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Abstract

Background: Hyperbaric oxygen (HBO) therapy has been widely used in various diseases, which is
considered safe and effective. Whereas recent studies discovered that HBO therapy could result in
oxidative damage to tissues. The goal of our study was to investigate the oxidative effect of hyperbaric
oxygen therapy on human retinal pigment epithelium (RPE) cells. Method: Human REP cells (ARPE-19)
were cultured in vitro, and divided into normoxic group Nincubated with DMEM/F12 brothiland hypoxic
group (incubated with DMEM/F12 broth containing 200pmol/L CoCl2) randomly. The experimental
groups were exposed to 100% pure oxygen under different pressures (0.15MPa, 0.2MPa, and 0.25MPa)
for 60 and 90 minutes thrice, with 24 hours interval. Then the cell viability, 8-OHdG expression and hOGG1
expression of RPE cells were detected by MTT assay, immunocytochemistry (ICC) and western blot
seperately. Result: After HBO exposure, cell proliferation decreased, 8-OHdG and hOGG1 expression
increased in normoxic RPE cells compared with control group, whereas in hypoxic RPE cells, cell
proliferation increased, 8-OHdG and hOGG1 expression decreased compared with hypoxic control group.
Conclusion: HBO therapy could suppress the cell proliferation and cause oxidative DNA damage of RPE
cells in normoxic status. Conversely, in hypoxic status, HBO therapy could promote the proliferation and
ameliorate oxidative DNA damage of human retinal pigment epithelium cells. Meanwhile, HBO therapy
could trigger the oxidative DNA damage repair of RPE cells in both normoxic and hypoxic statues.

Background

Hyperbaric oxygen (HBO) therapy is used a medical treatment, where it delivers 100% pure oxygen a level
that is higher than the atmospheric pressure. HBO induces a state of hyperoxia, which is beneficial at a
molecular, cellular and biochemical level, and leads to an increase of dissolved oxygen in the blood,
which allowed oxygen to distribute through out the whole body and maintained the tissues in a

hyperoxygenated state.(!) This technology has been widely used in treatment of various diseases,
especially for the management of conditions related to hypoxia, such as, decompression sickness, air
embolism, carbon monoxide poisoning, enhance in healing, delay radiation injury. In addition, HBO has
been considered to be effective for many eye diseases, including central/branch retinal artery occlusion,
cystoid macular edema of vascular origin, orbital infections of mycotic and anaerobic origin, scleral

necrosis, anterior segment ischemia and non-healing corneal edema. @ However, while increasing the
dissolved oxygen in the blood, exposure to HBO results in an increase of reactive oxygen species (ROS) in
tissues, which related to oxidative stress. The higher pressure, higher concentration and longer exposure

time of HBO can cause the increasing production of ROS.®)

ROS is produced in organisms as byproducts of aerobic metabolism, including superoxide(-0,),
hypochlorous acid (HCIO), hydroxyl (-OH), and hydrogen peroxide(H,0,).%) Low concentration of ROS can
defence against infectious organisms, induct mitogenic response and serve as signaling molecules in
transduction cascades.(® In contrast, the imbalance between production and elimination of ROS, which
caused by an excess of ROS, can leads to oxidative stress.(®) Retina is susceptible to oxidative damage
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due to its high metabolic activity under high level of oxygen consumption and polyunsaturated fatty

(6.7)

acids. Therefore, to many eye diseases including age-related macular degeneration, retinitis

pigmentosa and diabetic retinopathy, oxidative stress is a contributing factor.®)

HBO has been confirmed safe and efficient for many diseases. However, due to the toxicity of ROS, this
therapy may damage the eyes, especially some unreasonable use of oxygen partial pressure, oxygen
concentration and exposure time. Retinal toxicity from HBO has been investigated in many studies.
Nachman-Cewner et al discovered a major loss of photoreceptor cells in the central retinas of mice
exposure to HBO, but no effect on the peripheral retina. The degree of photoreceptor cell damage and cell
death increased with duration of HBO exposure.(®) Another study detected constriction of retinal arterioles
and venoles during HBO treatment, and the constriction was constant through the series of treatments.
(10) |n newborn rats, a sustained HBO induced retinal vasoconstriction, which followed by a hypoxic-
ischemic injury, might result in ROP development on return to air.('V) Whereas, in another study HBO
treatment didn’t cause ROP'2 The most common complication of HBO is nuclear cataract, which is
proved to be associated with oxidative stress. Seven of 15 patients with clear lens before treatment
developed nuclear cataract during HBO therapy.('3® Schaal et al studied the effects of different
combinations of oxygen concentration and pressure in an organ culture for 7 days on bovine lenses.
They inferred that the longer the time of exposure and the higher the oxygen partial pressure, the more
severe the changes observed in the lenses.('%) Nevertheless, there are few studies about whether the HBO
therapy would lead to oxidative damage to retina.

RPE cells locate between the photoreceptor layer and choroid, where is characterized by hyperoxia and
high polyunsaturated fatty acid concentrations. Moreover, RPE cells play critical roles in phagocytosis of
photoreceptor outer segments, formation of the blood-retinal barrier, transporting of nutrients and waste
products, and protection against light and free radicals.("® Therefore, RPE is vulnerable to oxidative
stress and plays a critical role in pathogenesis of many eye diseases. The goal of this study was to
investigate the oxidative effect of HBO therapy on human RPE cells in both normoxic and hypoxic
conditions.

Methods

1. Cell culture and treatment

The ARPE-19 cells were purchased from American Type Culture Collection. Cells were cultured in DMEM-
F12 (Dulbecco's MEM: Ham's Nutrient Mixture F12,1:1 Mix) containing 100U/mL penicillin-streptomycin
(1:1 Mix) and 10% fetal bovine serum, grown at 37°C in an atmosphere of 5% CO,. The cells were divided
into two experimental groups: normoxic group and hypoxic group which was mimicked by CoCl,. For
experiments, the cells, when they were in the exponential growth phase, were harvested and transferred to
wells of 96-well plates, coverslips which had been put into 24-well plates and petri dishes. When the cells
had cover about 80% of the well, petri dish and the coverslip, changed the broth into bovine serum free
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DMEM-F12 for normoxic group and bovine serum free DMEM-F12 containing 200pmol/L CoCl, for

hypoxic group, and treated for 12 hours. Then, the cells were exposed to HBO intervention of different
pressure (0.15MPa, 0.2MPa, 0.25MPa) for different time (60min,90min).

2. HBO exposure method

The chamber was disinfected with ultraviolet light for 20 minutes, the surface was wiped down with 75%
alcohol. The petri dishes were placed inside the chamber, which filled with 100% pure oxygen. Slowly
increased the pressure to desired amount (0.15MPa, 0.2MPa, 0.25MPa), maintained for 60 minutes and
90 minutes separately, and then slowly decompressed. The cells were exposed thrice with a 24 hours
interval.

3.MTT assay for cell viability
4. Immunocytochemistry assay for 8-OHdG

Exponentially growing APRE-19 cells in a coverslip, were washed with PBS twice and fixed with cold
paraformaldehyde for 10 min. Then, the coverslips were treated with 3%H202 at 37 °C for 10 min, goat
serum at room temperature for 15 min. After that, the cells were incubated with primary antibody:
monoclonal mouse anti-huamn 8-OHdG antibody at 4 °C overnight, washed with PBS three times, and
then incubated with secondary antibody for 15 min at room temperature and horseradish peroxidase for
15 min at room temperature. Finally, the coverslips were stained with diaminobenzidene (DAB) for 3-10
min, counterstained with hematoxylin, dehydrated and mounted on a glass slide. The images were taken
by microscope. The stained samples were quantified by using Image-Pro Plus 4.5.1.

5. Western blot assay for hOGG1

Cells were harvested in PBS and lysed with cold lysis buffer. The total concentration of protein was
detected by bicinchoninic acid assay. 20ug protein extracts were electrophoresed on a 10%
polyacrylamide gel and transferred onto polyvinylidene difluoride (PVDF) transfer membranes, whice
were initially blocked in 3% BSA for 1h. Then the blots were incubated overnight with the primary
antibody: monoclonal mouse anti-hOGG1 (1:2000), mouse monoclonal anit-B-actin (1:5000). After that,
the blots were incubated with horseradish peroxidase-conjugated secondary antibodies (1:10000). The
signals were detected by enhanced chemiluminescence. The signals were visualized by exposure to light
sensitive films. Semiquantitation was determined by analyzing band intensity using the software of
BandScan 5.0, and hOGGT1 relative levels were normalized to B-actin values.

6. Statistical Analysis

All experiments were repeated three times. Statistical analyses were performed using the SPSS 19.0
software program. The results are expressed as mean + standard deviation (SD). The statistical
significance of differences among groups was performed with one-way analysis of variance (ANOVA).
The statistically significant difference was determined when p < 0.05.
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Results

1. Cell viability/proliferation tested by MTT assay

For both 60 and 90 minutes with HBO intervention, the OD570 value decreased with all three different
pressure respectively (0.15 MPa, 0.20 MPa, 0.25 MPa group vs. control, P<0.01, in both 60min and
90min) in normoxic group (Fig1.a), and it decreased as the pressure increased with statistical
significance different (P<0.01). In hypoxic group (Fig1.b), the OD570 value increased with all three
different pressure respectively (0.15 MPa, 0.20 MPa, 0.25 MPa group vs. CoCl, group, P<0.01, in both
60min and 90min) and increased as the pressure increased with statistical significance different
(P<0.01).

2. The changes of 8-OHdG expression before and after ARPE-19 cells undergone HBO intervention
Before HBO intervention

8-OHdG mainly locates in cytoplasm, a small amount of localization in the nucleus, as shown in Fig2.
Compared with the normoxic group, there was a significant increase expression of 8-OHdG in hypoxic
groupllhypoxic group vs. normoxic group, P<0.01, in both 60mim and 90mink(Fig3.a).

After HBO intervention (0.15MPa, 0.20MPa, 0.25MPa)

In normoxic group, for both 60 and 90 minutes with HBO intervention (Fig3.b), the expression of 8-OHdG
all increased with all three different pressure (0.15 MPa, 0.20 MPa, 0.25 MPa group vs. control, P<0.01, in
both 60min and 90min), and it increased as the pressure increased (P<0.01). In addition, there was an
increase trend of 8-OHdG expression with an increase of duration. In hypoxic group (Fig3.c), a decrease
of the 8-OHdG expression was detected with all three different HBO pressure intervention for both 60 and
90 minutes (0.15 MPa, 0.20 MPa, 0.25 MPa group vs. CoCl, group, P<0.01, in both 60min and 90min).
When comparing the 0.2MPa with 0.25MPa groups for 60min exposure, there was no significant
difference between the two groups (P>0.05). While the 8-OHdG expression decreased as the pressure
increased (P<0.01) for 90min exposure.

3. The changes of hOGG1 expression after ARPE-19 cells undergone HBO intervention

For both 60 and 90 minutes with HBO intervention, the expression of hOGG1 protein increased with all
three different pressure respectively (0.15 MPa, 0.20 MPa, 0.25 MPa group vs. control, P<0.01, in both
60min and 90min) in normoxic groupliFig4.bl, and it decreased as the pressure increased with statistical
significance(P<0.01). In hypoxic group, the hOGG1 protein expression increased with all three different
pressure respectively(0.15 MPa, 0.20 MPa, 0.25 MPa group vs. CoCl, group, P<0.01, in both 60min and
90min) for both 60 and 90 minutes with HBO interventioniiFig4.cl, and the hOGG1 protein expression
increased as the pressure increased with statistical significance (P<0.01).
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Discussion

Oxidative stress caused by high concentration ROS can lead to damage to cell structures, including
membrane lipids, proteins and DNA, particularly mitochondrial DNA. 8-OHdG, the DNA guanine base
oxidation product, is considered to be one of the most abundant DNA lesions resulting from oxidative
stress and is a biomarker of the oxidative DNA damage. It is highly mutagenic causing GC to TA

transversions.(16.17)

The DNA repair include base excision repair (BER), double strand break repair
(DSBR), mismatch repair (MR) and nucleotide excision repair (NER). BER is the main pathway for repair
of oxidative DNA damage. Human 8-OHdGuanine DNA glycosylasel (hOGG1), an enzyme involving in

BER, can specifically recognize and excise 8-OHdG.('®)

Mitochondria is a major producer of ROS, thus it is susceptible to direct injury of ROS.('9) In this study, we

mainly observed the oxidative DNA damage of RPE cells after HBO exposure. Our data showed that in the
normal RPE cells, the level of 8-OHdG increased and the proliferation was suppressed after exposure to
HBO, which are likely associated with oxidative damage. In addition, the damage was aggravated with
increased duration and pressure of HBO. Conversely, HBO therapy could ameliorate oxidative DNA
damage of RPE cells in hypoxic statue. Meanwhile, the increased expression of DNA repair enzymes
hOGGT1 in the normoxic and hypoxic RPE cells demonstrated that HBO could induce the oxidative DNA
damage repair.

Previous experiment demonstrated that in rats after inspired hyperoxia, the expression of DNA repair

enzymes and the level of 8-OHdG in the rat lens increased.29 In our study, in normoxic group, HBO could
cause oxidative DNA damage to RPE cells, which may related to the generation of ROS. Meanwhile, the
increased expression of hOGG1 in RPE cells after HBO therapy reflected the stimulation of oxidative DNA
damage. Nevertheless, increased duration and pressure of HBO caused decreased expression of hOGGT,
which may in connection with accumulation of ROS and damage in DNA leading to the decline in
capability of repair of DNA. There is evidence to support that. Santos JH et al established a feed-forward
cascade of ROS production and mtDNA damage, which demonstrated persistence of lesions in the
mtDNA involving a drop in mitochondrial membrane potential, secondary ROS generation, and loss of

repair capacity. In addition, the feed-forward cascade at last result in the cell apoptosis and death.?") As
in our study, HBO suppressed the proliferation of RPE cells in normoxic status.

In our study, we used 200pmol/L CoCl, to mimic hypoxic status of RPE cells. CoCl,, a chemical
substance, is usually used to mimic hypoxia. On one hand, CoCl, can inhibit heme oxygenation by
replacing Fe2* in heme with Co2*ithus result in the hypoxic status of cells.22) On the other hand, CoCl,
can cause the stabilization of hypoxia-inducible factor-akHIF-akin cells, which can activate the expression
of genes that contain a hypoxia response element.(23) Moreover, previous study detected that, after cells
incubated with CoCl,, the production of ROS increased.(?¥) The increasing expression of 8-OHdG in RPE
cells treated with CoCl, in our study may involve in the generation of ROS.
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In hypoxic group, HBO treatment ameliorated oxidative DNA damage of RPE cells. That may be
concerned with the increased expression of hOGG1 in RPE cells. Furthermore, a number of experiments
have proved that, HBO can upregulate antioxidant gene expression and enhance the activity of
antioxidant enzymes in cells.(2527) There are some studies about preconditioning of HBO on mouse with
focal cerebral ischemia, and they discovered upregulated HIF-1a and erythropoietin in rats after HBOK
which induced ischemic tolerance and reduced infarct volume.(28.29)

In conclusionliwe have demonstrated that HBO treatment may lead to oxidative DNA damage in normal
RPE cells, and there is an increase trend of the damage with the increase of duration and pressure.
Meanwhile, HBO can protect from the oxidative damage in hypoxic PRE cells. These findings invite
further exploration into the oxidative effect of HBO therapy on retina in vivo and suggest the reasonable
and individual treatment applying in clinical work. Furthermore, antioxidant can be used during the HBO
therapy to prevent from the oxidative damage.

Abbreviations

8-OHdG: 8-Hydroxy-2'-deoxyguanosine

CoCl,: cobaltous chloride

HBO: hyperbaric oxygen
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ROS: reactive oxygen species

HIF-a: hypoxia-inducible factor-a
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