phases containing 2.7 Cu^I: 1 Cu^{II}.

3.2 Electrical and Thermal Characteristics of the investigated M_T-BHs

3.2.1 Electrical Conductivity (σ)

The electrical current (**I**) that develops between the hot and cold brass discs across the prepared M_T -BHs was examined by plotting their I-V curves, **Figure 6.** The observed nonlinear trend suggests nonohmic behavior observed in diodes, thermistors, heated filaments, and photovoltaic cells where the dynamic resistance is reported to decrease with temperature. This behavior can be attributed to various parameters, the most important of which are the temperature, current density, the time over which the electric field is applied, not to ignore the contribution of the induced ionic conduction [52,53]. Recently, Katsufuji etal. addressed the nonlinear behavior of resistance in various disordered systems and reported that the resistivity decreases as a function of current density /electric field but does not rely on the temperature or the materials. They discussed their observation in the light of the percolation conduction theory in disordered systems [53].

Here, the observed nonlinear curve indicates that the conduction in these M_T-BHs is not purely electronic but being influenced by different possible factors such as temperature, induced ionization, magnetic field effects, and phonon migration. For that, the nonlinearity of the I-V curves was further analyzed by taking the logarithmic form as described by **Equation 9** and **10** where I, V, α , and G are the current, voltage, ohmicity, and conductance (G = σ x area/thickness), respectively [54]. The α can be estimated from the slope of Ln (I) - Ln (V)

$$I = V^{\alpha} * G$$

$$Ln(I) = \alpha Ln(V) + Ln(G)$$
(10)

linear plots in **Figure 6**. The obtained α values (1.76 - 1.20) substantially deviate from unity ($\alpha = 1$) of pure electronic conduction showing contribution from possible ionic/mass diffusion, **Table 4**. The higher α factor in the case of Ni-BH₄ (1.76) compared to those of the other studied M_T-BHs (1.20-1.25) suggests considerable ionic/mass diffusion in Ni-BH₄ thus permitting comparatively large σ , **Table 4**. The determined σ shows that these M_T-BHs exhibit semiconducting behavior where Ni-BH₄ shows distinctly higher conductivity than the other three M_T -BHs.

M _T BHs ^a	α ^b ohmicity	σ ^c Sm ⁻¹	$\mathbf{\kappa_{tot}}^{d}$ WK ⁻¹ m ⁻¹	κ _{el} ^f mWK ⁻¹ m ⁻¹	σ /κ ^e KV ⁻²
Fe BH ₄	1.25	7.0-11.5	1.56-0.18	0.05-0.10	4.5-64.0
Co BH ₄	1.23	5.3-8.6	1.24-0.16	0.04-0.08	4.3-53.8
Ni-BH ₄	1.76	14.7-40.5	1.57-0.18	0.11-0.37	9.4-270
Cu BH ₄	1.20	2.0-2.9	1.26-0.20	0.02-0.03	1.6-14.5

Figure 6: I - V and Ln I - Ln V Plots for the examined M_T-BHs

Table 4. Electrical and thermal conductivity data for the investigated M_T-BHs.

^a M_T-BHs disc, 10 ton/cm², radius = 6.51 mm, area, $\pi r^2 = 1.33 \times 10^{-4} m^2$, thickness 1-1.1 mm.

^{b.} $\alpha = 1$ for ohmic behavior.

^{c.} σ (303 \leq T \leq 373 K) typical values semiconductors are in the range of 10⁻⁶-10⁴ S m⁻¹.

^{d.} $\kappa (303 \le T \le 373 \text{ K}), \kappa = Q / [(\Delta T/L) *A]$

^{e.} Relative contribution of σ to κ (303 \leq T \leq 373 K).

^{f.} κ_{el} were calculated from Wiedemann–Franz law ($\kappa_{el} = L \sigma T$), $L = 2.44 \times 10^{-8} W\Omega K^{-2}$.

The σ is further investigated as a function of temperature and found that the plot of σ *vs.* **T** is linear, **Figure 7.** This increasing trend indicates that the ionic/mass diffusion becomes more prominent while phonon contribution becomes less prominent at higher temperatures. The slope of σ *vs.* **T** plots displays a steep linear increase in the case of Ni-BH₄ (σ = 14.7-40.5 Sm⁻¹), showing increasing charge carrier concentration/mobility and induced ionic/mass conduction compared to the gradual increase observed in the case of Fe-BH₄ (σ = 7.0-11.5 Sm⁻¹), Co-BH₄ (σ = 5.3-8.6 Sm⁻¹) and Cu-BH₄ (σ = 2.0-2.9 Sm⁻¹). The observed enhancement in the electrical data (σ and α) of Ni-BH₄ data relative to that of the other three M_T-BHs can be attributed to ionic/mass mobility.

Figure 7: Plots of the electrical (σ) and thermal (κ) conductivities of the prepared M_T-BHs as a function of temperature.

3.2.2 Thermal conductivity (к)

Thermal conductivity (κ) plays a key role in semiconductors employed in different microelectronic applications. It relies on lattice dynamics, charge carriers, and phonon scattering mechanisms. Herein, the κ (WK⁻¹m⁻¹) in **Table 4** was determined by examining the heat flux (**Q**) crossing from the hot brass block to the cold brass block through the M_T-BHs disc in the temperature range of $303 \le T \le 373$ K as depicted in **Equation 11** ($\Delta T = T_{hot}-T_{cold}$ K; L, thickness in m; A, area in m²). The κ values for the given M_T-BHs slightly varies (1.24-1.57 WK⁻¹m⁻¹) at 310 K but nonlinearly decrease to converge at a common point as they

$$\kappa = Q / [(\Delta T/L) * A]$$
(11)

approach 373 K (~0.18 WK⁻¹m⁻¹), indicating that κ is inversely proportional to T, **Figure 7**. These values are close to that reported for layer metal-rich boride of PrRh_{4.8}B₂ ($\kappa = 1.39$ WK⁻¹m⁻¹) but lower than that reported for metal-poor borides like AlB₂ ($\kappa \sim 100$ WK⁻¹m⁻¹), wurtzite ZnO (50 WK⁻¹m⁻¹ at room temperature), bulk ZnO (~100WK⁻¹m⁻¹), and porous ZnO (9.65 WK⁻¹m⁻¹) [3,8,9].

However, the thermal heat transfer in TE semiconductors involves multi-transport pathways comprised of an electronic component due to charge carrier migration (e^- & h^+) and phonon scattering due to lattice dynamics [4,55]. Thus, κ_{total} comprises two main contributions, an electronic (κ_{el}) and lattice (κ_{lat}) where κ_{el} is influenced by charge carrier concentration, mobility, their ratio, bipolar interactions, and scattering mechanisms similar to σ while κ_{lat} is generally influenced by lattice vibration, **Equation 12** [4,55,56]. Fortunately, κ_{el} can be approximated from the σ values using Wiedemann–Franz law ($\kappa_{el} = L \sigma T$) where L is the Lorenz number (2.44 × 10⁻⁸ W Ω K⁻²). Although this law is best applied to metal, it is widely employed for semiconductors [4,55]. The calculated κ_{el} data in **Table 4** demonstrates that the

$$\boldsymbol{\kappa}_{\text{total}} = \boldsymbol{\kappa}_{\text{el}} + \boldsymbol{\kappa}_{\text{lat}} \tag{12}$$

electronic contributions to κ_{total} are in the mW/Km range, indicating that the thermal conduction occurs essentially through lattice vibration. In other words, the thermal energy transport in these materials is basically phononic rather than electronic where $\kappa_{total} \approx \kappa_{lat}$. In this respect, amorphous/ glassy semiconductors, as seen in our case, exhibit low κ as compared with crystalline semiconductors [55,56]. Furthermore, the multi-center clustering and nano-sized M_T-BHs allow phonons scattering and thus suppress κ_{lat} in these semiconductors. Therefore, we attribute this observation to the limited mobility of the charge carriers, where they are scattered at the interfacial boundary of the amorphous/vitreous glassy structures.

To gain more insight into the relation between σ and κ in the examined M_T-BHs, we plotted their ratio σ / κ versus T, Figure 8. The σ / κ quantitative data in the low and high-temperature ranges examined in this study are listed in Table 4. This ratio plays a vital role in the estimation of TE efficiencies as described ZT (ZT = $(\sigma/\kappa)*S^2*T$); therefore, enhancement of this factor relies on boosting σ while suppressing κ . Interestingly, the nonlinear plot increases exponentially, showing a rapid σ/κ increase from 9.4 to 270 KV⁻² in the 303 $\leq T \leq$ 373 K range in the case of Ni-BH₄ while a moderate-weak increase is observed for Fe-BH₄, Co-BH₄, and Cu-BH₄.

Figure 8: Plots of the (σ / κ) versus T (K).

3.3 Thermoelectric Characteristics of the investigated M_T-BHs

The key parameters that are generally used to characterize TE semiconductors include three parameters, **S**, **PF**, and **ZT**, where their interrelations have been the subject of several theoretical and experimental studies [3,4,16,21,22]. Here, it should be emphasized that the temperature limitation, $303 \le T \le 373$, in this investigation is governed by the thermo-oxidative stability and our intention to prepare and examine semiconductors for waste heat-current conversion produced by body heat, sunshine, and domestic devices for small-scale TE applications.

The S values were evaluated from the slope of their $\Delta V vs. \Delta T$ plots, where a slight deviation from linearity is observed, **Figure 9**. Examination of these data shows that at any specified temperature, Ni-BH₄ exhibits higher S values (60-80 μ VK⁻¹) than the other three M_T-BHs (Fe-BH₄, 30-52; Co-BH₄, 27-42; Cu-BH₄, 14-24 μ VK⁻¹), **Table 5**. These S coefficients are further analyzed by plotting the individual S values as a function of temperature where the

Figure 9: ΔV vs. ΔT plots and S dependence on temperature for the examined M_T-BHs

S vs. T linear shows positive S indicating p-type semiconductors in which the + holes are the primary charge carriers [26,27,35,36]. The obtained S values are comparable with those recorded for p- (49 μ VK⁻¹) and n-doped (- 32.6 μ VK⁻¹) graphene films [15,19] while lower than those reported for n-type ZnO (-200 μ VK⁻¹) and nano-porous ZnO (-279 μ VK⁻¹) at room temperature [8,9]. The negative values indicate that the products have n-type semiconducting behavior where the major carriers are electrons.

The performance of TE semiconductors can be evaluated by examining their PF, which is highly influenced by σ and S parameters (**PF** = $\sigma * S^2$). Figure 10 depicts the observed linear plots of **PF** vs. **T** for the investigated M_T-BHs where the PF is practically very sensitive to temperature increase in Ni-BH₄ but weakly affected in the case of Fe-BH₄, Co-BH₄, and Cu-BH4, Table 5. Given the trend in S vs. T plots where all the four M_T-BHs show an almost similar increase, the difference in the PF can be attributed mainly to σ . The PF values of Ni-BH₄ (259 μ Wm⁻¹K⁻²) are smaller than that reported for the layer boron-rich YCrB₄ (600 μ Wm⁻ 1 K⁻²), but higher than that of graphene nanoparticles (PF = 3.94 μ Wm⁻¹ K⁻²). The other three M_T-BHs (Fe-BH₄, 31.1; Co-BH₄, 15.2; Cu-BH₄, 1.67 µW m⁻¹ K⁻²) exhibit similar PF values as those of oxide semiconductors [8-10].

M _T BHs	$\mathbf{S} (\mu V K^{-1})^{a}$	PF $(\mu Wm^{-1}K^{-2})^{b}$	ZT (10 ⁻²) ^c	η % ^d
Fe-BH ₄	30 - 52	4.9 - 31.1	0.12 - 6.4	0.33
Co-BH ₄	27 - 42	3.4 - 15.2	0.08 - 3.5	0.19
Ni-BH ₄	60 - 80	39.6 - 259	0.76 - 64.4	2.56
Cu-BH ₄	14 - 24	0.37 - 1.67	0.01 - 0.28	0.01

Table 5. Thermoelectric parameter data for the investigated M_T-BHs.

^{a.} Seebeck factor, the range represents the values at 303 & 373 K, respectively.

^{b.} PF = $\sigma * S^2$, the range represents the values at 303 K & 373 K, respectively.

^c $ZT = (\sigma/\kappa)*S^2*T$, the range represents the values at 303 K & 373 K, respectively. ^d Thermoelectric efficiency, $\eta \% = (\Delta T/T_h) [(1 + ZT_{avg})^{1/2} - 1]/[(1 + ZT_{avg})^{1/2} + T_d/T_h]\%$

The performance of TE semiconductors can also be deduced from their ZT values (ZT = (σ/κ) S² T), where this parameter relies directly on σ , S, and T but inversely on κ , Table 5. The plots in Figure 10 show that the ZT values of Ni-BH₄ increase rapidly in a nonlinear fashion while Fe-BH₄, Co-BH₄, and Cu-BH₄ exhibit linear trends with relatively small temperature influence. However, extrapolation of the ZT – T plot of Ni-BH₄ shows it approaches the value ZT = 1 that allows its use for practical application at about 400-450 K. Furthermore, recent reports show that the TE efficiency (η %) can be calculated from average ZT values in the specified temperature range as in **Equation 13**. The η efficiency data in Table 5 shows that Ni-BH₄ (2.56%) is far better than those of the other three M_T-BHs (0.01-0.33%).

$$\eta \% = (\Delta T/T_h) \left[(1 + ZT_{avg})^{1/2} - 1 \right] / \left[(1 + ZT_{avg})^{1/2} + T_c/T_h \right] \%$$
(13)

Figure 10: Power factor (PF) dependence on temperature for obtained M_T-BHs.

Given the fact that TE measurements are sensitive to moisture, impurities, particleparticle interactions, and grains orientation within the examined cold-pressed discs, the reported TE values were found to be reproducible within 5-7%. In general, the S, PF, and ZT values for Ni-BH₄ (S, 80 μ VK⁻¹; PF, 259 μ W m⁻¹ K⁻²; ZT 0.64; η , 2.56%) were higher than those for the other three M_T-BHs investigated in this study. Comparison with the TE values of n-doped ZnO nanoparticle at 375 K (S, -279 μ VK⁻¹; PF, 59 μ W m⁻¹K⁻²; ZT ~0.075) shows that the Ni-BH₄ offer a promising p-type candidate for TE applications.

4.0 Conclusions

The data in this study shows that using organic solvents rather than aqueous media is appropriate to minimize/avoid metal oxide side-products formation in the preparation of metal borohydrides nanoparticles. Unlike the generally observed trends where the thermal and electrical conductivities show similar trends on temperature, the reverse dependence is observed in the given M_T -BHs; thus, M_T -BHs and future M_T -Bs semiconductors are promising candidates for TE applications. Our findings show that Ni-BH₄ is a promising candidate to convert low-temperature waste heat to electric current resulting from body heat, sunshine, and domestic devices for small-scale applications at ambient conditions. Although the ZT values of the Ni-BH₄ are less than those reported for the present late metal chalcogenides, it is advantageous for its simple preparation, moderate temperature dehydrogenation pathway to form Ni-Bs and applicability at ambient conditions. Our future endeavor is to investigate the influence of magnetic polarization and cold press compression on the TE behavior of Ni-BH₄ and its fluoride analog (Ni-BF₄).

Acknowledgments: The authors highly appreciate the support of the Jordan University of Science and Technology (Grant No. 20200017). The authors acknowledge no conflict of interest.

References:

- J.Y. Tsao, E.F. Schubert, R. Fouquet, M. Lave, The electrification of energy: Long-term trends and opportunities, MRS Energy Sustain. A Rev. J., 5:7 (2018) 1–13. DOI:10.1557/mre.2018.
- **2.** E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.H. Kim, Solar energy: Potential and future prospects, Renew. Sustain. Energy Rev., 82:1 (2018) 894-900.
- **3.** X.-L. Shi, J. Zou, Z.-G. Chen, Advanced Thermoelectric Design: From Materials and Structures to Devices, Chem. Rev., 120 (2020) 7399. DOI: 10.1021/acs.chemrev.0c00026
- D. Beretta, N. Neophytou, J.M. Hodges, M.G. Kanatzidis, D. Narducci, M. Martin-Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A.I. Hofmann, C. Müller, B. Dörling, M. Campoy-Quiles, M. Caironi, Thermoelectrics: From history, a window to the future, Mater. Sci. Eng.: R: Reports, 138 (2019) 100501, doi: 10.1016/j.mser.2018.09.00
- 5. Z. Zhang, B. Wang, J. Qiu, S. Wang, Roll-to-roll printing of spatial wearable thermoelectrics, Manuf. Lett., 21 (2019) 28 DOI: 10.1016/j.mfglet.2019.07.002

- X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133:20 (2011) 7837–46. DOI: 10.1021/ja111199y.
- H. Lipeng, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, X. Zhao, Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater 5 (2015) 1500411. DOI: 10.1002/aenm.201500411
- R.V.R. Virtudazo, Q. Guo, R. Wu, T. Takei, T. Mori, An alternative, faster and simpler method for the formation of hierarchically porous ZnO particles and their thermoelectric performance. RSC Adv. 7 (2017) 31960-68. DOI: 10.1039/C7RA05067D
- **9.** X. Wu, J. Lee, V. Varshney, J.L. Wohlwend, A.K. Roy, T. Luo, Thermal Conductivity of Wurtzite Zinc-Oxide From First-Principles Lattice Dynamics--a Comparative Study With Gallium Nitride Sci Rep. 6 (2016) 22504. DOI:10.1038/srep22504
- K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, Thermoelectric Ceramics for Energy Harvesting. J. Am. Ceram. Soc., 96 (2013) 1–23. DOI:10.1111/jace.12076.
- **11.** J. Liang, S. Yin, C. Wan, Hybrid Thermoelectrics, *Annu. Rev. Mater. Res.* 50 (2020) 319. DOI: 10.1146/annurev-matsci-082319-111001
- 12. S. Yazdani, M.T Pettes Nanoscale self-assembly of thermoelectric materials: a review of chemistry-based approaches, Nanotechnology 29: 43 (2018) 432001, DOI: 10.1088/1361-6528/aad673.
- 13. Y.Y. Li, Y. Du, Y.C. Dou, K.F. Cai, J.Y. Xu, PEDOT-based thermoelectric nanocomposites—A mini-review. Synth. Met. 226 (2017) 119–28. DOI: 10.1016/j.synthmet.2017.02.007
- 14. J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Carbon-nanotube-based thermoelectric materials, and devices. Adv. Mater. 30:11 (2018) 1704386. DOI: 10.1002/adma.201704386
- 15. Y. Du, K.F. Cai, S. Shen, Facile preparation, and characterization of graphene nanosheet/polyaniline nanofiber thermoelectric composites. Funct. Mater. Lett. 6:5 (2013)1340002. DOI: 10.1142/S179360471340002X
- 16. Y. Zhang, Y.-J. Heo, M. Park, S.-J. Park, Recent Advances in Organic Thermoelectric Materials: Principle, Mechanisms and Emerging Carbon-Based Green Energy Materials, Polymers 11 (2019) 167-89; DOI:10.3390/polym11010167.
- **17.** G. Kim, K.P. Pipe, Thermoelectric model to characterize carrier transport in organic semiconductors. Phys. Rev. B 86 (2012) 6709–17.

- 18. C.Y. Gao, G.M. Chen, Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Compos. Sci. Technol. 124 (2016) 52–70. DOI:10.1016/J.COMPSCITECH.2016.01.014
- K. Kanahashi, M. Ishihara, M. Hasegawa, H. Ohta, T. Takenobu, Giant power factors in p- and n-type large-area graphene films on a flexible plastic substrate. npj 2D Mater Appl. 3 (2019) 44. DOI:10.1038/s41699-019-0128-0
- **20.** G. Zhang, Y.-W. Zhang, Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 5 (2017) 7684–98. DOI:10.1039/C7TC01088E
- 21. D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Recent Progress of Two-Dimensional Thermoelectric Materials Nano-Micro Lett., 12 (2020). DOI: 10.1007/s40820-020-0374-x
- **22.** Z-Hua Ge, L-Dong Zhao, D. Wu, X. Liu, B.-Ping Zhang, J.-Feng Li, J. He, Low-cost, abundant binary sulfides as promising thermoelectric materials, Materials Today, 19: 4 (2016) 227-239, https://doi.org/10.1016/j.mattod.2015.10.004.
- 23. P. Mangelis, P. Vaqueiro, A.V. Powell, Improved Thermoelectric Performance through Double Substitution in Shandite-Type Mixed-Metal Sulfides, ACS Appl. Energy Mater. 3: 3 (2020) 2168-74. DOI: 10.1021/acsaem.9b02272
- 24. H. Xi, L. Luo, G. Fraisse, Development and applications of solar-based thermoelectric technologies, Renew. Sustain Energy Rev. 11:5 (2007) 923-36. DOI:10.1016/j.rser.2005.06.008
- **25.** Ye, Tao, Xizu Wang, Xianqiang Li, Alex Qingyu Yan, Seeram Ramakrishna, and Jianwei Xu. "Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method." *Journal of Materials Chemistry C* 5, no. 5 (2017): 1255-1260.
- 26. T. Mori Thermoelectric and magnetic properties of rare earth borides: Boron cluster and layered compounds J. Solid State Chem. 275 (2019) 70-82. DOI:10.1016/j.jssc.2019.03.046.
- **27.** T. Mori and T. Tanaka, Thermoelectric properties of homologous p-and n-type boron-rich borides. J. Solid State Chem. 179: 9 (2006) 2908-15. DOI:10.1016/j.jssc.2006.03.030
- **28.** G. Akopov, L.E. Pangilinan, R. Mohammadi, R.B. Kaner, Perspective: Super-hard metal borides: A look forward, APL Mater. 6 (2018) 070901. DOI:10.1063/1.5040763
- 29. A.-M. Zieschang, J.D. Bocarsly, J. Schuch, C.V. Reichel, B. Kaiser, W. Jaegermann, R. Seshadri, B. Albert, Magnetic and Electrocatalytic Properties of Nanoscale Cobalt Boride, Co₃B Inorg. Chem. 58: 24 (2019) 16609–17, DOI.org/10.1021/acs.inorgchem.9b02617

- **30.** P.R. Jothi, K.Y. Boniface, P.T. Fokwa, A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides, Adv. Mater., 30 : 14 (2018) 1704181, DOI.org/10.1002/adma.201704181.
- 31. J. Ptačinová, M. Drienovský, M. Palcut, R. Čička, M. Kusý, M. Hudáková Oxidation stability of boride coatings, Kovove Mater. 53 (2015) 175–86, DOI: 10.4149/km 2015 3175.
- 32. B. Jiang, H. Song, Y. Kang, S. Wang, Q. Wang, X. Zhou, K. Kani, Y. Guo, J. Ye, H. Li, Y. Sakka, J. Henzie, Y. Yusuke. A mesoporous non-precious metal boride system: synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chem. Sci., 11 (2020) 791-96. DOI: 10.1039/C9SC04498A
- **33.** A.K. Iyer, Y. Zhang, J.P. Scheifers, B. P.T. Fokwa, Structural variations, relationships and properties of M₂B metal borides, J. Solid State Chem., 270 (2019) 618-35. *DOI:* 10.1016/j.jssc.2018.12.014
- **34.** C. Kapfenberger, K. Hofmann, B. Albert, Room-temperature synthesis of metal borides. Solid State Sci.5:6 (2003), 925-30. DOI:10.1016/S1293-2558(03)00117-1
- **35.** M. Paskevicius, L.H. Jepsen, P. Schouwink, R. Černý, D.B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher, T.R. Jensen, Metal borohydrides and derivatives synthesis, structure and properties, Chem. Soc. Rev., 46 (2017) 1565-34. https://DOI.org/10.1039/C6CS00705H
- 36. W. Lohstroh, M. Heere, Structure and Dynamics of Borohydrides Studied by Neutron Scattering Techniques: A Review, J. Phys. Soc. Jpn., 89 (2020) 051011. DOI: 10.7566/JPSJ.89.051011
- 37. B. Richter, J.B. Grinderslev, K.T. Møller, M. Paskevicius, T.R. Jensen, From Metal Hydrides to Metal Borohydrides, Inorg. Chem. 57 (2018) 10768. DOI: 10.1021/acs.inorgchem.8b01398.
- 38. J.B. Grinderslev, K.T. Møller, M. Bremholm, T.R. Jensen, Trends in Synthesis, Crystal Structure, and Thermal and Magnetic Properties of Rare-Earth Metal Borohydrides, Inorg. Chem., 58 (2019) 55035517, DOI: 10.1021/acs.inorgchem.8b03258.
- 39. E.L. Bennett, T. Wilson, P.J. Murphy, K. Refson, A.C. Hannon, S. Imberti, S.K. Clear, G.A. Chass, S.F. Parker, Structure and spectroscopy of CuH prepared via borohydride reduction, Acta Cryst. B71 (2015) 608-12, DOI.org/10.1107/S2052520615015176
- **40.** L. Ma, T. Zhou, H. Chen, Stability and bonding nature of tin borohydride, Int. J. Hydrogen Energy, 45 (2020) 23103. DOI: 10.1016/j.ijhydene.2020.06.197.
- 41. R. Černý, P. Schouwink, The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides Acta Cryst. B71 (2015) 619-40. DOI.org/10.1107/S2052520615015176.

- **42.** I.L. Jansa, G.N. Kalantzopoulos, K. Nordholm, B.C. Hardback, Destabilization of NaBH₄ by Transition Metal Fluorides, Molecules 25:4 (2020) 780, DOI.org/10.3390/molecules25040780.
- **43.** G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Borohydride Reduction of Nickel and Copper Ions in Aqueous and Nonaqueous Media. Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles. Langmuir 10 (1994) 4726—30. DOI:10.1021/la00024a055
- 44. J.D. Kennedy, The Polyhedral Metallaboranes. Part II. Metallaborane Clusters with Eight Vertices and More, Prog. Inorg. Chem., 34 (2007) 211-434. DOI: 10.1002/9780470166352.ch4
- 45. E.A. Sterling, J. Stolk, L. Hafford, M. Gross, Sodium Borohydride Reduction of Aqueous Silver-Iron-Nickel Solutions: A Chemical Route to Synthesis of Low Thermal Expansion–High Conductivity Ag-Invar Alloys, Metall. Mater. Trans. A, 40A, 2009, 1701-09, DOI: 10.1007/s11661-009-9859-4
- **46.** H. Braunschweig, C. Kollann, D. Rais, Transition-Metal Complexes of Boron—New Insights and Novel Coordination Modes Angewandte Chemie, Int`l Ed., 45: 32 (2006), 5254-74. DOI:10.1002/anie.200600506
- 47. D. Acosta, E.E. Gonzo, H.A. Destéfanis, Borane-Tetrahydrofurane Complex Reduction of Nickel and First Transition Metals in Tetrahydrofurane Media: Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particle. Mod. Res. Catal., 5 (2016), 19-30. DOI:/10.4236/mrc.2016.51003
- **48.** B. Schrader (ed), Infrared and Raman Spectroscopy, Methods and Application, VCH, Weinheim, 1995.
- 49. N.V. Belkova, I.E. Golub, E.I. Gutsul, K.A. Lyssenko, A.S. Peregudov, V.D. Makhaev, O.A. Filippov, L.M. Epstein, A. Rossin, M. Peruzzini, E.S. Shubina, Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(μ₂-dppm)₂Cu₂(η²-BH₄)₂] Dichloromethane Solvate⁻ Crystals 7: 10 (2017) 318, DOI:10.3390/cryst7100318
- **50.** C. Li, J. Zhang, W. Zhang, Y. Tang, B. Ren, Y. Hu, First-principle study of structural, electronic, and magnetic properties of (FEC)n (n = 1–8) and (FEC)8TM (TM = V, Cr, Mn, and Co) clusters. Sci Rep 7 (2017) 17516. doi.org/10.1038/s41598-017-17834-9
- **51.** Y-W. Jun, J-W. Seo, J. Cheon, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences, Acc. Chem. Res. 41:2 (2008) 179-89. DOI: 10.1021/ar700121f.
- **52.** W. Ślubowska, K. Becmer, T.K. Pietrzak, J.L. Nowiński, M. Wasiucionek, J.E. Garbarczyk. The charge storage capacity of all-glass heterogeneous materials based on phosphate and vanadate glasses. Solid State Ionics **302** (2017) 98-101.

- 53. T. Katsufuji, H. Ikeda, M. Ashizawa, M. Oike, T. Kajita, Nonlinear Behavior in the Electrical Resistance of Strongly Correlated Insulators, J. Phys. Soc. Jpn., 89 (2020) 044702-5. https://doi.org/10.7566/JPSJ.89.044702
- 54. I.M. Arafa, H.El-Ghanem, R. Al-Shalabi, Formation, Characterization and Electrical Conductivity of Polycarbosilazane-Cu(II), -Ni(II) and -Cr(III) Chloride Metallopolymers, J. Inorg. Organomet. Polym.13 (2003) 69-86. DOI:10.1023/A:1024172613900.
- 55. M.A. Zoui, S. Bentouba, J.G. Stocholm, M. Bourouis, A Review on Thermoelectric Generators: Progress and Applications, Energies 13 (2020) 3606-37; doi:10.3390/en13143606
- 56. S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, X. Tang, Conductivity-limiting bipolar thermal conductivity in semiconductors, Sci. Reports, 5 (2015) 10136, DOI: 10.1038/srep10136

Figures

Figure 1

Device for thermoelectric properties.

Thermo-oxidative curves of the obtained MT-BHs (MT = Nill, Fell, Coll, Cull).

Figure 3

ATR-IR spectra of the prepared MT-BHs (MT = Nill, Fell, Coll, Cull).

Schematic structure showing terminal and bridging H in M-BH4.

P-XRD profiles of the prepared MT-BHs (MT = Nill, Fell, Coll, Cull).

I - V and Ln I - Ln V Plots for the examined MT-BHs

please see the manuscript file for the full caption

Figure 8

please see the manuscript file for the full caption

Figure 9

please see the manuscript file for the full caption

PF and ZT dependence on temperature for obtained MT-BHs.