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Abstract 19 

A good-based model proposes that the orbitofrontal cortex (OFC) represents binary choice outcome, 20 

i.e., the chosen good. Previous studies have found that the OFC represents the binary choice outcome 21 

in decision-making tasks involving commodity type, cost, risk, and delay. Real-life decisions are often 22 

complex and involve uncertainty, rewards, and penalties; however, whether the OFC represents binary 23 

choice outcomes in a such decision-making situation, e.g., Iowa gambling task (IGT), remains unclear. 24 

Here, we propose that the OFC represents binary choice outcome, i.e., advantageous choice versus 25 

disadvantageous choice, in the IGT. We propose two hypotheses: first, the activity pattern in the human 26 

OFC represents an advantageous choice; and second, choice induces an OFC-related functional network. 27 

Using functional magnetic resonance imaging and advanced machine learning tools, we found that the 28 

OFC represented an advantageous choice in the IGT. The OFC representation of advantageous choice 29 

was related to decision-making performance. Choice modulated the functional connectivity between 30 

the OFC and the superior medial gyrus. In conclusion, the OFC represents an advantageous choice 31 

during the IGT. In the framework of a good-based model, the results extend the role of the OFC to 32 

complex decision-making when making a binary choice. 33 

 34 

Keywords: orbitofrontal cortex, advantageous choice, multivoxel pattern analysis, psycho-35 

physiological interaction, fMRI 36 

37 
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Introduction  38 

The identified neurobiological mechanism underlying economic decision-making includes a valuation 39 

stage and a choice stage1-3. Decision makers evaluate the subjective values and characteristics of 40 

available options in the valuation stage. However, encoding subjective value and characteristics is not 41 

sufficient for making decisions, and one of the available options still needs to be chosen by decision 42 

makers at the choice stage1-3. At this stage, a good-based model, a central neurobiological model of 43 

economic decision-making, proposes that the orbitofrontal cortex (OFC) represents the binary choice 44 

outcome, i.e., the chosen good4. A good is defined by a group of determinants characterizing the 45 

conditions in which the commodity is offered, which can include commodity type, time delay, cost, risk, 46 

and ambiguity4. 47 

 48 

Consistent with a good-based model, previous studies have found that the OFC represents the binary 49 

choice outcome in juice-choice tasks5 and decision-making tasks involving costs6, risks7, and delays8. 50 

For example, different OFC neurons respond when a monkey chooses between different juice types5. 51 

Some OFC neuronal responses in monkeys encode choosing a high-cost option versus choosing a low-52 

cost option6. Some other OFC neurons in monkeys encode choosing a risky option versus choosing a 53 

nonrisky option7. The OFC activity pattern in the human brain can classify choosing smaller-but-54 

immediate options versus choosing larger-but-delayed options8. However, real-life decisions are often 55 

complex and involve uncertainty, rewards, and penalties.  56 

 57 

The inability to make choices in a complex decision-making situation, e.g., Iowa gambling task (IGT), 58 

is a symptom of several brain disorders, including borderline personality disorder9, attention-59 
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deficit/hyperactivity disorder9, anorexia nervosa10, addiction11, obsessive-compulsive disorder12, and 60 

schizophrenia13. In the IGT, reward value is a key decision-making parameter14. Whether the OFC 61 

represents a binary choice outcome in the IGT, advantageous choice (i.e., choosing an option with a 62 

high reward value) versus disadvantageous choice (i.e., choosing an option with a low reward value), 63 

remains unclear.  64 

 65 

A line of studies has implicated the OFC at the valuation stage, i.e., evaluating available options such 66 

as the value15-18, risk19,20, ambiguity21,22, and environmental statistics23. For example, Hare et al. and 67 

Kable et al. reported that OFC activity was correlated with high values versus low values24,25. Both 68 

Bartra et al. and Clithero et al. have shown that the OFC is a key brain area related to high subjective 69 

values versus low subjective values of different types of rewards using meta-analysis26,27. Some studies 70 

have also investigated the neural basis of high ambiguity versus low ambiguity in  decision-making. 71 

For example, Levy et al. showed that OFC activity is correlated with ambiguity level21. Hsu et al. also 72 

revealed that the OFC showed greater activation in response to the level of ambiguity22. Huettel et al. 73 

found increased activation in the inferior frontal sulcus, insula, and parietal cortex when ambiguity was 74 

present28. Bach et al. found that ambiguity is related to parietal cortex activity29. Therefore, these studies 75 

have implicated the OFC in evaluating risk, ambiguity, and value. 76 

 77 

Another line of neurobiological studies investigated advantageous versus disadvantageous choice in the 78 

IGT; however, they found that blood oxygenation level-dependent (BOLD) activation using individual 79 

voxel-based methods in the OFC was not significantly associated with advantageous choice versus 80 

disadvantageous choice30-40. For example, Brevers et al. did not find any advantageous choice-related 81 
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activation in the OFC in healthy controls or poker gamblers in the IGT37. One potential explanation for 82 

the finding that the OFC was not implicated in advantageous choice in the IGT in these studies is that 83 

ensembles of many voxels, rather than single voxel activation, are responsible for generating economic 84 

choices. For example, multiple voxels in the OFC were shown to contain information on the 85 

discrimination between choosing a larger-but-delayed option and chossing a smaller-but-immediate 86 

option in decision-making involving delays8. Therefore, the individual-voxel-based methods used by 87 

previous studies might not be suitable. As multivoxel pattern analysis (MVPA) can detect fine-grained 88 

spatial patterns across multiple voxels that might discriminate between cognitive processes41, it may be 89 

a potential method to detect advantageous choice in the OFC in the IGT. Therefore, in the present study, 90 

we hypothesized that the OFC represented advantageous choice in the IGT. 91 

  92 
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Methods 93 

Participants. Fifty-five healthy participants were recruited in the study, and one participant was 94 

excluded after presenting with significant head motion (>3.0 mm) during functional magnetic resonance 95 

imaging (fMRI) scanning. The remaining fifty-four participants included 45 males and nine females 96 

[age: mean, 22.7 years; standard deviation (SD), 2.1 years; range, 19 to 27 years; education: mean, 16.3 97 

years; SD, 1.8 years; range, 13 to 19 years]. All participants were free of psychiatric or neurological 98 

history and had normal or corrected-to-normal vision. The study was approved by the Human Research 99 

Ethics Committee of the University of Science and Technology of China. The methods and procedures 100 

used in this study were carried out in accordance with the approved guidelines. Written informed 101 

consent was obtained from all participants before the study, consistent with the Declaration of Helsinki 102 

guidelines. 103 

 104 

Task paradigm. In the present study, we used the Iowa gambling task (IGT)14 (Fig. 1), a popular 105 

decision-making task for indexing real-life complex decision-making. In each trial, the participants 106 

selected a card from among four decks of cards. The four decks were labelled A, B, C, and D as 107 

presented from left to right. On each card, there were different numbers of gain and possible loss points, 108 

and the participant received the net (gain - loss) points for choosing that card. Participants did not know 109 

the expected reward and variability in the outcomes for all decks before engaging in the task. In the 110 

task, the participants were asked to maximize the points they gained. Specifically, for each selection 111 

from deck A or B (“low reward value decks”), participants would gain 100 points, but the losses were 112 

organized so that over 10 selections from the decks, the participants would have an overall loss of 250 113 

points. Specifically, deck A provided -150, -200, -250, -300 and -350 (loss) points every ten selections, 114 

whereas deck B provided -1250 (loss) points in one out of ten selections. For each selection from deck 115 

C or D (“high reward value decks”), the participants would win 50 points, and the losses were organized 116 

so that if participants made over 10 selections from these decks, they would obtain an overall profit of 117 

250 points. The two decks differed in the frequency and magnitude of the punishment. Similar to the 118 

previous two decks, deck C provided -25, -40, -50, -60 and -75 (loss) points every ten selections, 119 

whereas deck D provided -250 (loss) points once every ten selections. Decks A and B had negative 120 

reward expectations and were operationally defined as having a low reward value. In contrast, decks C 121 

and D had positive reward expectations and were defined as having a high reward value. Therefore, 122 
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choosing decks C and D was an advantageous choice, and choosing decks A and B was a 123 

disadvantageous choice. Similar to previous studies42,43, the IGT was extended to 180 trials from the 124 

original 100 trials to facilitate rule learning14. The IGT consisted of three scan runs, with three blocks 125 

for each scan run and 20 trials for each block. The participants who had positive net winnings at the end 126 

of the task would obtain extra money (10¥/1000 points). The final net winnings were defined as the 127 

total score. 128 

 129 

Behavioural analysis—reinforcement learning model. This procedure followed that of a previous 130 

study43. The reinforcement learning model44 was adapted to analyse the behavioural data. Reward 131 

prediction errors (RPEs) were included in the model, according to the suggestion by Sutton and Barto45. 132 

An RPE (𝛿𝑡) was defined as the difference between the actual reward 𝑟𝑡 and the predicted reward 𝑣𝑡̂ 133 

at trial t. The formula for this definition was as follows: 134 𝛿𝑡 = 𝑟𝑡 − 𝑣̂𝑡.                               (1) 135 

The RPE was used to update reward prediction in the model using the following formula: 136 𝑣̂𝑡+1 = 𝑣̂𝑡 + 𝛼 ∙ 𝛿𝑡 .                           (2) 137 

where α is the learning rate for the RPE in the update formula44. Then, maximum likelihood estimation 138 

(MLE) was adopted to estimate the learning rate based on the samples. Here, 𝜋𝑖𝑡 was defined as the 139 

probability of choice i at trial t. We transformed the data with an exponential function when we 140 

calculated the value of 𝜋𝑖𝑡 using the following formula: 141 𝜋𝑖𝑡 = 𝑒𝑣𝑖𝑡∑ 𝑒𝑣𝑗𝑡𝑛𝑗=1 .                               (3) 142 

The learning rate was estimated separately by maximizing the likelihood function for each participant: 143 

Maximum log − likelihood = max ∑ log 𝜋𝑖𝑡,𝑡𝑀
𝑡=1     (4) 144 

where 𝑖𝑡 represents the deck selected at trial t, 𝑖𝑡 ∈ {1, 2, 3, 4}, and 𝜋𝑖𝑡,𝑡 represents the probability 145 

of selecting deck 𝑖𝑡 at trial t. 146 

To test whether the participants’ decision-making performance was better than random chance, we 147 

performed a random selection simulation 1000 times. We compared the learning rate from the 148 

participants’ choices with that from the simulation using the t test. We tested group differences using t 149 

test if data conformed normality and using Mann-Whitney test if data do not conform normality in the 150 
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present study. Cohen's d values were calculated via G*Power 3.1 software46. We calculated the total net 151 

good decks, which was the number of advantageous choices minus the number of disadvantageous 152 

choices in 180 trials. 153 

 154 

fMRI data acquisition and preprocessing. Gradient echo-planar imaging data were acquired using a 3.0 155 

T, 8-channel head coil Trio scanner (Siemens Medical Solution, Erlangen, Germany) with a circularly 156 

polarized head coil in Hefei. We restrained head motion with foam padding. A T2*-weighted echo-157 

planar imaging sequence (FOV = 240 mm, TE = 30 ms, TR = 2000 ms, flip angle = 85°, matrix = 64 158 × 64) with 33 axial slices (no gaps, 3.7 mm thick) covering the whole brain was used to acquire the 159 

functional MR images. There were three runs of IGT, each of which contained 210 epochs. Furthermore, 160 

high-resolution T1-weighted spin-echo imaging data (1 mm isotropic voxel) were also acquired for 161 

anatomical overlay. 162 

 163 

We preprocessed the imaging following the workflows proposed in a previous paper47. All functional 164 

MR images were preprocessed using Analysis of Functional Neuroimages (Version AFNI_18.2.03) 165 

software48. All fMRI data were corrected for temporal shifts between slices and motion and grand-mean 166 

scaled. Low-frequency signal drifts were filtered using a cutoff of 128 s. Volumes meeting the following 167 

criteria were removed: translation>0.3mm or rotation>0.3°  between consecutive volumes49. For each 168 

run, we dropped the first two volumes to enhance stability. Linear regression was also performed to 169 

remove linear trends. All functional volumes were non-linearly transformed to MNI space (resampled 170 

voxel size: 4 × 4 × 4 mm3) according to the spatial transformation between the anatomical data and 171 

the MNI space. Volumes were spatially smoothed with a Gaussian kernel (full-width at half-maximum 172 

= 8 mm) and were used for general linear model and psycho-physiological interaction (PPI) analysis. 173 

Unsmoothed data were used for MVPA. 174 

 175 

General linear model for value signals. To illustrate the neural activations of the values, including RPE, 176 

gain, loss, and reward predictions for the four decks, a general linear model was used to examine the 177 

BOLD signals in which brain regions were correlated with these values. The general linear model was 178 

run for each value and included 1) an interest regressor, i.e., one-value regressor, defined as RPE, gain, 179 

loss, or reward prediction for the four decks during the epochs when feedback was presented and 0 for 180 
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other epochs, and 2) six noninterest regressors for head motion. Then, the parameter estimates were 181 

extracted for each value and for each participant. We performed a group-level one-sample t test for 182 

parameter estimates using family-wise error correction. 183 

 184 

Whole brain searchlight-based multivoxel pattern analysis. We first used whole brain searchlight-based 185 

MVPA to classify advantageous choice versus disadvantageous choice. We adapted the within-subject 186 

MVPA methods from a previous study50. We used the least squares-separate (LSS) method to extract 187 

choice-related activations according to a previous study51. LSS is the most effective method to estimate 188 

choice activation51 and has been widely used in the field50,52,53. According to the LSS method, a general 189 

linear model was used to extract activation for each choice. There were 180 choices, 𝐶1…180 , including 190 

advantageous choices and disadvantageous choices, for each participant. A general linear model was 191 

run for each choice. For the ith choice, 𝐶𝑖, the general linear model included two choice regressors. The 192 

first was the choice regressor of interest. During a trial with choice 𝐶𝑖, this regressor was defined as 1 193 

during the epoch when a button press was made in the selection phase and 0 for the other epochs; during 194 

trials with choices 𝐶1…𝑖−1,𝑖+1…180, this regressor was defined as 0 for all epochs. The other was the 195 

choice regressor of nuisance. During a trial with choice 𝐶𝑖, this regressor was defined as 0 for all epochs; 196 

during trials with choices 𝐶1…𝑖−1,𝑖+1…180, this regressor was defined as 1 during the epoch when a 197 

button press was made in the selection phase and 0 for the other epochs. The value of β for the choice 198 

regressor of interest in the general linear model was the activation for choice 𝐶𝑖. The general linear 199 

model was repeated 180 times to extract activations for 180 choices for each participant. The general 200 

linear model was performed using MATLAB’s regstats function (MATLAB v2019a, Mathworks Inc, 201 

Natick, MA, PC). 202 

 203 

We implemented two steps to control the effects of values, as choices can be expected to be related to 204 

value signals, including RPE, gain, loss, and reward predictions for the four decks. For step 1, we used 205 

the Gram-Schmidt orthogonalization algorithm to orthogonalize choices and values before 206 

implementing the general linear model 54,55. Specifically, we orthogonalized choice and RPE, gain, loss, 207 

and reward predictions for the four decks. For step 2, the orthogonalized choice regressor of interest, 208 

the orthogonalized choice regressor of nuisance, the regressors for RPE, gain, loss, and reward 209 

predictions for the four decks [those defined as RPE, gain, loss, or reward predictions for the four decks 210 
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during the epochs when feedback was presented and 0 for the other epochs], and six regressors of no 211 

interest for head motion were included in each general linear model. We extracted β, the activation of 212 

the orthogonalized choice regressor of interest, for each voxel in the whole brain in each general linear 213 

model. The extracted activations were grouped into two categories according to the choice type, i.e., 214 

advantageous choice versus disadvantageous choice, for each voxel and for each participant. 215 

 216 

We performed whole brain searchlight-based MVPA that did not depend on a priori assumptions but 217 

searched for predictive information across the whole brain. For each voxel 𝑣𝑖, considering the local 218 

patterns that contained the spatial correlation that might decode advantageous choice versus 219 

disadvantageous choice, we constructed a spherical collection of voxels (𝑆𝐼…𝑁), with 33 voxels56 centred 220 

on voxel 𝑣𝑖 . For each voxel 𝑆𝐼…𝑁  in the collection, we extracted β; namely, 𝑉𝐼…𝑁 . 𝑉𝐼…𝑁  were 221 

normalized to the range from 0 to 1 for advantageous choice and disadvantageous choice separately to 222 

give all voxels equal importance during classifier training57,58. The values 𝑉𝐼…𝑁 were then used to train 223 

and test the classifier model, which was a support vector machine with a linear kernel. The decoding 224 

accuracy of the central voxel 𝑣𝑖 was acquired by five-fold cross-validation. The implementation of the 225 

support vector machine and cross-validation were based on sklearn.svm.SVC in Python’s scikit-learn 226 

toolbox (version 0.21.2)59. During training and testing of the classification model, random 227 

undersampling was used to handle the imbalance in samples between advantageous choice and 228 

disadvantageous choice. For example, if the number of advantageous choices was larger than that of 229 

disadvantageous choices, advantageous choices were removed randomly to make the numbers the same 230 

as the disadvantageous choices by the numpy.random.shuffle function in Python (version 3.6.8). Equal 231 

numbers of both choices were labelled the original data sample, which was then randomly partitioned 232 

into five equal sized subsamples for five-fold cross-validation. The same procedure was performed for 233 

each voxel over the whole brain for each participant. The whole brain decoding accuracy was 234 

normalized by subtracting the mean of the whole brain accuracy for each participant. 235 

 236 

We performed a group-level one-sample t test for whole brain searchlight-based MVPA for decoding 237 

accuracy using family-wise error correction. 238 

 239 

We also tested whether choice-related activations were correlated with value signals, i.e., RPE, gain, 240 
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loss, and reward predictions for the four decks using both whole brain analysis and region of interest 241 

(ROI) analysis. Specifically, the extracted activations in the general linear model were grouped into two 242 

categories according to the median split of the values of the trials, i.e., high and low subgroups for RPE, 243 

gain, loss, and reward predictions for the four decks for each participant. We tested whether these 244 

subgroups showed differences for RPE, reward predictions for the four decks, gain, and loss separately 245 

using the t test in the whole brain with family-wise error correction. We further included the left and 246 

right OFC ROIs from the Anatomical Automatic Labeling atlas (AAL2)60. The left OFC ROI included 247 

OFCmed_L, OFCant_L, OFCpost_L, and OFClat_L and the right OFC ROI included OFCmed_R, 248 

OFCant_R, OFCpost_R, and OFClat_R. The extracted activations for values above were averaged in 249 

the left and right OFC ROIs separately, then, were fed into group comparisons using the t test with 250 

uncorrected p<0.05. 251 

 252 

ROI-based MVPA. We further tested whether the OFC represented choice using ROI-based MVPA. First, 253 

we included OFC ROIs from the AAL2 that showed overlapping areas with the peak voxel for 254 

significant clusters in the whole brain searchlight-based MVPA. Second, we extracted the activations 255 

associated with each choice for each OFC ROI. Activations were also normalized to the range from 0 256 

to 1 for advantageous choice and disadvantageous choice separately57,58. The decoding accuracy for 257 

each OFC ROI was acquired by five-fold cross-validation. 258 

 259 

We tested whether the decoding accuracy was greater than chance level (0.5) for each OFC ROI using 260 

a one-sample t test. We tested whether the decoding accuracy was correlated with the learning rate, total 261 

score, and total net good decks using Pearson correlations. 262 

 263 

To test whether the signal-to-noise ratio (SNR) affected the decoding results, Pearson correlations 264 

between the SNR and decoding accuracy for each ROI were determined. 265 

 266 

PPI analysis. To investigate whether the functional connectivity of the OFC identified in ROI-based 267 

MVPA differed between advantageous and disadvantageous choices, we ran PPI analysis. First, we 268 

created a “seed” time series by extracting mean time courses for each OFC identified in ROI-based 269 

MVPA. Second, we computed the interaction terms between the “seed” and either the (1) advantageous 270 
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choice regressor, defined as 1 during the epoch when a button press was made in the selection phase 271 

and 0 for other epochs during trials with advantageous choice and as 0 for all epochs during trials with 272 

disadvantageous choice or the (2) disadvantageous choice regressor, defined as 1 during the epoch when 273 

a button press was made in the selection phase and 0 for other epochs during trials with disadvantageous 274 

choice and as 0 for all epochs during trials with advantageous choice. Third, we estimated a PPI general 275 

linear model including the following regressors: (1) the advantageous choice regressor, (2) the 276 

disadvantageous choice regressor, (3) the OFC seed time course, (4) the interaction term between the 277 

“seed” and advantageous choice regressor, defined as advantageous choice PPI, (5) the interaction term 278 

between the “seed” and disadvantageous choice regressor, defined as disadvantageous choice PPI, (6) 279 

seven value regressors including RPE, gain, loss, and reward predictions for the four decks, defined as 280 

RPE, gain, loss, or reward predictions for the four decks, respectively, during the epochs when feedback 281 

was presented and 0 for the other epochs, and (7) six noninterest regressors for head motion. The PPI 282 

general linear model was performed using AFNI’s 3dDeconvolve. 283 

 284 

We computed the first-level contrast for the disadvantageous choice PPI β minus the advantageous 285 

choice PPI β. We performed a one-sample t test to identify significant differences in the contrast to 286 

identify PPI effects using family-wise error correction. 287 

 288 

We also tested whether there were overlapping regions in the brain among the whole brain searchlight-289 

based MVPA and PPI. 290 

 291 

As a control analysis, we tested whether value signals modulated OFC functional connectivity. To 292 

achieve this, we performed PPI analysis for RPE, gain, loss, and reward predictions for the four decks 293 

separately. The PPI general linear model included the following regressors: (1) a value regressor, 294 

defined as RPE, gain, loss, or reward predictions for the four decks during the epochs when feedback 295 

was presented and 0 for other epochs, (2) the OFC seed time course, (3) the interaction term between 296 

the “seed” and value regressor, defined as the value PPI, and (4) six noninterest regressors for head 297 

motion. We computed the first-level contrast for PPI β values and performed a one-sample t test to 298 

identify PPI effects using family-wise error correction. 299 

  300 
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Results 301 

Summary of behavioural performance in the IGT 302 

We found that the participants’ learning rate was significantly higher than the learning rate from the 303 

computer's random 1000 selections [Mann-Whitney test, Mann-Whitney U=53,  𝑝 < .001 , 95% 304 

confidence interval: [0.085, 0.116]]. The participants’ learning rate, response time, number of 305 

advantageous choices, number of disadvantageous choices, total score, and total net good decks are 306 

summarized in Table 1. 307 

 308 

BOLD activity in the OFC is correlated with value signals 309 

We found significant activations in the OFC, striatum, and posterior cingulate cortex for value signals, 310 

including RPE, gain, loss (Fig. 2 and Table 2), and reward predictions for the four decks (Supplementary 311 

Figure 1 and Supplementary Table 1). Therefore, the results are consistent with previous studies 312 

showing that the OFC is implicated in value evaluation42,61,62. 313 

 314 

The OFC represents advantageous choice 315 

As the OFC has been implicated in the representation of value signals, we next examined whether the 316 

OFC represented advantageous choice while controlling for value effects. Using whole brain 317 

searchlight-based MVPA, we found that the activity pattern in the OFC indeed represented 318 

advantageous choice (Fig. 3a and Table 3). Whole brain searchlight-based MVPA also revealed that 319 

activity in the frontal regions and the parietal regions represented advantageous choice (Fig. 3a and 320 

Table 3); thus, we replicated similar findings regarding the representation of choice in the frontoparietal 321 

network from previous studies1,2. 322 

 323 

Are choice related activations in the OFC related to value signals? We found that there were no 324 

significant activations in the OFC between the high and low subgroups for RPE, gain, loss (Fig. 3b, 3c, 325 

3d, and Supplementary Table 3), or reward predictions for the four decks (Supplementary Figure 2 and 326 

Supplementary Table 4). We further found that there were no significant differences in the left or right 327 

OFC ROIs between the high and low subgroups for RPE, gain, loss (all 𝑝𝑠 > 0.05, uncorrected). The 328 

results suggest that choice-related activations in the OFC for MVPA were not confounded by value 329 

signals. 330 



14 

 

 331 

The peak voxels of significant clusters in the whole brain searchlight-based MVPA showed an 332 

overlapping area with OFCmed_R in AAL2; therefore, we further examined the choice representation 333 

in OFCmed_R using ROI-based MVPA. We found that OFCmed_R represented an advantageous 334 

choice [𝑡53 = 7.770, 𝑝 < 0.001, 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 = 1.057, 95% confidence interval: [0.075, 0.126]] (Fig. 335 

4a). We found significant correlations between the decoding accuracy and learning rate [r = 0.559, 𝑝 <336 0.001, N = 54], total score [r = 0.357, 𝑝 = 0.008, N = 54], and total net good decks [r = 0.468, 𝑝 <337 0.001, N = 54] (Fig. 4b, 4c, and 4d). The decoding accuracy showed no significant correlations with 338 

the SNR [r = −0.119, 𝑝 = 0.390, N = 54] or censor rate [r = 0.071, 𝑝 = 0.610, N = 54], suggesting 339 

that the decoding accuracy was not explained by either of these parameters. 340 

 341 

Choice modulates OFC functional connectivity with the superior medial gyrus 342 

PPI analysis revealed greater OFC connectivity with the superior medial gyrus when choosing 343 

disadvantageous options versus choosing advantageous options (Fig. 5a). Furthermore, the superior 344 

medial gyrus showed an overlapping area with brain regions representing advantageous choice revealed 345 

by whole brain searchlight-based MVPA (Fig. 5b). As a control analysis, we tested whether value 346 

signals modulated OFC functional connectivity. We found that there was no significant OFC functional 347 

connectivity in the whole brain for RPE, gain, loss, or reward predictions for the four decks (Fig. 5c), 348 

suggesting that choice-modulated OFC functional connectivity was not confounded by the value signals. 349 

  350 
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Discussion 351 

Consistent with the proposal of a good-based model, the present study demonstrates that the OFC 352 

represents advantageous choice, which provides strong evidence to support the role of the OFC in binary 353 

choice in the IGT. Furthermore, IGT behavioural performances were correlated with the advantageous 354 

choice representation in the OFC. Third, the functional connectivity between the OFC and superior 355 

medial gyrus supports choice. 356 

 357 

The OFC represents an advantageous choice in the IGT 358 

In the present study, we demonstrated that the OFC represents binary choice in the IGT based on the 359 

distributed activity pattern. These results are supported by neurobiological studies with human14,63 as 360 

well as animal64,65 prefrontal lesions (including in the OFC), consistently indicating that the OFC plays 361 

a necessary role in decision-making. 362 

 363 

Furthermore, beyond the OFC, the frontoparietal network was also implicated in choice in the present 364 

study, and the finding is consistent with previous studies1,2. Both the OFC and the frontoparietal network 365 

represented choice in the present study; therefore, we expected to find functional connectivity between 366 

the regions for choice. Indeed, we identified a functional connectivity between the OFC and the superior 367 

medial gyrus for choice, but not for values, suggesting that the OFC is functionally coupled with the 368 

prefrontal cortex when humans make choices. As the frontoparietal network has been widely implicated 369 

various decision-making situations1,2, the connectivity between the OFC and the superior medial gyrus 370 

would be helpful for choice under various decision-making contexts. We also found that OFC activity 371 

is related to value signals, e.g., RPE, gain, and loss. Therefore, the finding that both choice and value 372 
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were represented in the OFC may make it easier for individuals to make optimal choices with the help 373 

of frontoparietal network modulation during difficult decision-making situations that lack sufficient 374 

information. 375 

 376 

A proposed role for the OFC: representation of choice-related complex information along a 377 

continuous spectrum 378 

In the present study, the OFC was shown to represent advantageous choice. This finding is supported 379 

by a recently proposed cognitive map representing a state space66. In the context of the cognitive map, 380 

the OFC is activated when the decision maker becomes cognizant of unobservable information and 381 

makes a correct choice; however, the OFC would not activate when the decision maker is not cognizant 382 

of unobservable information and makes an incorrect choice67. 383 

 384 

Interestingly, in the present study, even though the participants did not know the specific reward value 385 

for each deck, the OFC nevertheless represented advantageous choice. Integration of these findings 386 

shows that exact knowledge of complex information is not necessary for OFC activation. This may 387 

suggest that the OFC, in part, could play a role in unconscious influences, e.g., emotions, in complex 388 

decision-making68. 389 

 390 

We found that decoding accuracy in the OFC correlated with decision-making performance. We 391 

therefore propose a role for the human OFC based on the cognitive map idea: the OFC may represent 392 

choice-related complex information along a continuum, e.g., from a high decoding accuracy of 393 

advantageous choice if the decision maker exactly knows the complex information to a low decoding 394 
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accuracy if they do not. Our proposal further predicts that the OFC represents choice in choosing 395 

between other decision-making parameters, such as self-control and cost. This is important because 396 

humans often face choices that have unknown costs for effort control. It is beneficial to exert an 397 

appropriate level of effort for an appropriate choice. The OFC seems to be a candidate for the brain 398 

region used when making choices based on the aforementioned parameters in a complex context; this 399 

hypothesis should be investigated in future work. 400 

 401 

Several shortcomings of the present study should be acknowledged. First, few female participants were 402 

recruited in the present study. We conducted ROI-based MVPA for males and females separately to test 403 

whether females and males showed a difference in decoding accuracy. We found consistent results (see 404 

Supplementary Table 5) between the sexes, suggesting that the percentage of females might not 405 

influence our results. Future work should include more female participants to substantiate our 406 

conclusion. Second, the IGT design convolves decision-making with uncertainty with learning. Good 407 

learning would presumably result in choosing from the high value deck and not from the other decks 408 

and would also presumably result in choosing from the high value deck more in the late IGT runs and 409 

less in the early IGT runs. Therefore, a reasonable assumption would be that changes in activation 410 

patterns between choosing high value versus choosing low value may be due to differences in choice 411 

probability. However, the choice probability is related to reward prediction, which we controlled for 412 

when we performed MVPA and PPI analysis. We found that choice-related activations in the OFC could 413 

represent choice in MVPA and that choice-related activations in the OFC were not related to reward 414 

predictions. We also found that choice, but not reward predictions, modulated OFC functional 415 

connectivity with the superior medial gyrus in PPI analysis. Therefore, our results suggest that neither 416 
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the choice probability nor the learning effect in the IGT confounds the decoding or PPI results in the 417 

present study. Future work will require a complex decision-making task without learning to substantiate 418 

our conclusion. Third, attention modulates the value signal in the OFC69, thus, a reasonable assumption 419 

would be that choice-related signals in the OFC may be confounded with attention. However, the OFC 420 

signal has been related to value of attended option69 and we found that choice-related signals in the OFC 421 

were not related to all value signals, including RPE, gain, loss, or reward predictions for the four decks. 422 

Therefore, our results suggest that attention may not confound the decoding or PPI results in the present 423 

study. Future work will require a decision-making task with covert shift of attention to substantiate our 424 

conclusion. 425 

 426 

Conclusions 427 

In conclusion, our results demonstrate that the OFC represents advantageous choice in the IGT. Our 428 

data provide evidence to support the integration of knowledge in the OFC to make choices in a complex 429 

context, which may be helpful for survival. Decreased decoding accuracy in the OFC may be related to 430 

poor decision-making ability, and these findings may provide potential insight into understanding 431 

impulsive behaviours.  432 
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Figure Legends 632 

Figure 1. Experimental paradigm of the Iowa gambling task. Experimental paradigm of the Iowa 633 

gambling task. There were two phases for each trial. Four decks were presented in the first phase. Participants 634 

selected a card within 4 s in this phase (selection phase, 4 s); then, the outcome, including gain and loss, was 635 

presented in the second phase (feedback phase, 1 s). 636 

Figure 2. BOLD activity in the OFC was correlated with value signals. BOLD signals in the OFC, 637 

striatum, and posterior cingulate cortex were correlated with value signals, including a) RPE, b) gain, and c) 638 

loss. Family-wise error at a cluster-level threshold of p < 0.05 (voxel-level threshold of p < 0.001, voxel 639 

size > 13 for RPE, 33 for gain, and 19 for loss). N = 54. 640 

Figure 3. The OFC represents advantageous choice, and choice-related activations in the OFC are not 641 

correlated with value signals. a) Whole brain searchlight-based MVPA revealed that the OFC represents 642 

choice. Choice-related activations in the OFC are not significantly correlated with value signals, including 643 

b) RPE, c) gain, or d) loss. R, Right, L, Left. Family-wise error at a cluster-level threshold of p < 0.05 (voxel-644 

level threshold of p < 0.001, voxel size > 4 for advantageous choice, 1 for RPE, 3 for gain, and 2 for loss). 645 

N = 54. 646 

Figure 4. The OFC represents an advantageous choice, and the OFC decoding accuracy is correlated 647 

with behavioural performances. a) The OFCmed_R region in AAL2 represents an advantageous choice. 648 

The OFCmed_R decoding accuracy was correlated with the b) learning rate, c) total score, and d) total net 649 

good decks in the IGT. The dashed line in the panels shows the chance level (0.5), and the dashed area in 650 

the panels shows the 95% confidence interval. The error bar shows SE. N = 54. 651 

 652 

Figure 5. The OFC is functionally connected with the superior medial gyrus for choice, but not for 653 
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values. a) Compared with advantageous choice, disadvantageous choice increased the OFC functional 654 

connectivity with the superior medial gyrus. Voxel size: 40; peak voxel coordinates: -10, -66, +4. R, Right, 655 

L, Left. Family-wise error at a cluster-level threshold of p < 0.05 (voxel-level threshold of p < 0.001, voxel 656 

size > 13). b) The overlapping area between the superior medial gyrus and the brain regions representing 657 

advantageous choice contained 16 voxels. c) There was no significant OFC functional connectivity across 658 

the whole brain for RPE, gain, loss, or reward predictions for the four decks. Family-wise error at a cluster-659 

level threshold of p < 0.05 (voxel-level threshold of p < 0.001, voxel size > 1 for RPE, 3 for gain, 2 for loss, 660 

16 for reward prediction for deck A, 18 for reward prediction for deck B, 16 for reward prediction for deck 661 

C, 15 for reward prediction for deck D). N = 54. 662 
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Table Legends 665 

Table 1. Summary of behavioural performance in the Iowa gambling task. 666 

N = 54. 667 

Table 2. BOLD activity in the OFC is correlated with the value signals. 668 

a The coordinates of the peak voxel are shown in MNI space (+ left, - right; + posterior, - anterior; + superior, 669 

- inferior). Family-wise error at a cluster-level threshold of p < 0.05 (voxel-level threshold of p < 0.001, 670 

voxel size > 13 for RPE, 33 for gain, and 19 for loss). N = 54. 671 

Table 3. Brain regions including the OFC that represent advantageous choice. 672 

a The coordinates of the peak voxel are shown in MNI space (+ left, - right; + posterior, - anterior; + superior, 673 

- inferior). Family-wise error at a cluster-level threshold of p < 0.05 (voxel-level threshold of p < 0.001, 674 

voxel size > 4). This table only displays the brain regions that formed a cluster of more than 20 voxels; all 675 

significant clusters are shown in Supplementary Table 2. N = 54. 676 

  677 



28 

 

 678 

Figure 1. Experimental paradigm of the Iowa gambling task. 679 
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 681 

Figure 2. BOLD activity in the OFC was correlated with value signals. 682 

683 
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 684 

Figure 3. The OFC represents advantageous choice, and choice-related activations in the OFC are 685 

not correlated with value signals. 686 
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 687 

Figure 4. The OFC represents an advantageous choice, and the OFC decoding accuracy is correlated 688 

with behavioural performances. 689 
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 691 

Figure 5. The OFC is functionally connected with the superior medial gyrus for choice, but not for 692 

values. 693 
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Table 1. Summary of behavioural performance in the Iowa gambling task. 695 
 

Mean SD Min Max 

Learning rate 0.152 0.119 0.012 0.605 

Response time 0.655 0.240 0.273 1.424 

The number of advantageous choices 136.426 20.752 83.000 168.000 

The number of disadvantageous choices 43.574 20.752 12.000 97.000 

Total score  5050.741 977.772 3075 6885 

Total net good decks 92.852 41.503 -14.000 156.000 
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Table 2. BOLD activity in the OFC is correlated with the value signals. 698 

 Brain regions Voxels xa y z 

RPE Right inferior frontal gyrus 2450 -26 -22 +24 

 Left superior frontal gyrus 43 +22 -42 +48 

 Left superior frontal gyrus 37 +18 -62 +12 

 Right cerebellum 20 -42 +78 -36 

 Left cerebellum 19 +10 +46 -16 

Gain Right lingual gyrus 11827 -18 +90 -4 

 Left hippocampus 337 +26 +10 -16 

 Left mid orbital gyrus 301 +2 -54 -12 

 Right medial temporal pole 124 -50 -14 -28 

 Right Rolandic operculum 80 -42 +14 +20 

 Right SMA 75 -6 +10 +52 

 Right angular gyrus 42 -58 +66 +28 

Loss Right insula lobe 4508 -34 -22 +0 

 Right inferior parietal lobule 3604 -42 +42 +48 

 Left paracentral lobule 531 +6 +30 +64 

 Left middle frontal gyrus 65 +50 -38 +20 

 Right cerebellum 28 -42 +82 -36 

 Left superior frontal gyrus 25 +18 -46 +48 
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Table 3. Brain regions including the OFC that represent advantageous choice. 701 

Brain regions Voxels xa y z 

Right inferior occipital gyrus 497 -38 +82 -16 

Right superior medial gyrus 157 -10 -66 +20 

Left superior orbital gyrus 135 +14 -62 -8 

Right superior orbital gyrus 130 -14 -38 -20 

Left superior temporal gyrus 72 +54 +38 +20 

Right middle temporal gyrus 59 -54 +38 +4 

Left insula lobe 46 +42 -6 -12 

Right paracentral lobule 45 -2 +38 +76 

Right superior occipital gyrus 42 -30 +78 +40 

Left inferior occipital gyrus 39 +46 +74 -8 

Right temporal pole 36 -62 -2 +0 

Right temporal pole 28 -54 -14 -16 

Right angular gyrus 27 -50 +70 +36 

Left superior parietal lobule 27 +22 +46 +64 

Left superior parietal lobule 26 +30 +66 +64 

Left inferior occipital gyrus 22 +18 +98 -8 

Left temporal pole 20 +58 -10 -4 

Left postcentral gyrus 20 +66 +14 +16 
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Figures

Figure 1

Experimental paradigm of the Iowa gambling task.



Figure 2

BOLD activity in the OFC was correlated with value signals.



Figure 3

The OFC represents advantageous choice, and choice-related activations in the OFC are not correlated
with value signals.



Figure 4

The OFC represents an advantageous choice, and the OFC decoding accuracy is correlated with
behavioural performances.  



Figure 5

The OFC is functionally connected with the superior medial gyrus for choice, but not for values.
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