Application of Machine Learning and Acoustic Predation Tags to Classify Migration Fate of Atlantic Salmon Smolts

Daniela Notte (\triangle d.notte@dal.ca)
Dalhousie University https://orcid.org/0000-0002-9337-0849
Robert J. Lennox
NORCE Norwegian Research Centre AS Forskningsomrade Helse
David C. Hardie
Fisheries and Oceans Canada
Glenn T. Crossin
Dalhousie University

Research Article

Keywords: Telemetry, random forest, clustering, population management, Salmo salar
Posted Date: August 30th, 2021
DOI: https://doi.org/10.21203/rs.3.rs-526002/v1
License: () (i) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Oecologia on March 4th, 2022. See the published version at https://doi.org/10.1007/s00442-022-05138-3.

Abstract

Mortality and predation of tagged fishes presents a serious challenge to interpreting results of acoustic telemetry studies. There is a need for standardized methods to identify predated individuals and reduce the impacts of "predation bias" on results and conclusions. Here, we use emerging approaches in machine learning and acoustic tag technology to classify out-migrating Atlantic salmon (Salmo salar) smolts into different fate categories. We compared three methods of fate classification; predation tag pH sensors and detection data, unsupervised k -means clustering, and supervised random forest combined with tag pH sensor data. Random forest models increased predation estimates by $9-32 \%$ compared to pH sensor data, while clustering reduced estimates by $3.5-30 \%$. The greatest changes in estimates were seen in years with large class imbalance or low model accuracy. Both supervised and unsupervised approaches were able to classify smolt fate, however, in-sample model accuracy improved when using tag sensor data to train models, emphasizing the value of incorporating such sensors when studying predator-prone fish. Sensor data may not be sufficient to identify predation in isolation due to Type I and Type II error in predation sensor triggering. Combining sensor data with machine learning approaches should be standard practice to more accurately classify fate of tagged fish.

Highlighted Student Paper

This paper contributes significantly to the field of ecology by introducing a standardized workflow for analyzing telemetry data which is greatly needed to reduce biases in study results.

Introduction

A major assumption of animal telemetry studies is that the data collected from tags represent the natural movements of a live individual of the study species, and not an expelled tag, a mortality, or the movements of a predator (Gibson at al., 2015; Klinard et al., 2019). However, the violation of this assumption is often not addressed, despite the negative impact it can have on study results, population management, and conservation efforts (Klinard \& Matley, 2020). In the aquatic environment, predation of tagged fish presents a serious challenge to telemetry studies, because acoustic tags can continue to transmit through the body of the predator for as long as 150 days (Klinard et al., 2019). Therefore, failure to identify predation events of tagged individuals introduces a "predation bias", such that survival rates are inflated, individual movement patterns (e.g. depth use, rate of travel) are calculated based on both prey and predator movement, and the locations of areas of high mortality are skewed (Gibson et al., 2015; Daniels et al., 2019; Klinard et al., 2019). Even when predation events are identified, it is often on a subjective basis (Perry et al., 2010; Buchanan et al., 2013), dependent on predator and prey behaviour being significantly different and distinguishable (Romine et al., 2014; Gibson et al., 2015; Moxam et al., 2019), and difficult to pinpoint the time and location of mortality, hindering attempts to remove detections of consumed fish (Gibson et al., 2015; Daniels et al., 2018). Predation therefore reduces confidence in the conclusions of animal telemetry studies (Halfyard et al. 2017).

Movement ecologists recognize the negative impact of predation and have been developing methods for identification of predation in order to reduce its bias on study results. Early approaches to classify predation were to gather contextual information from temperature sensors to detect predation by endothermic predators (adult salmonids predated by seals identified by an increase in temperature; Bendall \& Moore, 2008) or depth sensors for identification through uncharacteristic swimming patterns (predatory Atlantic cod and saithe swim to significantly greater depths than juvenile salmon; Thorstad et al., 2012). Later, analytical methods emerged that were able to detect predation events of tagged fish using supervised or unsupervised machine learning approaches that identified anomalous movement patterns in the data suggestive of predated individuals. Researchers have previously tagged both prey, juvenile Atlantic salmon (Salmo salar), and predator, striped bass (Morone saxatilis), and used either a cluster analysis (Gibson et al., 2015) or random forest (Daniels et al., 2018) approach to identify predated salmon based on movement metrics. However, in some studies, it may not be logistically feasible to tag non-target species. Moxham et al. (2019) were able to estimate predation events on tagged bonefish using an unsupervised approach that did not include data from predator movements by using clustering methods to differentiate habitat space use and speed metrics of consumed bonefish from those that survived following catch-and-release. Now, recent developments in acoustic tag technology have led to the ability to detect predation events via changes in pH that trigger a change in the unique ID of the tag, referred to as predation tags (Halfyard et al., 2017). Predation tags have been used in studies on yellow perch (Perca flavescens) in the Detroit River (Weinz et al., 2020), bloater (Coregonus hoyi) in the Great Lakes (Kilnard et al., 2019), and Atlantic salmon in the Miramichi River, NB (Daniels et al., 2019).

The random forest and cluster analysis methods described above are classification tools in the machine learning family, a branch of statistics that is used to predict outcomes from training data to in-sample or out-of-sample data (Thessen, 2016). In supervised machine learning (e.g., random forests), models are trained on data sets with independent and dependent variables, the model learns how the variables are related, and the model is then able to predict the dependent variable on future data sets where only the independent variables are provided (Thessen, 2016). Unsupervised methods (e.g., cluster analysis) find patterns among the independent variables to organize data based on underlying similarities in the data ascertained by the algorithm (Olden, 2008). Machine learning approaches are becoming increasingly used in ecology because they are able to model data that are non-linear, contain interacting variables, and have missing values, all of which are common in ecological data sets (Olden, 2008; Thessen, 2016).
Applications of machine learning in ecology include habitat modelling and species distribution (Cutler et al., 2007; Brownscombe et al., 2019), species identification (Tabak et al., 2018), monitoring biodiversity (Cordier et al., 2017), and predicting the conservation status of species (Bland et al., 2014). The ability to make accurate ecological predictions is vital for informed management and decision making (Clark et al., 2001; Olden, 2008; Coreau et al., 2009).

Ideally, a combination of both behavioural and sensor-based methods for determining predation events would do much to increase confidence in fate classification of tagged fish, as tag sensors may sometimes fail and predator behaviours may not always be significantly different than prey behaviour (Weinz et al., 2020). Juvenile Atlantic salmon (smolts) out-migrating from the Stewiacke River, Nova Scotia present an
ideal opportunity to apply this combined approach. Natural mortality of smolts during seaward migration is high, with predation accounting for the majority of mortalities and challenging management efforts, especially those that rely on fish tracking data (LaCroix, 2008; Thorstad et al., 2011; Thorstad et al., 2012). The Stewiacke River is dominated by striped bass, a common predator of Atlantic salmon smolts. Salmon smolt behaviour during migration consists largely of short, linear movements directed downstream with some reversals during out-migration, especially when first entering the estuary, likely as a response to osmotic stress (Halfyard et al., 2012; Halfyard et al., 2013). Except for these occasional path reversals, these movements are distinct from the extensive and tortuous movements with frequent reversals in up and downstream movement exhibited by striped bass (Romine et al., 2014; Gibson et al., 2015; Daniels et al., 2018). These differences form the basis for the behavioural metrics with which we can distinguish live and predated smolts, conducive to supervised machine learning approaches to identifying predation based on movements. However, these machine learning methods have not been adequately tested against objective empirical data with which models can be evaluated and best practices developed for a workflow to identify predation of tagged fish. The introduction of predation sensor tags provides a unique opportunity to compare machine learning methods designed to identify predated Atlantic salmon smolts using models based either solely on behavioural metrics (unsupervised) or informed by data obtained from predation tags (supervised) to determine the best method for fate classification and the value of using predation tags. In this paper, we compare rates of smolt migration survival and predation via modelling of behavioural metrics, tag pH sensors, and a combination of the two.

Materials And Methods

Study system

The Stewiacke River, Nova Scotia is one of fifty rivers within the inner Bay of Fundy (iBoF) Atlantic salmon designatable unit (DFO, 2019a). The iBoF unit is currently classified as Endangered under Canada's Species at Risk Act. Low survival during the estuarine and marine stages of the Atlantic salmon life cycle is preventing population recovery (DFO, 2019b). Reducing adult marine mortality is challenging, therefore, identifying sources of mortality and quantifying predation rates of migrating smolts is vital to informing population management. Smolts migrate down from the Stewiacke River and its tributaries out to the Minas Basin via the Shubenacadie River (Fig. 1). The Stewiacke River is the only river in the iBoF unit that is confirmed as an annual spawning site for striped bass (Bradford et al., 2015). Striped bass congregate in the tidal waters of the Stewiacke River to spawn in May-June (Bradford et al., 2015), the same time and location as the smolt out-migration.

Field methods

Sampling and tagging procedures

Sampling of Atlantic salmon smolts occurred within the Stewiacke River watershed in three years, spanning 2017-2019, during the annual smolt run. Smolts were captured via rotary screw trap just downstream of the Stewiacke River head-of-tide in 2017 and just upstream of the head-of-tide in 2018 (<2
km apart; Fig. 1). In 2019, smolts were captured using a barrier fence on the Pembroke River, $\sim 40 \mathrm{~km}$ upstream of the head-of-tide (Fig. 1). Both types of traps were checked for fish daily. Smolts were transferred from the traps to floating bins in a calm section of the river for holding prior to sampling and surgeries. Fifty smolts were tagged in both 2017 and 2018; 56 smolts were tagged in 2019 (total $\mathrm{N}=156$).

Fish were measured prior to surgery (fork length [mm], mass [g]). Only smolts longer than 12 cm in fork length were chosen for tagging to ensure that the recommended tag-to-body size ratio was not exceeded (<8\% for Atlantic salmon; LaCroix et al., 2004). The average tag-to-body size ratio across all years was 2.95% (range 0.95-5.23\%). Smolts were then anaesthetized in a buffered $10 \mathrm{mg} / \mathrm{L}$ solution of tricaine methanesulfonate (MS-222), until loss of equilibrium and spinal reflexes. A maintenance solution of buffered $5 \mathrm{mg} / \mathrm{L}$ tricaine methanesulfonate was circulated over the gills of the fish during surgeries. V5D180 kHz predation acoustic transmitters ($12.7 \times 5.6 \mathrm{~mm}, 0.68 \mathrm{~g}$ in air; Innovasea Systems Inc., Bedford, Nova Scotia) were surgically inserted through a $\sim 8 \mathrm{~mm}$ incision in the abdomen of smolts following standard procedure (Cooke et al., 2011). Incisions were closed with two single interrupted sutures. Smolts were returned to the floating river-side bins and held until dusk to recover from surgeries before release just downstream from the point of capture. The average duration for the measuring and surgical procedures was $3.27+/-0.74$ mins, and average recovery times were $\sim 7+/-1$ hrs.

Fish collection permits were issued by Fisheries and Oceans Canada (DFO 323354). All fish handling and surgical procedures conformed to standards established by the Canadian Committee on Animal Care, via permits issued by Fisheries and Oceans Canada (Maritimes Region Animal Care Committee Animal Utilization Protocols 17-16, 18-13, 19-10) and by Dalhousie University (University Committee on Lab Animals permit 18-126). Field work was done in conjunction with the Mi'kmaw Conservation Group who were operating under the Aboriginal Fund for Species at Risk.

Description of tags and receiver array

The V5D tags (Innovasea Systems Inc.) have a biopolymer coating that triggers a change in transmitter ID (from an even number to the next odd number) when dissolved by the stomach acids of a predator, thus indicating that a predation event has occurred. It is assumed that only predation events by fishes will be detected using this technology because avian or semi-aquatic predators would more likely remove the tag from the study site (Daniels et al., 2019). The lag-time between tag consumption and the activation of the predation signal is $\sim 5.8 \mathrm{hrs}$ at $20^{\circ} \mathrm{C}$ (S. Smedbol, Innovasea Systems Inc., pers. comm., January 2020) or 35.4 ± 17.7 hrs at a mean temperature of $11.8^{\circ} \mathrm{C}$ (Hanssen, 2020).

Prior to tagging, an array of VR2W-180 kHz acoustic receivers (Innovasea Systems Inc.) was deployed along the migration route from the release/tagging site to the mouth of the Shubenacadie River ($\mathrm{n}=16$ in 2017, $\mathrm{n}=15$ in 2018, $\mathrm{n}=24$ in 2019; Fig. 1). Supplemental detection data were provided by additional receivers (VR2W-180 kHz and HR2; Innovasea Systems Inc.) deployed in the Minas Basin (Fig. 1) and maintained by other researchers including the Ocean Tracking Network. Receivers were recovered in mid to late July of each year.

The V5D tags were programmed to transmit individual-specific coded signals every 12-18 sec for detection on VR2W receivers in all years, and every $1.9-2.1 \mathrm{sec}$ for detection on HR2 receivers in 2018 and 2019. Tags in 2017 had an estimated battery life of 47 days, while tags in 2018 and 2019 had a battery life of approximately 24 days due to the dual programming for both types of receivers.

Data analyses

All analyses were conducted in R 3.6.2 (R Core Team; https://www.R-project.org). Detections occurring before or after the study period were removed as well as detections of tagged fish belonging to other studies. Detections were filtered using the false_detections function from the glatos package (Binder \& Dini, 2012). This function identifies potentially false detections based on the programmed time interval at which the tags emit the ID signal and the recorded time between detections. Detections were then plotted for each individual smolt and visually assessed; detections identified as potentially false by the filtering function that also looked improbable given the location of receivers were removed from the data set. In the case that a dead smolt or evacuated tag dropped within range of receiver (i.e. resulting in a continuous string of detections for extended periods of time), the detection data was truncated to the first detection at that receiver.

Fate classification

Detection data and the V5D pH sensor were used to classify smolts as belonging to one of threes fate groups: successful migrant, mortality, or predation. Smolts were considered to have successfully completed migration if the last recorded detection was either at the mouth of the Shubenacadie River or in the Minas Basin. Smolts were presumed to be a mortality if their last recorded detection occurred upstream of the Shubenacadie River mouth. This pattern of detections could also result from tag ejection, failure to be detected when passing receivers, or predation by an animal that removed the tag from the study site. Predated smolts were identified if the pH sensor triggered a change in tag ID. However, preliminary analysis of detection data revealed that some smolts identified to be successful migrants or mortalities displayed movements more similar to predator behaviour than migratory smolt behaviour (several reversals between up and downstream movement; Fig. 2). Consultation with the tag manufacturer confirmed the possibility of undetected predation events (Type II error). Additionally, a previous validation study has shown V5D predation tags to have only 50\% accurate detection of predation (Hanssen, 2020). Therefore, machine learning methods were also applied to the detection data to classify smolt fate.

Behavioural metrics for the machine learning models were calculated from detection data of both live and predated tag IDs. The metrics were selected based on behaviours that are expected to be significantly different between salmon smolts and a predator such as striped bass. Some of these metrics are adapted from Gibson et al. (2015) and Daniels et al. (2018). The chosen metrics were total number of detections, maximum and minimum number of detections at a single receiver, number of days with detections, time between release and last detection, total distance travelled (river km), mean and maximum upstream speed (m / s) between two consecutive receivers, mean and maximum downstream speed (m / s) between two consecutive receivers, total number of reversals in up and downstream movement, total time on striped bass spawning grounds, total number of detections above the Stewiacke River and Shubenacadie

River confluence, cumulative upstream distance travelled (river km), mean and maximum upstream distance travelled in a single step (river km), migration rate (river km/day), and for 2019, maximum speed in freshwater and tidal water (m / s). Metrics were tested into an unsupervised k-means cluster analysis and a supervised random forest to compare fate classification based solely on the behavioural metrics, classification based on behaviour but also trained on individuals with known fate, and classification from detections and tag sensor only. Due to differences in receiver array set-up between years, models were run separately for each year. Attempts to pool years by truncating detection data to the smallest study area among years (2017 array) resulted in the removal of several individuals from the data set and did not increase model accuracy beyond what was generated from individual year models.

K-means clustering

Clustering is a family of unsupervised machine learning where an algorithm is developed to form groups based on similarities in the data without prior identifiers (Jain, 2010; Thessen, 2016). Therefore, the class of each group is inferred and requires context specific knowledge to be interpreted. Types of clustering can be categorized as hierarchical or partitional (Jain, 2010). Hierarchical methods create nested clusters by either merging data points into clusters (agglomerative) or dividing a single cluster into smaller ones (divisive). Partitional methods, such as k-means clustering, produces all clusters simultaneously. Clusters are formed to maximize similarity within clusters and minimize similarity between clusters. In k-means clustering, the number of clusters K is specified by the user.

K-means clustering was performed using the kmeans function in base R. Behavioural metrics were centered and scaled to remove the effect of variables with larger values. Individual smolts were clustered into three groups ($K=3$) to represent the three fate classes, successful migrant, mortality, and predated. The fviz_clusterfunction was used to visualize cluster results, which plots observations using principal components (Kassambara \& Mundt, 2019). Variable importance for clustering was measured by the rate at which individuals were misclassified if that variable was removed from the data set (misclassification rate). A higher misclassification rate means a variable is more important for assigning an individual to the best cluster. ANOVAs and Tukey tests were used to test if variables were significantly different between clusters. Each group was then assigned a fate based on metric means for each cluster and expected behaviour of out-migrating smolts. Total distance travelled is expected to be longest in successful migrants who reach the Minas Basin and shortest among mortalities that die along the migration route. Total distance should also be long in predated smolts due the distance accumulated by the up and downstream movements made by predators like striped bass. It is expected that total time would follow a similar trend, with predations showing less time than successful migrants due to the ejection of tags through the gastrointestinal tract of predators, and mortalities being detected for the least amount of time. Upstream speed should be fastest among predations and very slow among successful migrants and mortalities. Similarly, upstream distance should be longest in predations and shortest in successful migrants and mortalities because striped bass are expected to make frequent, extensive reversals in swimming direction while smolts are expected to conduct directed, downstream movements.

Random Forest

Random forest is a supervised method of machine learning that builds upon classification trees by fitting many trees to a data set to increase the accuracy of classification (Cutler et al., 2007). Each tree is fit to a bootstrapped sample of the original data set with only a subset of the variables considered at each node. Each observation is then classified by majority vote of all the trees. The random forest algorithm is first trained on a data set where the class of each observation is known to learn the relationship between the response and predictors, before being used to predict classes of new observations.

The randomForest package and function (Liaw \& Wiener, 2002) in R was used to create a model with fate as determined by the tag pH sensor and detection data as the response and the behavioural metrics as explanatory variables. Individuals with uncharacteristic smolt behaviour were removed from the data set prior to training the algorithm. Small sample size prevented cross validation with training and test data sets, therefore, out-of-bag (OOB) error produced from bootstrapping was used to calculate a confusion matrix and model accuracy. The number of trees made in the model was increased from the default 500 until OOB and class error rate fluctuations stabilized. The number of variables tried at each node was chosen based on minimizing OOB error. Due to class imbalance, the classes were assigned weights to penalize misclassification of underrepresented classes, class weights were chosen to minimize and balance class error rates (Table 1). The final model was then run on the individuals removed from the data set to predict their fates using the predict function. Variable importance was described by the average decline in model accuracy after permutations of that variable (mean decrease accuracy) and the average decrease in node purity if that variable was not used (mean decrease Gini). Larger values for both mean decrease accuracy and mean decrease Gini indicate greater variable importance.

Table 1
Random forest model metrics. Number of decision trees made (ntree), number of variables considered at each node (mtry), class weights assigned to mortalities, predations, and successful migrants, respectively (claswt MPS), out-of-bag error rate (OOB error), and class error rate for mortalities, predations, and successful migrants, respectively (class error MPS).

Parameter	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	2019
ntree	1000	1000	500
mtry	3	3	2
classwt c(MPS)	$2,1,10$	$\mathrm{~N} / \mathrm{A}$	$5,2,1$
OOB error	14.71%	5.56%	18.37%
Class error c(MPS)	$0.25,0.04,1.00$	$0.33,0.05,0.00$	$0.43,0.50,0.00$

Results

Predation Tags

The number of tags determined to be predated based on the predation sensor was 24,18 , and 14 in 2017, 2018, and 2019, respectively. In 2019, two of the predations occurred after entry into the Minas Basin and
were therefore classified as successful migrants rather than predations.

K-means Clustering

For each year, smolts were placed into one of three clusters (Fig. 3). The most important variables differed somewhat between years; variables with consistently high misclassification rates included total distance travelled, total time detected, upstream swimming speed, and upstream distance travelled (Figs S1-3). These variables were significantly different (ANOVAs, Tukey tests) between at least two clusters for each year. Therefore, clusters were assigned fate classes based on the differences in these variables and the expected behaviour of live salmon smolts, dead smolts, and predators.

For 2017, cluster $2(\mathrm{n}=9)$ had faster upstream swimming speeds, longer upstream distances travelled, and farther total distance travelled than clusters 1 and 3 (Fig. S4). These trends are more characteristic of striped bass movement than smolt movement, therefore, cluster 2 was determined to represent the predated fate class (Fig. 4). Clusters $1(n=36)$ and $3(n=5)$ were not significantly different from each other (Tukey tests; upstream speed: $t=-0.08, p=0.997$; total distance: $t=-1.16, p=0.476$; upstream distance: $t=-0.33 p=0.941$). Based on the short total distance travelled (Fig. S4), both of these clusters were assigned the fate of mortality. A successful migrant cluster was not identified.

The cluster plot for 2018 revealed some overlap between clusters 2 and 3 when plotted on the first two principal components (Fig. 3), however, they were significantly different from each other when examining variables with the highest misclassification rates (Tukey tests; total distance $t=-10.5, p<0.001$; total time $t=-5.40, p<0.001)$. Cluster $2(n=24)$ had the longest total time and farthest total distance (Fig. S5); therefore, it was assigned the successful migrant class (Fig. 4). In opposition to cluster 2, cluster 3 ($\mathrm{n}=23$) showed the briefest total time and shortest distance (Fig S5), which are metrics indicative of mortality. Cluster $1(n=3)$ had intermediate values between clusters 2 and 3 , and total distance was greater than total time leading to the assignment of the predated fate to this cluster.

In 2019, cluster $3(\mathrm{n}=10)$ had a significantly greater number of reversals (Tukey test; cluster $1 \mathrm{t}=8.77$, $\mathrm{p}<$ 0.001 ; cluster $2 \mathrm{t}=9.75, \mathrm{p}<0.001$), longer time on striped bass spawning grounds (Tukey test; cluster $1 \mathrm{t}=$ 5.29, $\mathrm{p}<0.001$; cluster $2 \mathrm{t}=5.30, \mathrm{p}<0.001$), and longer upstream distance travelled (Tukey test; cluster 1 t $=6.48, p<0.001$; cluster $2 t=7.18, p<0.001$), all of which are behaviours indicative of predation by striped bass (Fig. 4). Cluster $2(\mathrm{n}=34)$ had the longest total distance (Fig. S6) and was therefore, assigned the successful migrant fate. Conversely, cluster $1(n=12)$ had the shortest distance travelled and was identified as the mortality class.

Model accuracy, calculated by the number of known fates within a cluster that matched that cluster's assigned fate (Table 2), was $38.2 \%, 52.8 \%$, and 82.4% for 2017,2018 , and 2019 , respectively (Fig. 5).

Table 2
Number of individuals of each fate (predated P, other mortality M, successful migrant S, successful migrant or mortality suspected of being predated U) as determined by predation tag and detection data in each cluster. Cluster fates, in brackets, assigned based on average behavioural metrics of each cluster.

	2017			2018			2019		
Fate assigned by tag	Cluster 1 (M)	Cluster $2(P)$	Cluster $3 \text { (M) }$	Cluster 1 (P)	$\begin{aligned} & \text { Cluster } \\ & 2(S) \end{aligned}$	Cluster $3 \text { (M) }$	Cluster 1 (M)	$\begin{aligned} & \text { Cluster } \\ & 2 \text { (S) } \end{aligned}$	Cluster 3 (P)
S	2	0	0	0	14	1	0	30	0
M	9	0	0	0	0	3	6	1	2
P	16	4	4	2	1	15	6	0	6
U	10	5	1	1	9	4	0	3	2
total	36	9	5	3	24	23	12	34	10

Random Forest

In-sample prediction accuracy of random forest algorithms ranged between 81.6 and 94.4% between years (Fig. 5). The most important variables in common among all years were time on striped bass spawning grounds, total distance travelled, and time detected (Figs S10-12). Upstream speed, upstream distance, and number of reversals were also important variables in 2017 (Fig. S10). Partial plots revealed that the probability of being classified as a successful migrant increased with increasing cumulative distance travelled, total time detected, and number of days detected (Figs S13-18). The probability of being classified as predated increased with number of reversals, upstream distance travelled, upstream speed, and time spent on striped bass spawning grounds (Fig S19-24). The trends in probability of being classified as a mortality were similar to those for the predated class except for time on striped bass spawning grounds, time detected, and distance travelled in which cases the trends were opposing.

The 2017 random forest algorithm reclassified all suspect individuals (five successful migrants, 11 mortalities) as predated (Fig. 4). In 2018, two of the suspect mortalities were reclassified as successful migrants but these individuals were retained as mortalities in the final fate counts. All other suspect mortalities were reclassified as predated, only two among eight suspect successful migrants were reclassified as predated (Fig. 4). The 2019 algorithm reclassified the two suspect mortalities as predated (Fig. 4) and three of five suspect successful migrants as predated.

Discussion

Here, we build on previous studies to develop a standardized workflow for identifying predated individuals in acoustic telemetry studies (Fig. 6). We used tag sensor technology, unsupervised machine learning, and supervised machine learning to address the issue of "predation bias" in the field of telemetry and showed
that using data collected from tag sensors to train supervised models provides the greatest accuracy for fate classification of tagged fishes (Fig. 5).

When comparing the assigned cluster fates to the known fates of individuals within clusters, as determined through detection data, 2019 was the most accurate year because the majority class in each cluster was the same as the assigned cluster fate (Table 2). However, almost all clusters in all years contained a mixture of individual fates. The mortality cluster (cluster 1) in 2019 contained an even split of mortalities and predations, but the predations in this cluster were identified in freshwater by mobile tracking and therefore the behavioural metrics resembled mortalities more closely than the predations detected in tidal water by stationary receivers. The nature of mobile tracking downriver allows for only a few detections of a given tag in a single location which is insufficient to pick up distinct behaviour. Additionally, the most likely freshwater predators, brown trout (Salmo trutta) or chain pickerel (Esox niger), are relatively stationary species so detection data resembles a dropped tag or dead smolt rather than the active striped bass behaviour we were testing for. The 2018 cluster assignments were also consistent with individual fates, however, two of the clusters were mostly comprised of predations (Table 2). Cluster 1, which was assigned the predated fate, contained only two predated individuals while cluster 3 contained the majority of predated individuals (15) but was assigned a mortality fate based on the behavioural metrics. The 2017 clusters were difficult to distinguish based on behaviour and individual fates due to the high number of predations that year, predated individuals were spread between all three clusters (Table 2). Compared to predation tag data, the cluster analysis reduced predation estimates by 30% in $2017,30 \%$ in 2018, and 3.5% in 2019 (Table 3). Unsupervised clustering methods are capable of fate classification but are less accurate than supervised methods (Fig. 5).

Table 3
Percent of smolts belonging to each fate as determined by the V5D predation tag sensor and detection data, unsupervised cluster analysis (CA), and supervised random forest (RF).

	$\mathbf{2 0 1 7}$		2018				2019		
	Tag sensor	CA	RF	Tag sensor	CA	RF	Tag sensor	CA	RF
S	14%	0%	4%	46%	48%	42%	62.5%	60.7%	57.1%
M	38%	82%	16%	18%	46%	10%	16.1%	21.4%	12.5%
P	48%	18%	80%	36%	6%	48%	21.4%	17.9%	30.4%

Random forest algorithms consistently increased the percent of individuals classified as predated and resulted in a reduction of estimated migration success and mortality classes compared to the numbers obtained from the predation tag sensor and detection data (Table 3). Predation rates increased by 32%, 12%, and 9% in 2017, 2018, and 2019, respectively. Similar to the cluster analysis, the 2019 random forest algorithm did not successfully differentiate the six freshwater predations from the mortalities.

Data from 2017 showed the greatest disparity of fate assignments amongst the three different classification methods (Table 3). In addition to overall model classification accuracy, balancing accuracy
amongst classes is important especially for unbalanced data sets because models will ignore minority classes to achieve greater overall accuracy (Chen et al., 2004; Brownscombe et al., 2020). The small number of successful migrants compared to the number of mortalities and predations in 2017 made it difficult for these individuals to be recognized by both types of machine learning approaches. The few successful migrant smolts were masked in the cluster analysis by the behavioural characteristics of the other fate classes (Table 2), and despite the addition of class weights, the random forest model was still unable to accurately classify successful migrants (in-sample class error $=1.00$). In contrast, the percentage of successful migrants was relatively stable amongst all three methods in 2018 and 2019, while mortality and predation classes had larger disparities, especially for the 2018 cluster analysis (Table 3).

The amount of time a tag is retained within a predator and continues to function can impact a model's ability to accurately classify it as a predation. The retention time of tags in the gastrointestinal tract of predatory fishes depends on several factors including water temperature, predator size, prey size, and tag size (Romine et al., 2014; Halfyard et al., 2017; Daniels et al., 2019; Klinard et al., 2019). The longest known retention time of predation tags is over 149 days observed in an acoustic telemetry study of bloater (Klinard et al., 2019). Additionally, acoustically tagged rainbow trout (Oncorhynchus mykiss) and yellow perch were retained in predatory largemouth bass (Micropterus salmoides) for 1.1-11.5 days (Halfyard et al., 2017). In species more comparable to this study, gut retention time of tagged juvenile chinook salmon (Oncorhynchus tshawytscha) consumed by striped bass ranged from 1.2-2.7 days, with a negative relationship to water temperature (Schultz et al., 2015). Here, tags triggered as predated were detected for an average of 2.9 days (range 0-32.7 days). After this period, tags were either evacuated through the gastrointestinal tract, the predator left the study area, or the tag ceased signal transmissions. The longer a tag is in a predator, the easier it is to identify it as a predation because there will be more detections tracking predator behaviour (Daniels et al., 2018). Predations where the tag is ejected quickly and distinct predator movements are not captured are then more likely to appear as mortalities. This is prevalent in the 2018 cluster analysis where 13 of the 15 predations in the mortality cluster (cluster 3) had retention times shorter than the average 2.9 days, the same is true for 15 of the 16 predations in mortality cluster 1 in 2017.

The supervised random forest was the most accurate of the three fate classification methods (Fig. 5). This method increased predation rates greatly beyond estimates made by the tag pH sensor alone and by the unsupervised cluster analysis, however, total mortality only showed a large increase in 2017 (Table 3). The cluster analysis also only increased estimates of total mortality from tag sensor estimates in 2017. Predation accounted for a majority of all smolt mortalities ($71-83 \%$) under the random forest estimates while predation tag estimates showed predations as accounting for just above half of all mortalities (56$67 \%$). Whether mortality was attributable to predation or unknown causes, total mortality did not differ greatly between methods. Both predation rates and total mortality decreased from 2017 to 2019 for both the random forest and tag sensor methods (Table 3). The variation in migration mortality rates among years could be due to a number of factors including changes in predator and prey abundance, changes in the timing of the striped bass spawning period, or differences in sampling methods.

We emphasize distinguishing predation from other forms of mortality due to the substantial bias it introduces into telemetry study results and interpretation if not addressed. Previous researchers who have used classification algorithms to identify predation of tagged fish found that without these analyses the spatial and temporal movement of 81% of bonefish would have been biased (Moxham et al., 2019), mortality rates of salmon smolts in freshwater compared to the estuary were underestimated by 10% (Daniels et al., 2018), and survival estimates of salmon smolts were overestimated by 2.4-13.6\% (Gibson et al., 2015). Here, even with the use of predation sensor tags, random forest revealed survival estimates were overestimated by $4-10 \%$ due to undetected predation events. Therefore, identifying predations in telemetry studies is vital to management not only to investigate sources of mortality in a population but also to ensure accurate conclusions are drawn about the ecology of the study species and population survival rates.

Here, we show that there is value in using predation tags combined with modelling methods to identify predated individuals (Fig. 6). Data including individuals with known fates that have been determined by detection data and a pH or other tag sensor increases confidence in model results and improves model accuracy. The unsupervised cluster analysis had model accuracies ranging from 38.2-83.4\%, while the supervised random forest was $81.6-94.4 \%$ accurate at in-sample fate classification (Fig. 5). The k-means clustering method was able to classify individuals based solely on behavioural metrics, but it can be difficult to discern which cluster represents which fate group and the decision is likely to be subjective. Assigning fates to clusters was dependent on distinct and predictable predator and prey behaviour with smolts moving downstream and striped bass exhibiting multiple reversals. However, it is possible that smolt mortalities could exhibit upstream movement if they were being carried by the tides and in successful migrants as a response to osmotic stress. The random forest algorithms were trained on smolts of known fate and classified suspect smolts on an individual basis compared to the cluster analysis where smolts were classified by group, leading to a mixture of fates in each cluster.

Differences in model results and prediction accuracies among years highlight the importance of having a large sample size not only for greater power in model predictions but also in an attempt of balancing classes for individuals of known fates. Random forests are among the least sensitive classification algorithms to reductions in sample size (Maxwell et al., 2018; Moghaddam et al., 2020) however, issues of class imbalance and potentially unrepresentative data remain when using small training data sets (Chen et al., 2004; Brownscombe et al., 2020). A recommendation for machine learning in general is to have a training sample size ten times the number of predictor variables, but the minimum recommended sample size for classification algorithms specifically is dependent on the type of data and algorithm (Indira et al., 2010; Maxwell et al., 2018).

Other considerations to optimize model performance are receiver configuration and coverage, which are vital to capturing the distinct behaviour needed to differentiate predator and prey species. The distances between receivers in a river system limits the accuracy of distance travelled and speed calculations because the movement of the individual between receiver detection ranges is unknown. It is therefore not ideal to have large gaps between receivers but the number of receivers available is often limited, especially
for large study areas. The behavioural metrics required for machine learning approaches are contextspecific and must be tailored to the prey and predator species of interest. Deciding on behavioural metrics prior to receiver deployment can aid in array design to ensure receiver coverage is adequate for calculating the necessary metrics. However, it is possible to have multiple or unknown predatory species in a study system, calculating metrics or concentrating receiver coverage for only one species could mask predation by another. Additionally, avian predation typically resembles mortalities in terms of detection data and could therefore not be identified here, other researchers have identified avian predation by searching colonies or nesting sites for evacuated tags (Evans et al., 2012). For tracking salmon smolts specifically, good up and downstream receiver coverage of the river is important for distinguishing predator and prey movement based on smolt migration behaviour. Predation tags are recommended when tracking smolts due to the high predation pressure from various species during out-migration.

A limitation of the modelling approaches used here is that a timestamp for the moment of predation is not provided. A benefit to using predation tags is that detection histories can be truncated to represent only movements of the live prey based on the change in tag ID and estimated signal lag time (Fig. 2). A fine scale or gridded receiver array where the position of the tagged fish can be triangulated allows for more accurate calculations of speed and turning angle, which can be used for behavioural change point analysis. Behavioural change point analysis identifies significant changes in movement parameters across a time series (Gurarie et al., 2009) so not only can it be used for identifying predated individuals based on behavioural anomalies, but it can also provide a time estimate for when the predation occurred. However, triangulation is difficult to achieve in rivers given their size and shape.

K-means clustering underestimated the number of predations and due to type II error, the tag sensor did as well. Random forest modelling and the example workflow we provide, allows one to study predation by using predation tags, therefore removing the need to tag predators, while also accounting for sensor malfunctions. We recommend combining acoustic tag sensors with supervised machine learning approaches to identify mortalities and predations of tagged fishes thereby increasing confidence in telemetry study results.

Declarations

Acknowledgments

We would like to acknowledge Cindy Hawthorne, Jeff Reader, Alana Ransome, George Nau, and other members of Fisheries \& Oceans Canada and the Mi'kmaw Conservation Group for assistance in the field. As well as Darren and Erica Porter for receiver deployment and retrieval in the Minas Basin. We also thank Jake Brownscombe for answering questions about machine learning model tuning and members of the Ocean Tracking Network Data Center for data acquisition and coding help.

Funding

Funding provided by NSERC Strategic Partnership Grant No. 521256. R.J. Lennox was supported by the NFR project LaKES (\#320726).

Conflict of Interest

The authors declare no competing interests.

Ethics Approval

All animal experiments were approved by the Canadian Committee on Animal Care, via permits issued by Fisheries and Oceans Canada (Maritimes Region Animal Care Committee Animal Utilization Protocols 1716, 18-13, 19-10) and by Dalhousie University (University Committee on Lab Animals permit 18-126).

Consent to Participate

Not applicable.

Consent for publication

Not applicable.

Availability of Data and Materials

The data that support the findings of this study will be made publicly available on the Ocean Tracking Network database following publication of the data.

Code Availability

Associated R code for analyses is publicly available on GitHub: https://github.com/danielanotte

Authors' Contributions

DVN performed field work, contributed to concept development, performed analyses, and wrote initial manuscript drafts. RJL contributed to concept development and manuscript drafts. DCH performed field work, developed study design, and contributed to manuscript drafts. GTC contributed to manuscript drafts.

References

1. Bendall B, Moore A. 2008 Temperature-sensing telemetry - possibilities for assessing the feeding ecology of marine mammals and their potential impacts on returning salmonid populations. Fisheries Manag Ecol 15: 339-345.
2. Binder TR, Dini A. 2012. glatos: An R package for the Great Lakes Acoustic Telemetry Observation System. R package version 0.3.0. https://rdrr.io/github/jsta/glatos/man/glatos.html
3. Bland LM, Collen B, Orme CDL, Bielby J. 2014. Predicting the conservation status of data-deficient species. Conserv Biol 29(1): 250-259.
4. Bradford RG, Halfyard EA, Hayman T, LeBlanc P. 2015. Overview of the 2013 Bay of Fundy striped bass biology and general status. DFO Can Sci Advis Sec Res Doc 2015/024. iv + 36 p.
5. Brownscombe JW, Griffin LP, Gagne TO, Haak CR, Cooke SJ, Finn JT, Danylchuk AJ. 2019. Environmental drivers of habitat use by a marine fish on a heterogenous and dynamic reef flat. Mar Biol https://doi.org/10.1007/s00227-018-3464-2
6. Brownscombe JW, Griffin LP, Morley D, Acosta A, Hunt J, Lowerre-Barbieri SK, Adams AJ, Danylchuk AJ, Cooke SJ. 2020. Application of machine learning algorithms to identify cryptic reproductive habitats using diverse information sources. Oecologia 194: 283-298.
7. Buchanan RA, Skalski JR, Brandes PL, Fuller A. 2013. Route use and survival of juvenile chinook salmon through the San Joaquin River Delta. N Am J Fish Manage 33(1): 216-229.
8. Chen C, Liaw A, Breiman L. 2004. Using random forest to learn imbalanced data.
9. Clark JS, Carpenter SR, Barber M, Collins S, Dobson A, Foley JA, Lodge DM, Pascual M, Pielke R, Pizer W, et al. 2001. Ecological forecasts: An emerging Imperative. Science 293(5530): 657-660.
10. Cordier T, Esling P, Lejzerowicz F, Visco J, Ouadahi A, Martins C, Cedhagen T, Pawlowski J. 2017. Predicting the ecological quality status of marine environments from eDNA metabarcoding Data using supervised machine learning. Environ Sci Technol 51(16): 9118-9126.
11. Coreau A, Pinay G, Thompson JD, Cheptou PO, Mermet, L. 2009. The rise of research on futures in ecology: rebalancing scenarios and predictions. Ecol Lett 12: 1277-1286.
12. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 2007. Random forests for classification in ecology. Ecology 88(11): 2783-2792.
13. Daniels J, Chaput G, Carr J. 2018. Estimating consumption rate of Atlantic salmon smolts (Salmo salar) by striped bass (Morone Saxatilis) in the Miramichi River estuary using acoustic telemetry. Can J Fish Aquat Sci 75: 1811-1822.
14. Daniels J, Sutton S, Webber D, Carr J. 2019. Extent of predation bias present in migration survival and timing of Atlantic salmon smolt (Salmo salar) as suggested by a novel acoustic tag. Anim Biotelemetry DOI: 10.1186/s40317-019-0178-2.
15. DFO. 2019a. Atlantic Salmon (Inner Bay of Fundy Population). Retrieved from http://www.dfo-mpo.gc.ca/species-especes/profiles-profils/salmon-atl-saumon-eng.html
16. DFO. 2019b. Atlantic Salmon Marine Threats Research. Retrieved from https://www.bio.gc.ca/science/research-recherche/fisheries-pecheries/managed-gere/smtr-rfmsen.php
17. Evans AF, Hostetter NJ, Roby DD, Collis K, Lyons DE, Sandford BP, Ledgerwood RD, Sebring S. 2012. Systemwide evaluation of avian predation on juvenile salmonids from the Columbia River based on recoveries of passive integrated transponder tags. T Am Fish Soc 141(4): 975-989.
18. Gibson AJF, Halfyard EA, Bradford RG, Stokesbury MJW, Redden AM. 2015. Effects of predation on telemetry-based survival estimates: insights from a study on endangered Atlantic salmon smolts. Can

J Fish Aquat Sci 72: 728-741.
19. Gurarie E, Andrews RD, Laidre KL. 2009. A novel method for identifying behavioural changes in animal movement data. Ecol Lett 12(5): 395-408.
20. Halfyard EA, Gibson AJF, Ruzzante DE, Stokesbury MJW, Whoriskey FG. 2012. Estuarine survival and migratory behaviour of Atlantic salmon Salmo salar smolts. J Fish Biol 81: 1626-1645.
21. Halfyard EA, Gibson AJF, Stokesbury MJW, Ruzzante DE, Whoriskey FG. 2013. Correlates of estuarine survival of Atlantic salmon postsmolts from the Southern Upland, Nova Scotia, Canada. Can J Fish Aquat Sci 70:452-460.
22. Halfyard EA, Webber D, Del Papa J, Leadley T, Kessel ST, Colborne SF, Fisk AT. 2017. Evaluation of an acoustic telemetry transmitter designed to identify predation events. Methods Ecol Evol 8: 10631071.
23. Hanssen EM. 2020. Novel telemetry predation sensors and mechanistic models reveal the tribulations of Atlantic salmon (Salmo salar) smolts migrating through lakes. MSc Thesis, Department of Biological Sciences, University of Bergen, Norway.
24. Indira V, Vasanthakumari R, Sugumaran V. 2010. Minimum sample size determination of vibration signals in machine learning approach to fault diagnosis using power analysis. Expert Systems with Applications 37(12): 8650-8658.
25. Jain AK. 2010. Data clustering: 50 years beyond k-means. Pattern Recogn Lett doi:10.1016/j.patrec.2009.09.011
26. Kassambara A, Mundt F. 2019. factoextra: Extract and Visualise the Results of Multivariate Data Analyses. R package version 1.0.6. https://CRAN.R-project.org/package=factoextra
27. Klinard NV, Matley JK, Fish AT, Johnson TB. 2019. Long-term retention of acoustic telemetry transmitters in temperate predators revealed by predation tags implanted in wild prey fish. J Fish Biol DOI: 10.1111/jfb. 14156.
28. Klinard NV, Matley JK. 2020. Living until proven dead: addressing mortality in acoustic telemetry research. Rev Fish Biol Fisheries 30: 485-499.
29. LaCroix GL. 2008. Influence of origin on migration and survival of Atlantic salmon (Salmo salar) in the Bay of Fundy, Canada. Can J Fish Aquat Sci 65: 2063-2079.
30. Liaw A, Wiener M. 2002. randomForest: Breiman and Cutler's Random Forests for Classification and Regression. R package version 4.6-14. https://cran.rproject.org/web/packages/randomForest/index.html
31. Maxwell AE, Warner TA, Fang F. 2018. Implementation of machine-learning classification in remote sensing an applied review. International Journal of remote sensing 39(9): 2784-2817.
32. Moghaddam DD, Rahmati O, Panahi, M, Tiefenbacher J, Darabi H, Haghizadeh A, Haghighi AT, Nalivan OA, Bui DT. 2020. The effect of sample size on different machine learning models for groundwater potential mapping mountain bedrock aquifers. Catena 187: 104421.
33. Moxam EJ, Cowley PD, Bennett RH, von Brandis RG. 2019. Movement and predation: a catch-andrelease study on the acoustic tracking of bonefish in the Indian Ocean. Environ Biol Fish 102: 365-
381.
34. Olden JD, Lawler JJ, Poff NL. 2008. Machine learning methods without tears: A primer for ecologists. Q Rev Biol 83(2): 171-193.
35. Perry RW, Skalski JR, Brandes PL, Sandstrom PT, Klimley P, Ammann A, MacFarlane B. 2010. Estimating survival and migration route probabilities of juvenile chinook salmon in the SacramentoSan Joaquin River Delta. N Am J Fish Manage 30: 142-156.
36. Romine JG, Perry RW, Johnston SV, Fitzer CW, Pagliughi SW, Blake AR. 2014. Identifying when tagged fishes have been consumed by piscivorous predators: application of multivariate mixture models to movement parameters of telemetered fishes. Anim Biotelemetry DOI: 10.1186/2050-3385-2-3.
37. Schultz AA, Kumagai KK, Bridges BB. 2015. Methods to evaluate gut evacuation rates and predation using acoustic telemetry in the Tracy Fish Collection Facility primary channel. Anim Biotelemetry https://doi.org/10.1186/s40317-015-0034-y
38. Tabak MA, Norouzzadeh MS, Wolfson DW, Sweeny SJ, Vercauteren KC, Snow NP, Halseth JM, Di Salvo PA, Lewis JS, White MD, et al. 2018. Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol Evol 10(4): 585-590.
39. Thessen AE. 2016. Adoption of machine learning techniques in ecology and earth science. One Ecosystem doi: 10.3897/oneeco.1.e8621
40. Thorstad EB, Whoriskey FG, Rickardsen AH, Aarestrup K. 2011. Aquatic nomads: the life and migrations of the Atlantic salmon. In: Aas O, Einum S, Klemetsen A, Skurdal J, editors. Atlantic salmon ecology. Chichester, West Sussex, UK: Wiley-Blackwell. pp 1-33.
41. Thorstad EB, Whoriskey FG, Uglem I, Moore A, Rikardsen AH, Finstad B. 2012. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration. J Fish Biol 81: 500-542.
42. Weinz AA, Matley JK, Klinard NV, Fisk AT, Colborne SF. 2020. Identification of predation events in wild fish using novel acoustic transmitters. Anim Biotelemetry https://doi.org/10.1186/s40317-020-00215x

Figures

Figure 1
Map showing receiver and release site locations for each study year in the Stewiacke River watershed and Minas Basin, Nova Scotia, Canada. Inset shows location of study area (box) in relation to Nova Scotia (NS), New Brunswick (NB), and the Bay of Fundy (BoF).

Figure 2

Plots showing detections of four individual Atlantic salmon (Salmo salar) smolts in 2017 representing typical migration paths of a successful migrant (S), a predated smolt (P), a mortality of unknown cause (M), and a smolt indicated to have successfully completed migration but suspected of being predated (S?). Receiver stations listed in order from release on the Stewiacke River (OOST) to the mouth of the Shubenacadie River (14-16SH). Receivers 07-12SH are upstream of the ST-SH confluence.

Figure 3

Cluster plots for all study years showing k=3 clusters representing the three fate groups (mortality M, successful migrant S, predation P). Cluster colour corresponds to fate, point shape corresponds to cluster number. Small points are individual smolts, large points are cluster centroids. Clusters plotted on the first two principal components (Dim1, Dim2 [\% variance explained]).

Figure 4

Plots showing detections of three individual smolts in 2017, 2018, and 2019. Receiver stations listed in order from release on the Stewiacke River (OOST) or Pembroke River (00PB) to the mouth of the Shubenacadie River (14-16SH; 17-21SH; 22-25SH). Smolt 1262412 was classified as a successful migrant based on tag detections but classified as predated by both k-means clustering and random forest. Smolt 1297052 was classified as a successful migrant based on tag detections and k-means clustering but
classified as predated by random forest. Smolt 1324762 was classified as a mortality based on tag detections but classified as predated by both k-means clustering and random forest.

Figure 5

a) Rate at which V5 predation tags accurately identified predation events in Hanssen (2020) tank study. b) Model accuracies for k-means clustering (CA) and random forest (RF) models by year, mean accuracy shown by black circle.

Step 1: Remove false detections and continuous detections of mortalities

> Step 2: Determine known fates based on detection history and predation tag sensor data

Step 3: Identify behavioural metrics hypothesized to differentiate predator and prey species of interest (speed, space use, etc.)

Step 4: Split data into training and test data sets

Step 5: Run random forest on training data, tune model parameters to minimize classification error

Step 6: Use final model to predict fate classes of test data

Step 7: Check model accuracy
Step 8: Revise fate estimates from Step 2. Truncate detection history of predated individuals prior to further analyses

Figure 6
Diagram of example workflow to identify predated individuals in telemetry data using predation tags and a machine learning framework.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Notteetalsupplementarymaterial.pdf

