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Abstract5

A fundamental challenge for disordered solids is predicting macroscopic yield from the6

microscopic arrangements of constituent particles. Yield is accompanied by a sudden and7

large increase in energy dissipation due to the onset of plastic rearrangements. This sug-8

gests that one path to understanding bulk rheology is to map particle configurations to9

their mode of deformation. Here, we perform laboratory experiments and numerical sim-10

ulations that are designed to do just that: 2D dense colloidal systems are subjected to11

oscillatory shear, and particle trajectories and bulk rheology are measured. We quantify12

particle microstructure using excess entropy. Results reveal a direct relation between ex-13

cess entropy and energy dissipation, that is insensitive to the nature of interactions among14

particles. We use this relation to build a physically-informed model that connects rheology15

to microstructure. Our findings suggest a framework for tailoring the rheological response16

of disordered materials by tuning microstructural properties.17

1 Introduction18

Disordered solids are ubiquitous. They are found, for example, in our foods as pastes and gels1, and amidst our19

homes in the form of concrete2 and mud3,4. Frustratingly, these materials can experience sudden mechanical failure,20

such as the collapse of soil during rapid mudslides. Indeed, when sufficiently stressed, all disordered materials exhibit21

a swift decrease in ability to support load. In the vicinity of this “yield” transition, the solid material shifts from22

a state wherein energy is stored via internal elastic forces, to a state in which energy is dissipated via irreversible23

plastic rearrangements5–9. Microscopic spatiotemporal features are associated with this yield transition and affect24

macroscopic material responses such as ductile versus brittle behavior. Unfortunately, in contrast to the case for25

crystalline materials, our ability to predict and control yield in disordered solids based on their constituents and their26

interactions is still limited6,10. To build such microstructural models, we need to identify key microscopic metrics27

relevant to plasticity in disordered materials11. Recently, excess entropy has been explored for this purpose12–14. In28

equilibrium systems, excess entropy has been utilized to connect viscosity with interparticle structure15–18. Recently29

in far-from-equilibrium systems, excess entropy scaling has been shown to facilitate a relationship between microscopic30

structure and dynamics12–14. Thus, excess entropy offers an untapped signature for plasticity and a potential tool31

for modeling the mechanical response of disordered solids.32
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The study of rheology and particle dynamics in disordered systems has a venerable history19. As a result of33

this research, theories11 have proliferated in recent decades. Two of the most successful are Mode Coupling Theory,34

wherein the interplay of dynamical modes causes the emergence of rearrangements20,21, and Shear Transformation35

Zone theory, which posits that local configurations determine where rearrangements occur19,22–24. More recently,36

structural signatures for rearrangement have been revealed by machine learning approaches18,25–27, by study of low-37

frequency excitations7,28–32, and via local yield stress33 and near-neighbor cage dynamics34. Despite their usefulness,38

difficulties remain in applying these theories to experiments because of the need for fitting parameters20,35 and the39

use of empirical relations34 that are difficult to measure. Moreover, these theories typically do not account for40

history-dependent behavior such as material memory, which is necessary to understand plasticity.41

Generally, disordered materials contain memories, i.e., microscopic signatures related to how the material has42

been processed36–42. Memory of a previous shearing direction, for example, can be encoded into a material’s response;43

once a material is sheared sufficiently in a given direction, continued shear in that direction requires more force than44

in the opposite direction37,43. In jammed systems, recent experiments and simulations have studied formation of45

directional memory at low strain amplitudes, both below and near the yield transition; far above yield, memories46

are erased44–46. These observations, in turn, raise important new questions: do memories require elastic storage?47

Is plasticity synonymous with erasure? How do these phenomena manifest during yield, e.g., in storage and loss48

moduli?49

In this contribution, we utilize excess entropy to quantify material memory and construct a microstructural50

model for disordered-material response and energy dissipation. Experiments and simulations show that three non-51

dimensional parameters govern the connections between microstructure and bulk rheology: packing density, a nor-52

malized (non-dimensional) form of the imposed stress, and an excess entropy (microstructure-related) ratio that53

quantifies the material’s ability to retain information about its initial state. Our results confirm that memory is54

stored elastically and lost plastically, and show how yield and the ductile/brittle response emerge from knowledge55

about particle configurations at the microscopic scale.56

2 Results57

The experiments investigate disordered solids. The solids are colloidal monolayers of athermal, spherical particles (∼58

40,000) adsorbed at an oil-water interface (Fig. 1a). The charged particle surfaces generate a dipole-dipole repulsion59

between particles. This repulsion is strong enough to jam the entire material, arresting particle motions. To probe60

the effects of disorder, we study both mono-disperse and bi-disperse spherical particle systems with diameters of61

5.6 µm and 4.1 µm-5.6 µm, respectively. In the bi-disperse system, crystalline domains tend to be much smaller62

(See Supplementary Materials). We impose many cycles of sinusoidal stress on these samples using a custom-63

made interfacial stress rheometer47that permits measurement of the bulk response of the colloidal monolayer while64

simultaneously recording trajectories of individual particles (see Methods). Cyclic stress is quasi-static, insofar as65

the time scale for a completion of a rearrangement (∼0.5s) is much shorter than the shortest driving period (5s) or66

largest inverse strain rate (20s).67

We investigate particle rearrangements by identifying non-affine deformations within each particle’s neighbor-68

hood23,47. The degree of non-affinity is quantified by the mean-squared displacement after subtracting the best69

fit affine transformation, D2
min (see references [23, 47] for more information). Within cyclically sheared disordered70

materials, two types of non-affine events occur (Fig. 1a): those wherein particles return to their original position at71

the end of a strain cycle but along different paths, and those wherein particles escape their nearest neighbors and72

do not return48–52. For visualization we define D2
min,C ≡ ±

q

(D2
min,R)

2 + (D2
min,E)

2, where the subscripts refer to73

returning (R) and escaping (E) events, respectively, and sign corresponds to the greater D2
min. Both types of events74

dissipate energy48–53. Returning non-affine events are known to emerge near the yield point when elasticity begins75

to diminish and plasticity starts to increase8,47; escaping events arise well beyond yield47 (Fig. 1b). The fraction76

of particles undergoing non-affine events is fd. By following the rearrangements, we develop understanding about77

trajectory dynamics within the microstructure, and we take steps towards our ultimate goal to relate microstructure78

to rheology.79

To quantify structure, we characterize the inter-particle forces and particle configurations using the radial distri-80

bution function, g(r). Since the material is jammed, the motion of each particle is arrested by its neighbors54–59. This81

caging, and escape thereof, provides another lens for the non-affine motions mentioned above; when enough particles82

pass each other via small changes in the structure of their surrounding cage, the material yields23. For quantitative83
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Figure 1: Overview of structure, dynamics, and response. We characterize the disordered solid bulk response
to cyclic stress from evolving configurations of individual constituent particles. (a) Image of ∼40,000 particles. Part of the
raw image is shown (left). The scale bar is 200µm. Detected particle positions are also shown (right). For illustration, color
indicates D2

min,C , which quantifies the degree to which a particle has followed a non-affine returning trajectory (blue), or a
non-affine escaping trajectory (red). The particles in this image are experiencing yield (γ0 ∼ 15.7%). (b) Quantification of
the fractions of escaping and returning events versus total strain amplitude. Returning events rapidly increase near the yield
point (γ0 ∼ 3.0%). (c) The number of particles, Z(r) within a radius, r of a reference particle. The radius is expressed in
units of a, the average distance between neighboring particles. Vertical dashed lines indicate the limit of the first shell of
neighboring particles. Inset: radial distribution function, g(r). (d) The measured strain of the material versus the imposed
stress throughout a cycle. Both stress and strain are averaged stroboscopically over 25 cycles. The different ellipses correspond
to separate runs at different imposed stress amplitudes. Here, the area enclosed is a result of the lag between stress and strain,
which in turn quantifies the energy dissipated from the material.

analysis, we compute F ⇤, the sum of the magnitudes of inter-particle forces acting on the average particle. Specif-84

ically: F ⇤ = 2πρ
R rN

0
(−∂u

∂r
)g(r)rdr; here ρ is the number density of particles, rN is an upper cutoff distance below85

which nearest neighbor particles are found, u is the pair potential function between any two particles, ∂u
∂r

is the force86

acting between any two particles, and g(r) is the sample radial distribution function as a function of separation r87

(Fig. 1c; Methods). To determine rN , we use the coordination number as a function of radial distance, Z(r) (Fig. 1c).88

Z(r) is derived from g(r) and has been studied54 and recently used34 to characterize particle interactions and their89

effect on bulk materials. In our systems, neighbor shells are well defined by broad peaks in g(r) separated by troughs90

(Fig. 1c-inset). The extent of the nearest neighbor shell is defined as the radius at which Z(r) begins to increase91

rapidly for a second time (Fig. 1c-main).92

We quantify disorder using excess entropy16, the difference between the system’s entropy and that of its ideal gas93
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Figure 2: Memory within microstructure. Microstructural anisotropy reveals signatures of memory. Below yield,
anisotropic orientation remains unchanged regardless of shear direction. Orientation quantifies stored memory. Above yield,
anisotropic orientation reverses freely to match the direction of shear, indicating a loss of memory. (a) Radial distribution
function, g(x,y,t) at a time corresponding to one quarter of the way through a shearing cycle. We fit an ellipse to the first
neighbor ring. This ellipse stretches and reorients over time indicating changes in structural anisotropy of the sample. Two
elliptic fits are shown at two times, t=1.25 (—) and 1.75 [cycles] (- - -). (b) Orientation of the sample microstructure over
time as a function of strain amplitude. With increasing strain amplitude, the microstructure reorients to match the stretching
axis. It first reorients completely at the yield point (3.2%). (c) Elongation quantified by the ratio of ellipse major and minor
axis lengths (m/n) over time. Below yield, elongation oscillates directly with the strain; above yield, elongation oscillates with
twice the frequency of strain perturbation. In b & c data are averaged strobscopically over 25 cycles.

analogue (identical pressure, temperature, etc.). The two-body approximation of excess entropy, s2, is calculated94

from g(r) using a formula given in the methods section (Eq. 4). We calculate s2 at discrete time points to characterize95

its variation within each shear cycle (more below). Since our systems are jammed, we interpret the below-yield system96

s2 as ‘frozen in’ excess entropy.97

We seek to relate these microstructural parameters to bulk rheological properties. Recall that as the yield98

transition is approached from below, the strain will begin to lag behind the oscillatory imposed stress by a phase99

angle, δ. If δ = 0[rad], then the material is fully elastic. If δ = π/2[rad], then the material is fully viscous. In100

between, the material exhibits both elasticity and plasticity; the phase angle lag quantifies dissipation (Fig. 1d) and101

encodes the ratio of the loss (plasticity) and storage (elasticity) moduli, G00/G0 = tan(δ). We will show how G00/G0
102

is related to the microstructural and dynamical quantities described above (s2, F
⇤, fd).103

Next, we examine structural disorder, and its variation as a function of applied shear. The angle-dependent104

radial distribution function, g(x, y), quantifies microstructural order5,60 (Fig. 2a). Crucially, a nearest-neighbor ring105

is observable in disordered systems composed of interacting particles61,62. In our experiments this ring deforms106

throughout shear (Fig. 2a and supplementary video), in agreement with previous observations30,34,60,62–64. Through-107

out shear, the central ring is ellipsoidal. We can readily track the orientation and elongation of the ellipse throughout108

the shear cycle (Fig. 2b&c); ellipse orientation and elongation provide a measure of the sample anisotropy. Far above109

yield, as the material is sheared in one direction and then the other, the microstructural anisotropy switches between110

two principal strain axes (oriented at π/4[rad] and −π/4[rad], counter-clockwise from horizontal in Fig. 2a); in this111

situation, microstructural anisotropy is responsive to the direction of imposed shear (Fig. 2b). Below yield, however,112

the microstructural anisotropy remains in its original orientation; shearing is not sufficient to overcome initial ‘frozen113

in’ material structure. This phenomenon is apparent from changes in ring elongation (Fig. 2c) during the shear cycle.114

Note that above yield the microstructure elongates twice every shear cycle, at frequency 2ω, but below yield, the115
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microstructure elongates only once per cycle at ω.116

Microstructural anisotropy reveals a memory of the last direction the material was sheared above yield (Fig. 2).117

To remove internal stresses, each of our experiments is pre-sheared well above yield (γ0 ∼ 50%); nevertheless, this118

protocol imprints an anisotropy into the sample set by the last shear direction. Previously it was shown that this119

type of material memory is imprinted into g(x, y)44,45,62. Here, we find that this memory imprint is associated with120

the principal directions of shear (Fig. 2). Once a memory is stored, the memory is retained as long as the material121

is sheared elastically. Precisely when the material yields, all memory is lost, and the microstructure freely switches122

between both orientations. Taken together, these results indicate that materials store and express memories in the123

elastic regime but lose them in the plastic regime. Furthermore, recently we showed that orientational memory is124

stored most strongly within crystalline domains wherein particle rearrangements are most intensely suppressed46.125
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Figure 3: Entropy and material memories. Variation of entropy provides means for predicting system response to
a given strain amplitude. (a) Excess entropy, with the mean value subtracted, follows a sinusoidal response. Below yield,
its oscillation frequency is the shear cycle frequency. At yield, the excess entropy signal has components at both the driving
frequency and twice the driving frequency: the material is beginning to forget its initial state. Above yield, the entropy
response oscillates almost exclusively at twice the shear cycle frequency. Black dots indicate experimental data. Red lines are
fits to equation 1 with T as the only fitting parameter. The experimental data are averaged stroboscopically over 25 cycles.
(b) Amplitudes associated with the first and second harmonics are present within the s2 signals. Note, that the second and
first harmonic amplitudes cross each other at the yield point, γ0 = 3%, designated by the vertical dashed line (- - -).

We now use excess entropy to characterize and relate observations about imprinted memory to the system126

microstructure. Above yield, we find that structural response is independent of the direction of shear (Fig. 3a,127

γ0 = 6.8%); when the material is sheared in either direction, the excess entropy increases and decreases as the128

shear is reversed. Ostensibly, the material cannot sustain a memory above yield, because it is continually forced129

out of meta-stable states within the energy landscape. Near yield, however, the direction of shear has an effect on130

structural response (Fig. 3a, γ0 = 2.2%). Notice, s2 does not increase as the material is sheared over the second half131

of a sinusoidal shear cycle. Finally, below yield, the direction of shear is important; shear in one direction produces132
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an increase in excess entropy, and shear in the other direction produces a decrease (Fig. 3a, γ0 = 0.7%).133

As seen in figure 3b, the s2 signals are sinusoidal. The first harmonic (ω) decays and the second harmonic (2ω)134

grows with increasing strain amplitude. The first harmonic is dominant below yield, and the second is dominant135

above yield. Therefore, the amplitude of the first harmonic of s2 provides quantification of a stored memory, and136

the amplitude of the second harmonic characterizes the degree to which memory of the initial state is lost. Notice,137

these first and second harmonic amplitudes cross each other near the yield point.138

To build a relationship between excess entropy and bulk rheology, we next investigate the connection of s2 to139

the other dynamical metrics. For this comparison, we compute the ratio of the second to first harmonic amplitude,140

which we denote as s2,h. We can relate s2,h to several quantities in our system (Fig. 4). For example, s2,h scales with141

the product of F ⇤/F0 and fd (Fig. 4a), where F0 is the amplitude of the prescribed shear force. This relationship142

between dimensionless parameters suggests that when the imposed force on the system grows larger than F ⇤, the143

microstructure begins to permanently change, losing stored memory. Rapid variation of fd also signifies the transition.144

These findings build on recent work that links excess entropy and non-affine particle dynamics12,13. Note that the145

scaling in the present case is quadratic because fd varies nearly linearly with the imposed force, F0 (see Supplemental146

Materials). Finally, we find that the product of s22,h and F0/F
⇤ scales linearly with G00/G0 (Fig. 4c). The scaling147

factor for this linear relationship is 2φ/π2; here φ = πNa2/A quantifies the particle spatial density, a is the average148

nearest neighbor distance derived from the first peak of g(r) (Fig. 1c: inset), and A is the total area of the observed149

sample or simulation.150

The yield phenomenology shown in Fig. 4c depends on four dimensionless parameters: F0/F
⇤, s2,h, G

00/G0,151
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Figure 4: Comparisons of imposed force, microstructural excess entropy, and bulk rheology. a) The
imposed force amplitude, F0, normalized by the elastic force capacity, F ⇤, is plotted versus the excess entropy harmonic
ratio, s2,h (in both mono-disperse and bi-disperse experiments). A fit of the data suggests a parabolic relationship (p-
value:3.14x10�13, and r2:0.989), corroborating equation 2. b) The increase in the ratio of loss and storage moduli, (G00/G0)
versus strain amplitude in both the mono-disperse and bi-disperse experiments (same legend for mono-disperse and bi-disperse
experiments as panel a). Yield is signaled by the rapid increase in parameter values at about 0.03 strain amplitude. Inset: data
from simulations employing Hertzian and Lennard-Jones interaction potentials. In both cases, markers are measured values
and lines are predictions of equation 3. c) Left and right hand sides of equation 3. Notably, all parameters are measured. The
solid diagonal line (—, slope of 1.0) represents equation 3. The slope of the best fit to the data is 0.981, p-value:4.43x10�26,
and r2:0.944.
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and the packing density φ. The ratio F0/F
⇤ characterizes the shear force exerted on the material relative to152

the force required to cause rearrangements; when F0/F
⇤ ≥ 1 plasticity is non-negligible. The microstructural153

quantity s2,h provides a metric for whether a material’s response is dominated (or not) by memory as it experiences154

oscillatory strain; this microstructural property can be interpreted as the degree of plastic response. Finally, a155

familiar ratio quantifies the bulk rheological response of the material: (G00/G0). All experimental (and simulation)156

data are collapsed using these dimensionless parameters, and a direct relationship between rheology, dynamics, and157

microstructure is experimentally established in the disordered solid.158

Numerical simulations complement the experiments. The simulations enable us to vary features of the disordered159

system that are difficult to control experimentally. In particular, we can test ideas regarding variation of inter-particle160

potential. Moreover, unlike the experimental system, which involves a fluid-fluid interface that gives rise to viscous161

drag on the particles, the simulations offer the possibility to study the validity of our new concepts in disordered162

materials without viscous drag. Thus, we have conducted shear simulations without viscous drag and with two163

different inter-particle interaction potentials: Lennard-Jones, a model for atomic glass, and Hertzian, a model for164

granular systems (see Methods).165

The simulations and experiments exhibit remarkably similar behaviors. Across both the experiments and sim-166

ulations, a direct and common functional relationship between excess entropy and rheology is revealed (Fig. 4c).167

This relationship does not depend on the details of particle interactions, nor the amount of disorder. Further, since168

simulations do not involve a background fluid, the importance of hydrodynamic effects is ruled out. To test the limits169

of applicability of our numerical findings, we introduce varying amounts of Brownian motion into the Lennard-Jones170

simulations. At high thermal temperature, the particles rearrange due to Brownian motion in addition to shear171

stress, and memory cannot be formed. However, at low thermal temperature, the experimentally observed relation-172

ship between entropy and rheology holds (see Fig. 4b&c). Moreover, we find that jamming is required for the storage173

of memories in both simulation systems. At low packing densities, where the system easily un-jams during shear, the174

relation is violated. The wide applicability of these ideas suggests the existence of a deeper theoretical formulation.175

Thus, in the remainder of this paper we outline how our results may be derived phenomenologically (for the full176

derivation see the Supplemental Materials).177

To elucidate the relationship between s2 and the material properties (G0, G00), we perform a simple energy balance.178

We start with the harmonic behavior in s2. In this situation, energy is balanced in terms of accumulation, T∆S2,179

reversible (quasi-static) energy transfer, F ⇤x/2, and irreversible dissipation, fdFx:180

T∆S2(t) = F ⇤x(t)/2 + fdF (t)x(t). (1)

Here x(t) is the displacement of the system boundary, F (t) is the imposed shear force, and T is a parameter (generally181

different from the thermal temperature) that converts differences in entropy to differences in energy14,65–67. Note182

that this equation would not apply in a system dominated by thermal motion, because we do not account for changes183

in entropy due to thermal fluctuations. The equation also implicitly reflects the requirement of jamming via the F ⇤
184

term. With a single fitting parameter, T , the changes in harmonic behavior in excess entropy are reproduced from185

below to above yield (Fig. 3a).186

The harmonic transition, associated with the excess entropy found in experiments and simulations, is captured187

by the first and second terms on the right-hand-side of equation 1. s22,h is the ratio of those two terms:188

s22,h = fd
F0

F ⇤
. (2)

This relation describes the harmonics data remarkably well (Fig. 4a). We next build on equation 2 by incorporating189

a finding of shear transformation zone theory, namely that elastic energy builds up in the microstructure until190

it is plastically released via non-affine rearrangement events22,23. Quantitatively, this concept is represented as:191

G00 ∝ NfdG
0, where N is the number of total particles observed; when substituted into Eq. 2 we obtain:192

G00

G0
=

2φ

π2

F ⇤

F0

s22,h. (3)

Note, that each parameter in this expression is measured and is generally accessible in many systems. Across193

strain amplitudes, remarkable agreement is found between G00/G0 measured in experiments and simulations, and the194

predictions by Eq. 3 (see Fig. 4b&c).195
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3 Conclusion196

Our results demonstrate that the yield transition of jammed systems has a configurational origin rooted in the197

persistence of material memory. We investigated the responses of several jammed systems undergoing cyclic shear198

deformation, incorporating aspects of STZ theory, excess entropy, and harmonic analysis into a single framework.199

The analysis reveals two new dimensionless parameters and three relations, derived phenomenologically, which con-200

nect particle configurations to bulk rheology. Importantly, the microstructural information needed, i.e., the radial201

distribution function, is available in myriad of scattering/microscopy experiments spanning length scales and particle202

types5; thus, this analysis is accessible to experimentalists. In the future, it should be interesting to search for similar203

relations for other loading conditions, such as compression or steady shear, and to explore a wider array of particulate204

systems in which the particles are not simple spheres.205

We have developed a framework to understand bulk properties of jammed materials under shear based on mi-206

crostructural information. The findings hold potential to predict behavior of a broad range of dynamically arrested207

disordered materials including foams, gels, packings of nano- and micro-scale particles, and atomic/molecular glassy208

matter. Our findings, perhaps, also shed light on some deeper questions: in particular, the nature of entropy and the209

potential to use entropy ideas in far-from-equilibrium media. While entropy formulations for non-thermal systems210

have found utility in modeling disparate phenomena68–70, its physical interpretation often remains mysterious. Dis-211

ordered particulate packings appear to be particularly useful for clarifying this phenomenology, since their material212

structure can be interrogated with relatively simple methods.213
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4 Methods334

ID Type Forces Dispersity Diameters φ Φ[%]

A Experiments Dipole-dipole Bi-disperse 4.1, 5.6µm 14.02 ∼31
B Experiments Dipole-dipole Mono-disperse 5.6µm 13.99 ∼35
C Simulations Lennard-Jones Bi-disperse N/A 5.03 N/A
D Simulations Hertzian Bi-disperse 0.84, 1.16 9.68 110
E Simulations Hertzian Bi-disperse 0.84, 1.16 10.12 120

Table 1: A summary of the properties of the systems presented, including variety of inter-particle force, particle
dispersity, particle sizes, spatial density of particles, φ, and simple area fractions of particles, Φ. We note, particles
are point particles in simulations, C; hence, diameters are not defined in system C.

4.1 Experiments335

Using a custom built interfacial stress rheometer (ISR, SI Fig. 1), we simultaneously measure storage and loss moduli336

and track particle positions in 2D dense suspensions of athermal, repulsive particles. The ISR measures rheology by337

imposing force on a magnetic needle adsorbed at an interface between oil and water1. A stationary wall is opposite338

the needle, so that shear is imposed over a distance visible by a microscope. The displacement of the rod is measured339

precisely with the microscope. With displacement (strain) and imposed force (stress), the storage and loss moduli are340

calculated2,3. Additionally, the microscope is used to image the particles (∼ 40, 000, from wall to needle) adsorbed341

at the interface. The particles include charges on their surfaces, so they exert dipole-dipole repulsive forces on each342

other4–6. At the particle densities in these experiments, these forces result in particle jamming, which we define as343

full kinematic restraint on each particle by its neighbors. In all data reported here the systems are in a sinusoidal,344

steady state. In the experiments, steady state occurs after five shear cycles. Twenty-five steady state cycles are used345

for calculations. For more information about these experiments and the calculations of D2
min see Refs.[7–9].346

An accessible quantity in our experiments is the two-body approximation of excess entropy, the difference between347

the system’s entropy and the entropy of an ideal gas in an equivalent state (s2 ∼ ssys. − sI.G.). Conveniently, this348

quantity is calculated from the radial distribution function, which is available in a wide range of experiments10. The349

previously derived11 formula for excess entropy is:350

s2 = −πρ

Z

1

0

�

g(r)ln[g(r)]− [g(r)− 1]
 

rdr (4)

where ρ is the particle number density. We implement equation 4 for each image in our experiments individually to351

collectively construct an entropy time signal, s2(t). For specifics of our excess entropy calculations, see Ref. [12].352

The network force, F ⇤ introduced in the paper is calculated based on inter-particle forces within the average353

neighborhood of particles. To make this measurement we estimate the average number of nearest neighbors around354

a particle as:355

Z(Rc) = 2πρ

Z Rc

0

g(r)rdr (5)

where Rc values are shown as the horizontal axis in Fig. 1c. We estimate experimental inter-particle forces based356

on potentials measured in experiments and molecular dynamics simulations reported in Ref. [6]. An account of our357

estimate is included in the Supplemental Materials.358

4.2 Simulations359

The data points for samples C were obtained using LAMMPS13. At each strain amplitude, 10 two-dimensional en-360

sembles of 10,000 bi-disperse Lennard-Jones particles14,15 were subjected to sinusoidal shear under periodic boundary361

conditions at constant confining pressure. The period of shearing was 100× that of the LJ time-scale of the particles.362

Prior to shearing, the samples were dynamically equilibrated at 1% of the glass-transition temperature15. During363

strain-controlled shearing LAMMPS’ Nosé-Hoover thermostat was used to maintain the samples at approximately364

1% of the glass-transition temperature. After 40 cycles of shearing, the shear stress was output for another 40 cycles365

11



for later use in the calculations of the dynamic moduli. We find that similar calculations at 9% of the glass-transition366

temperature begin to violate our assumption of negligible thermal energy.367

For simulation samples D and E, we use HOOMD-blue16,17 to impose cyclic strain on 10 particle configurations368

for each of six strain amplitudes (1, 2, 3, 4, 5, 6%) at constant confining pressure. Ensembles are composed of jammed369

states of 50:50 bidisperse mixtures of 10,000 Hertzian particles. Ensembles are initialized from a randomly uniform370

probability distribution at a packing fraction below jamming, and subsequently quenched under FIRE minimization18371

whilst increasing the packing fraction until the desired pressure is reached. We then run a triangle wave shear protocol,372

imposing a small strain step of 10�4% and minimizing under FIRE after each step, until a total of 40 cycles have373

been completed. We calculate dynamic moduli based on the dominant frequencies of the resulting triangle waves.374
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