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Abstract
Mortality and predation of tagged �shes presents a serious challenge to interpreting results of acoustic
telemetry studies. There is a need for standardized methods to identify predated individuals and reduce
the impacts of “predation bias” on results and conclusions. Here, we use emerging approaches in machine
learning and acoustic tag technology to classify out-migrating Atlantic salmon (Salmo salar) smolts into
different fate categories. We compared three methods of fate classi�cation; predation tag pH sensors and
detection data, unsupervised k-means clustering, and supervised random forest combined with tag pH
sensor data. Random forest models increased predation estimates by 9-32% compared to pH sensor data,
while clustering reduced estimates by 3.5-30%. The greatest changes in estimates were seen in years with
large class imbalance or low model accuracy. Both supervised and unsupervised approaches were able to
classify smolt fate, however, in-sample model accuracy improved when using tag sensor data to train
models, emphasizing the value of incorporating such sensors when studying predator-prone �sh. Sensor
data may not be su�cient to identify predation in isolation due to Type I and Type II error in predation
sensor triggering. Combining sensor data with machine learning approaches should be standard practice
to more accurately classify fate of tagged �sh. 

Highlighted Student Paper
This paper contributes signi�cantly to the �eld of ecology by introducing a standardized work�ow for
analyzing telemetry data which is greatly needed to reduce biases in study results. 

Introduction
A major assumption of animal telemetry studies is that the data collected from tags represent the natural
movements of a live individual of the study species, and not an expelled tag, a mortality, or the
movements of a predator (Gibson at al., 2015; Klinard et al., 2019). However, the violation of this
assumption is often not addressed, despite the negative impact it can have on study results, population
management, and conservation efforts (Klinard & Matley, 2020). In the aquatic environment, predation of
tagged �sh presents a serious challenge to telemetry studies, because acoustic tags can continue to
transmit through the body of the predator for as long as 150 days (Klinard et al., 2019). Therefore, failure
to identify predation events of tagged individuals introduces a “predation bias”, such that survival rates
are in�ated, individual movement patterns (e.g. depth use, rate of travel) are calculated based on both prey
and predator movement, and the locations of areas of high mortality are skewed (Gibson et al., 2015;
Daniels et al., 2019; Klinard et al., 2019). Even when predation events are identi�ed, it is often on a
subjective basis (Perry et al., 2010; Buchanan et al., 2013), dependent on predator and prey behaviour
being signi�cantly different and distinguishable (Romine et al., 2014; Gibson et al., 2015; Moxam et al.,
2019), and di�cult to pinpoint the time and location of mortality, hindering attempts to remove detections
of consumed �sh (Gibson et al., 2015; Daniels et al., 2018). Predation therefore reduces con�dence in the
conclusions of animal telemetry studies (Halfyard et al. 2017).
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Movement ecologists recognize the negative impact of predation and have been developing methods for
identi�cation of predation in order to reduce its bias on study results. Early approaches to classify
predation were to gather contextual information from temperature sensors to detect predation by
endothermic predators (adult salmonids predated by seals identi�ed by an increase in temperature;
Bendall & Moore, 2008) or depth sensors for identi�cation through uncharacteristic swimming patterns
(predatory Atlantic cod and saithe swim to signi�cantly greater depths than juvenile salmon; Thorstad et
al., 2012). Later, analytical methods emerged that were able to detect predation events of tagged �sh
using supervised or unsupervised machine learning approaches that identi�ed anomalous movement
patterns in the data suggestive of predated individuals. Researchers have previously tagged both prey,
juvenile Atlantic salmon (Salmo salar), and predator, striped bass (Morone saxatilis), and used either a
cluster analysis (Gibson et al., 2015) or random forest (Daniels et al., 2018) approach to identify predated
salmon based on movement metrics. However, in some studies, it may not be logistically feasible to tag
non-target species. Moxham et al. (2019) were able to estimate predation events on tagged bone�sh using
an unsupervised approach that did not include data from predator movements by using clustering
methods to differentiate habitat space use and speed metrics of consumed bone�sh from those that
survived following catch-and-release. Now, recent developments in acoustic tag technology have led to the
ability to detect predation events via changes in pH that trigger a change in the unique ID of the tag,
referred to as predation tags (Halfyard et al., 2017). Predation tags have been used in studies on yellow
perch (Perca �avescens) in the Detroit River (Weinz et al., 2020), bloater (Coregonus hoyi) in the Great
Lakes (Kilnard et al., 2019), and Atlantic salmon in the Miramichi River, NB (Daniels et al., 2019).

The random forest and cluster analysis methods described above are classi�cation tools in the machine
learning family, a branch of statistics that is used to predict outcomes from training data to in-sample or
out-of-sample data (Thessen, 2016). In supervised machine learning (e.g., random forests), models are
trained on data sets with independent and dependent variables, the model learns how the variables are
related, and the model is then able to predict the dependent variable on future data sets where only the
independent variables are provided (Thessen, 2016). Unsupervised methods (e.g., cluster analysis) �nd
patterns among the independent variables to organize data based on underlying similarities in the data
ascertained by the algorithm (Olden, 2008). Machine learning approaches are becoming increasingly used
in ecology because they are able to model data that are non-linear, contain interacting variables, and have
missing values, all of which are common in ecological data sets (Olden, 2008; Thessen, 2016).
Applications of machine learning in ecology include habitat modelling and species distribution (Cutler et
al., 2007; Brownscombe et al., 2019), species identi�cation (Tabak et al., 2018), monitoring biodiversity
(Cordier et al., 2017), and predicting the conservation status of species (Bland et al., 2014). The ability to
make accurate ecological predictions is vital for informed management and decision making (Clark et al.,
2001; Olden, 2008; Coreau et al., 2009).

Ideally, a combination of both behavioural and sensor-based methods for determining predation events
would do much to increase con�dence in fate classi�cation of tagged �sh, as tag sensors may sometimes
fail and predator behaviours may not always be signi�cantly different than prey behaviour (Weinz et al.,
2020). Juvenile Atlantic salmon (smolts) out-migrating from the Stewiacke River, Nova Scotia present an
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ideal opportunity to apply this combined approach. Natural mortality of smolts during seaward migration
is high, with predation accounting for the majority of mortalities and challenging management efforts,
especially those that rely on �sh tracking data (LaCroix, 2008; Thorstad et al., 2011; Thorstad et al., 2012).
The Stewiacke River is dominated by striped bass, a common predator of Atlantic salmon smolts. Salmon
smolt behaviour during migration consists largely of short, linear movements directed downstream with
some reversals during out-migration, especially when �rst entering the estuary, likely as a response to
osmotic stress (Halfyard et al., 2012; Halfyard et al., 2013). Except for these occasional path reversals,
these movements are distinct from the extensive and tortuous movements with frequent reversals in up
and downstream movement exhibited by striped bass (Romine et al., 2014; Gibson et al., 2015; Daniels et
al., 2018). These differences form the basis for the behavioural metrics with which we can distinguish live
and predated smolts, conducive to supervised machine learning approaches to identifying predation
based on movements. However, these machine learning methods have not been adequately tested against
objective empirical data with which models can be evaluated and best practices developed for a work�ow
to identify predation of tagged �sh. The introduction of predation sensor tags provides a unique
opportunity to compare machine learning methods designed to identify predated Atlantic salmon smolts
using models based either solely on behavioural metrics (unsupervised) or informed by data obtained
from predation tags (supervised) to determine the best method for fate classi�cation and the value of
using predation tags. In this paper, we compare rates of smolt migration survival and predation via
modelling of behavioural metrics, tag pH sensors, and a combination of the two.

Materials And Methods

Study system
The Stewiacke River, Nova Scotia is one of �fty rivers within the inner Bay of Fundy (iBoF) Atlantic salmon
designatable unit (DFO, 2019a). The iBoF unit is currently classi�ed as Endangered under Canada’s
Species at Risk Act. Low survival during the estuarine and marine stages of the Atlantic salmon life cycle
is preventing population recovery (DFO, 2019b). Reducing adult marine mortality is challenging, therefore,
identifying sources of mortality and quantifying predation rates of migrating smolts is vital to informing
population management. Smolts migrate down from the Stewiacke River and its tributaries out to the
Minas Basin via the Shubenacadie River (Fig. 1). The Stewiacke River is the only river in the iBoF unit that
is con�rmed as an annual spawning site for striped bass (Bradford et al., 2015). Striped bass congregate
in the tidal waters of the Stewiacke River to spawn in May-June (Bradford et al., 2015), the same time and
location as the smolt out-migration.

Field methods

Sampling and tagging procedures
Sampling of Atlantic salmon smolts occurred within the Stewiacke River watershed in three years,
spanning 2017–2019, during the annual smolt run. Smolts were captured via rotary screw trap just
downstream of the Stewiacke River head-of-tide in 2017 and just upstream of the head-of-tide in 2018 (< 2
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km apart; Fig. 1). In 2019, smolts were captured using a barrier fence on the Pembroke River, ~ 40 km
upstream of the head-of-tide (Fig. 1). Both types of traps were checked for �sh daily. Smolts were
transferred from the traps to �oating bins in a calm section of the river for holding prior to sampling and
surgeries. Fifty smolts were tagged in both 2017 and 2018; 56 smolts were tagged in 2019 (total N = 156).

Fish were measured prior to surgery (fork length [mm], mass [g]). Only smolts longer than 12 cm in fork
length were chosen for tagging to ensure that the recommended tag-to-body size ratio was not exceeded
(< 8% for Atlantic salmon; LaCroix et al., 2004). The average tag-to-body size ratio across all years was
2.95% (range 0.95–5.23%). Smolts were then anaesthetized in a buffered 10 mg/L solution of tricaine
methanesulfonate (MS-222), until loss of equilibrium and spinal re�exes. A maintenance solution of
buffered 5 mg/L tricaine methanesulfonate was circulated over the gills of the �sh during surgeries. V5D-
180 kHz predation acoustic transmitters (12.7 x 5.6 mm, 0.68 g in air; Innovasea Systems Inc., Bedford,
Nova Scotia) were surgically inserted through a ~ 8 mm incision in the abdomen of smolts following
standard procedure (Cooke et al., 2011). Incisions were closed with two single interrupted sutures. Smolts
were returned to the �oating river-side bins and held until dusk to recover from surgeries before release
just downstream from the point of capture. The average duration for the measuring and surgical
procedures was 3.27 +/- 0.74 mins, and average recovery times were ~ 7 +/- 1 hrs.

Fish collection permits were issued by Fisheries and Oceans Canada (DFO 323354). All �sh handling and
surgical procedures conformed to standards established by the Canadian Committee on Animal Care, via
permits issued by Fisheries and Oceans Canada (Maritimes Region Animal Care Committee Animal
Utilization Protocols 17 − 16, 18 − 13, 19 − 10) and by Dalhousie University (University Committee on Lab
Animals permit 18–126). Field work was done in conjunction with the Mi’kmaw Conservation Group who
were operating under the Aboriginal Fund for Species at Risk.

Description of tags and receiver array
The V5D tags (Innovasea Systems Inc.) have a biopolymer coating that triggers a change in transmitter ID
(from an even number to the next odd number) when dissolved by the stomach acids of a predator, thus
indicating that a predation event has occurred. It is assumed that only predation events by �shes will be
detected using this technology because avian or semi-aquatic predators would more likely remove the tag
from the study site (Daniels et al., 2019). The lag-time between tag consumption and the activation of the
predation signal is ~ 5.8 hrs at 20°C (S. Smedbol, Innovasea Systems Inc., pers. comm., January 2020) or
35.4 ± 17.7 hrs at a mean temperature of 11.8°C (Hanssen, 2020).

Prior to tagging, an array of VR2W-180 kHz acoustic receivers (Innovasea Systems Inc.) was deployed
along the migration route from the release/tagging site to the mouth of the Shubenacadie River (n = 16 in
2017, n = 15 in 2018, n = 24 in 2019; Fig. 1). Supplemental detection data were provided by additional
receivers (VR2W-180 kHz and HR2; Innovasea Systems Inc.) deployed in the Minas Basin (Fig. 1) and
maintained by other researchers including the Ocean Tracking Network. Receivers were recovered in mid to
late July of each year.



Page 6/24

The V5D tags were programmed to transmit individual-speci�c coded signals every 12–18 sec for
detection on VR2W receivers in all years, and every 1.9–2.1 sec for detection on HR2 receivers in 2018 and
2019. Tags in 2017 had an estimated battery life of 47 days, while tags in 2018 and 2019 had a battery
life of approximately 24 days due to the dual programming for both types of receivers.

Data analyses
All analyses were conducted in R 3.6.2 (R Core Team; https://www.R-project.org). Detections occurring
before or after the study period were removed as well as detections of tagged �sh belonging to other
studies. Detections were �ltered using the false_detections function from the glatos package (Binder &
Dini, 2012). This function identi�es potentially false detections based on the programmed time interval at
which the tags emit the ID signal and the recorded time between detections. Detections were then plotted
for each individual smolt and visually assessed; detections identi�ed as potentially false by the �ltering
function that also looked improbable given the location of receivers were removed from the data set. In
the case that a dead smolt or evacuated tag dropped within range of receiver (i.e. resulting in a continuous
string of detections for extended periods of time), the detection data was truncated to the �rst detection at
that receiver.

Fate classi�cation
Detection data and the V5D pH sensor were used to classify smolts as belonging to one of threes fate
groups: successful migrant, mortality, or predation. Smolts were considered to have successfully
completed migration if the last recorded detection was either at the mouth of the Shubenacadie River or in
the Minas Basin. Smolts were presumed to be a mortality if their last recorded detection occurred
upstream of the Shubenacadie River mouth. This pattern of detections could also result from tag ejection,
failure to be detected when passing receivers, or predation by an animal that removed the tag from the
study site. Predated smolts were identi�ed if the pH sensor triggered a change in tag ID. However,
preliminary analysis of detection data revealed that some smolts identi�ed to be successful migrants or
mortalities displayed movements more similar to predator behaviour than migratory smolt behaviour
(several reversals between up and downstream movement; Fig. 2). Consultation with the tag manufacturer
con�rmed the possibility of undetected predation events (Type II error). Additionally, a previous validation
study has shown V5D predation tags to have only 50% accurate detection of predation (Hanssen, 2020).
Therefore, machine learning methods were also applied to the detection data to classify smolt fate.

Behavioural metrics for the machine learning models were calculated from detection data of both live and
predated tag IDs. The metrics were selected based on behaviours that are expected to be signi�cantly
different between salmon smolts and a predator such as striped bass. Some of these metrics are adapted
from Gibson et al. (2015) and Daniels et al. (2018). The chosen metrics were total number of detections,
maximum and minimum number of detections at a single receiver, number of days with detections, time
between release and last detection, total distance travelled (river km), mean and maximum upstream
speed (m/s) between two consecutive receivers, mean and maximum downstream speed (m/s) between
two consecutive receivers, total number of reversals in up and downstream movement, total time on
striped bass spawning grounds, total number of detections above the Stewiacke River and Shubenacadie
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River con�uence, cumulative upstream distance travelled (river km), mean and maximum upstream
distance travelled in a single step (river km), migration rate (river km/day), and for 2019, maximum speed
in freshwater and tidal water (m/s). Metrics were tested into an unsupervised k-means cluster analysis
and a supervised random forest to compare fate classi�cation based solely on the behavioural metrics,
classi�cation based on behaviour but also trained on individuals with known fate, and classi�cation from
detections and tag sensor only. Due to differences in receiver array set-up between years, models were run
separately for each year. Attempts to pool years by truncating detection data to the smallest study area
among years (2017 array) resulted in the removal of several individuals from the data set and did not
increase model accuracy beyond what was generated from individual year models.

K-means clustering
Clustering is a family of unsupervised machine learning where an algorithm is developed to form groups
based on similarities in the data without prior identi�ers (Jain, 2010; Thessen, 2016). Therefore, the class
of each group is inferred and requires context speci�c knowledge to be interpreted. Types of clustering can
be categorized as hierarchical or partitional (Jain, 2010). Hierarchical methods create nested clusters by
either merging data points into clusters (agglomerative) or dividing a single cluster into smaller ones
(divisive). Partitional methods, such as k-means clustering, produces all clusters simultaneously. Clusters
are formed to maximize similarity within clusters and minimize similarity between clusters. In k-means
clustering, the number of clusters K is speci�ed by the user.

K-means clustering was performed using the kmeans function in base R. Behavioural metrics were
centered and scaled to remove the effect of variables with larger values. Individual smolts were clustered
into three groups (K = 3) to represent the three fate classes, successful migrant, mortality, and predated.
The fviz_cluster function was used to visualize cluster results, which plots observations using principal
components (Kassambara & Mundt, 2019). Variable importance for clustering was measured by the rate
at which individuals were misclassi�ed if that variable was removed from the data set (misclassi�cation
rate). A higher misclassi�cation rate means a variable is more important for assigning an individual to the
best cluster. ANOVAs and Tukey tests were used to test if variables were signi�cantly different between
clusters. Each group was then assigned a fate based on metric means for each cluster and expected
behaviour of out-migrating smolts. Total distance travelled is expected to be longest in successful
migrants who reach the Minas Basin and shortest among mortalities that die along the migration route.
Total distance should also be long in predated smolts due the distance accumulated by the up and
downstream movements made by predators like striped bass. It is expected that total time would follow a
similar trend, with predations showing less time than successful migrants due to the ejection of tags
through the gastrointestinal tract of predators, and mortalities being detected for the least amount of time.
Upstream speed should be fastest among predations and very slow among successful migrants and
mortalities. Similarly, upstream distance should be longest in predations and shortest in successful
migrants and mortalities because striped bass are expected to make frequent, extensive reversals in
swimming direction while smolts are expected to conduct directed, downstream movements.

Random Forest
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Random forest is a supervised method of machine learning that builds upon classi�cation trees by �tting
many trees to a data set to increase the accuracy of classi�cation (Cutler et al., 2007). Each tree is �t to a
bootstrapped sample of the original data set with only a subset of the variables considered at each node.
Each observation is then classi�ed by majority vote of all the trees. The random forest algorithm is �rst
trained on a data set where the class of each observation is known to learn the relationship between the
response and predictors, before being used to predict classes of new observations.

The randomForest package and function (Liaw & Wiener, 2002) in R was used to create a model with fate
as determined by the tag pH sensor and detection data as the response and the behavioural metrics as
explanatory variables. Individuals with uncharacteristic smolt behaviour were removed from the data set
prior to training the algorithm. Small sample size prevented cross validation with training and test data
sets, therefore, out-of-bag (OOB) error produced from bootstrapping was used to calculate a confusion
matrix and model accuracy. The number of trees made in the model was increased from the default 500
until OOB and class error rate �uctuations stabilized. The number of variables tried at each node was
chosen based on minimizing OOB error. Due to class imbalance, the classes were assigned weights to
penalize misclassi�cation of underrepresented classes, class weights were chosen to minimize and
balance class error rates (Table 1). The �nal model was then run on the individuals removed from the data
set to predict their fates using the predict function. Variable importance was described by the average
decline in model accuracy after permutations of that variable (mean decrease accuracy) and the average
decrease in node purity if that variable was not used (mean decrease Gini). Larger values for both mean
decrease accuracy and mean decrease Gini indicate greater variable importance.

Table 1
Random forest model metrics. Number of decision trees made (ntree), number

of variables considered at each node (mtry), class weights assigned to
mortalities, predations, and successful migrants, respectively (claswt MPS),

out-of-bag error rate (OOB error), and class error rate for mortalities,
predations, and successful migrants, respectively (class error MPS).

Parameter 2017 2018 2019

ntree 1000 1000 500

mtry 3 3 2

classwt c(MPS) 2, 1, 10 N/A 5, 2, 1

OOB error 14.71% 5.56% 18.37%

Class error c(MPS) 0.25, 0.04, 1.00 0.33, 0.05, 0.00 0.43, 0.50, 0.00

Results
Predation Tags

The number of tags determined to be predated based on the predation sensor was 24, 18, and 14 in 2017,
2018, and 2019, respectively. In 2019, two of the predations occurred after entry into the Minas Basin and
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were therefore classi�ed as successful migrants rather than predations.

K-means Clustering

For each year, smolts were placed into one of three clusters (Fig. 3). The most important variables differed
somewhat between years; variables with consistently high misclassi�cation rates included total distance
travelled, total time detected, upstream swimming speed, and upstream distance travelled (Figs S1-3).
These variables were signi�cantly different (ANOVAs, Tukey tests) between at least two clusters for each
year. Therefore, clusters were assigned fate classes based on the differences in these variables and the
expected behaviour of live salmon smolts, dead smolts, and predators.

For 2017, cluster 2 (n = 9) had faster upstream swimming speeds, longer upstream distances travelled,
and farther total distance travelled than clusters 1 and 3 (Fig. S4). These trends are more characteristic of
striped bass movement than smolt movement, therefore, cluster 2 was determined to represent the
predated fate class (Fig. 4). Clusters 1 (n = 36) and 3 (n = 5) were not signi�cantly different from each
other (Tukey tests; upstream speed: t=-0.08, p = 0.997; total distance: t=-1.16, p = 0.476; upstream distance:
t=-0.33 p = 0.941). Based on the short total distance travelled (Fig. S4), both of these clusters were
assigned the fate of mortality. A successful migrant cluster was not identi�ed.

The cluster plot for 2018 revealed some overlap between clusters 2 and 3 when plotted on the �rst two
principal components (Fig. 3), however, they were signi�cantly different from each other when examining
variables with the highest misclassi�cation rates (Tukey tests; total distance t=-10.5, p < 0.001; total time
t=-5.40, p < 0.001). Cluster 2 (n = 24) had the longest total time and farthest total distance (Fig. S5);
therefore, it was assigned the successful migrant class (Fig. 4). In opposition to cluster 2, cluster 3 (n = 23)
showed the briefest total time and shortest distance (Fig S5), which are metrics indicative of mortality.
Cluster 1 (n = 3) had intermediate values between clusters 2 and 3, and total distance was greater than
total time leading to the assignment of the predated fate to this cluster.

In 2019, cluster 3 (n = 10) had a signi�cantly greater number of reversals (Tukey test; cluster 1 t = 8.77, p < 
0.001; cluster 2 t = 9.75, p < 0.001), longer time on striped bass spawning grounds (Tukey test; cluster 1 t = 
5.29, p < 0.001; cluster 2 t = 5.30, p < 0.001), and longer upstream distance travelled (Tukey test; cluster 1 t 
= 6.48, p < 0.001; cluster 2 t = 7.18, p < 0.001), all of which are behaviours indicative of predation by striped
bass (Fig. 4). Cluster 2 (n = 34) had the longest total distance (Fig. S6) and was therefore, assigned the
successful migrant fate. Conversely, cluster 1 (n = 12) had the shortest distance travelled and was
identi�ed as the mortality class.

Model accuracy, calculated by the number of known fates within a cluster that matched that cluster’s
assigned fate (Table 2), was 38.2%, 52.8%, and 82.4% for 2017, 2018, and 2019, respectively (Fig. 5).
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Table 2
Number of individuals of each fate (predated P, other mortality M, successful migrant S, successful

migrant or mortality suspected of being predated U) as determined by predation tag and detection data in
each cluster. Cluster fates, in brackets, assigned based on average behavioural metrics of each cluster.

  2017 2018 2019

Fate
assigned
by tag

Cluster
1 (M)

Cluster
2 (P)

Cluster
3 (M)

Cluster
1 (P)

Cluster
2 (S)

Cluster
3 (M)

Cluster
1 (M)

Cluster
2 (S)

Cluster
3 (P)

S 2 0 0 0 14 1 0 30 0

M 9 0 0 0 0 3 6 1 2

P 16 4 4 2 1 15 6 0 6

U 10 5 1 1 9 4 0 3 2

total 36 9 5 3 24 23 12 34 10

Random Forest

In-sample prediction accuracy of random forest algorithms ranged between 81.6 and 94.4% between
years (Fig. 5). The most important variables in common among all years were time on striped bass
spawning grounds, total distance travelled, and time detected (Figs S10-12). Upstream speed, upstream
distance, and number of reversals were also important variables in 2017 (Fig. S10). Partial plots revealed
that the probability of being classi�ed as a successful migrant increased with increasing cumulative
distance travelled, total time detected, and number of days detected (Figs S13-18). The probability of
being classi�ed as predated increased with number of reversals, upstream distance travelled, upstream
speed, and time spent on striped bass spawning grounds (Fig S19-24). The trends in probability of being
classi�ed as a mortality were similar to those for the predated class except for time on striped bass
spawning grounds, time detected, and distance travelled in which cases the trends were opposing.

The 2017 random forest algorithm reclassi�ed all suspect individuals (�ve successful migrants, 11
mortalities) as predated (Fig. 4). In 2018, two of the suspect mortalities were reclassi�ed as successful
migrants but these individuals were retained as mortalities in the �nal fate counts. All other suspect
mortalities were reclassi�ed as predated, only two among eight suspect successful migrants were
reclassi�ed as predated (Fig. 4). The 2019 algorithm reclassi�ed the two suspect mortalities as predated
(Fig. 4) and three of �ve suspect successful migrants as predated.

Discussion
Here, we build on previous studies to develop a standardized work�ow for identifying predated individuals
in acoustic telemetry studies (Fig. 6). We used tag sensor technology, unsupervised machine learning, and
supervised machine learning to address the issue of “predation bias” in the �eld of telemetry and showed
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that using data collected from tag sensors to train supervised models provides the greatest accuracy for
fate classi�cation of tagged �shes (Fig. 5).

When comparing the assigned cluster fates to the known fates of individuals within clusters, as
determined through detection data, 2019 was the most accurate year because the majority class in each
cluster was the same as the assigned cluster fate (Table 2). However, almost all clusters in all years
contained a mixture of individual fates. The mortality cluster (cluster 1) in 2019 contained an even split of
mortalities and predations, but the predations in this cluster were identi�ed in freshwater by mobile
tracking and therefore the behavioural metrics resembled mortalities more closely than the predations
detected in tidal water by stationary receivers. The nature of mobile tracking downriver allows for only a
few detections of a given tag in a single location which is insu�cient to pick up distinct behaviour.
Additionally, the most likely freshwater predators, brown trout (Salmo trutta) or chain pickerel (Esox niger),
are relatively stationary species so detection data resembles a dropped tag or dead smolt rather than the
active striped bass behaviour we were testing for. The 2018 cluster assignments were also consistent with
individual fates, however, two of the clusters were mostly comprised of predations (Table 2). Cluster 1,
which was assigned the predated fate, contained only two predated individuals while cluster 3 contained
the majority of predated individuals (15) but was assigned a mortality fate based on the behavioural
metrics. The 2017 clusters were di�cult to distinguish based on behaviour and individual fates due to the
high number of predations that year, predated individuals were spread between all three clusters (Table 2).
Compared to predation tag data, the cluster analysis reduced predation estimates by 30% in 2017, 30% in
2018, and 3.5% in 2019 (Table 3). Unsupervised clustering methods are capable of fate classi�cation but
are less accurate than supervised methods (Fig. 5).

Table 3
Percent of smolts belonging to each fate as determined by the V5D predation tag sensor and

detection data, unsupervised cluster analysis (CA), and supervised random forest (RF).

  2017 2018 2019

Tag sensor CA RF Tag sensor CA RF Tag sensor CA RF

S 14% 0% 4% 46% 48% 42% 62.5% 60.7% 57.1%

M 38% 82% 16% 18% 46% 10% 16.1% 21.4% 12.5%

P 48% 18% 80% 36% 6% 48% 21.4% 17.9% 30.4%

Random forest algorithms consistently increased the percent of individuals classi�ed as predated and
resulted in a reduction of estimated migration success and mortality classes compared to the numbers
obtained from the predation tag sensor and detection data (Table 3). Predation rates increased by 32%,
12%, and 9% in 2017, 2018, and 2019, respectively. Similar to the cluster analysis, the 2019 random forest
algorithm did not successfully differentiate the six freshwater predations from the mortalities.

Data from 2017 showed the greatest disparity of fate assignments amongst the three different
classi�cation methods (Table 3). In addition to overall model classi�cation accuracy, balancing accuracy
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amongst classes is important especially for unbalanced data sets because models will ignore minority
classes to achieve greater overall accuracy (Chen et al., 2004; Brownscombe et al., 2020). The small
number of successful migrants compared to the number of mortalities and predations in 2017 made it
di�cult for these individuals to be recognized by both types of machine learning approaches. The few
successful migrant smolts were masked in the cluster analysis by the behavioural characteristics of the
other fate classes (Table 2), and despite the addition of class weights, the random forest model was still
unable to accurately classify successful migrants (in-sample class error = 1.00). In contrast, the
percentage of successful migrants was relatively stable amongst all three methods in 2018 and 2019,
while mortality and predation classes had larger disparities, especially for the 2018 cluster analysis
(Table 3).

The amount of time a tag is retained within a predator and continues to function can impact a model’s
ability to accurately classify it as a predation. The retention time of tags in the gastrointestinal tract of
predatory �shes depends on several factors including water temperature, predator size, prey size, and tag
size (Romine et al., 2014; Halfyard et al., 2017; Daniels et al., 2019; Klinard et al., 2019). The longest
known retention time of predation tags is over 149 days observed in an acoustic telemetry study of bloater
(Klinard et al., 2019). Additionally, acoustically tagged rainbow trout (Oncorhynchus mykiss) and yellow
perch were retained in predatory largemouth bass (Micropterus salmoides) for 1.1 − 11.5 days (Halfyard et
al., 2017). In species more comparable to this study, gut retention time of tagged juvenile chinook salmon
(Oncorhynchus tshawytscha) consumed by striped bass ranged from 1.2–2.7 days, with a negative
relationship to water temperature (Schultz et al., 2015). Here, tags triggered as predated were detected for
an average of 2.9 days (range 0-32.7 days). After this period, tags were either evacuated through the
gastrointestinal tract, the predator left the study area, or the tag ceased signal transmissions. The longer a
tag is in a predator, the easier it is to identify it as a predation because there will be more detections
tracking predator behaviour (Daniels et al., 2018). Predations where the tag is ejected quickly and distinct
predator movements are not captured are then more likely to appear as mortalities. This is prevalent in the
2018 cluster analysis where 13 of the 15 predations in the mortality cluster (cluster 3) had retention times
shorter than the average 2.9 days, the same is true for 15 of the 16 predations in mortality cluster 1 in
2017.

The supervised random forest was the most accurate of the three fate classi�cation methods (Fig. 5).
This method increased predation rates greatly beyond estimates made by the tag pH sensor alone and by
the unsupervised cluster analysis, however, total mortality only showed a large increase in 2017 (Table 3).
The cluster analysis also only increased estimates of total mortality from tag sensor estimates in 2017.
Predation accounted for a majority of all smolt mortalities (71–83%) under the random forest estimates
while predation tag estimates showed predations as accounting for just above half of all mortalities (56–
67%). Whether mortality was attributable to predation or unknown causes, total mortality did not differ
greatly between methods. Both predation rates and total mortality decreased from 2017 to 2019 for both
the random forest and tag sensor methods (Table 3). The variation in migration mortality rates among
years could be due to a number of factors including changes in predator and prey abundance, changes in
the timing of the striped bass spawning period, or differences in sampling methods.
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We emphasize distinguishing predation from other forms of mortality due to the substantial bias it
introduces into telemetry study results and interpretation if not addressed. Previous researchers who have
used classi�cation algorithms to identify predation of tagged �sh found that without these analyses the
spatial and temporal movement of 81% of bone�sh would have been biased (Moxham et al., 2019),
mortality rates of salmon smolts in freshwater compared to the estuary were underestimated by 10%
(Daniels et al., 2018), and survival estimates of salmon smolts were overestimated by 2.4–13.6% (Gibson
et al., 2015). Here, even with the use of predation sensor tags, random forest revealed survival estimates
were overestimated by 4–10% due to undetected predation events. Therefore, identifying predations in
telemetry studies is vital to management not only to investigate sources of mortality in a population but
also to ensure accurate conclusions are drawn about the ecology of the study species and population
survival rates.

Here, we show that there is value in using predation tags combined with modelling methods to identify
predated individuals (Fig. 6). Data including individuals with known fates that have been determined by
detection data and a pH or other tag sensor increases con�dence in model results and improves model
accuracy. The unsupervised cluster analysis had model accuracies ranging from 38.2–83.4%, while the
supervised random forest was 81.6–94.4% accurate at in-sample fate classi�cation (Fig. 5). The k-means
clustering method was able to classify individuals based solely on behavioural metrics, but it can be
di�cult to discern which cluster represents which fate group and the decision is likely to be subjective.
Assigning fates to clusters was dependent on distinct and predictable predator and prey behaviour with
smolts moving downstream and striped bass exhibiting multiple reversals. However, it is possible that
smolt mortalities could exhibit upstream movement if they were being carried by the tides and in
successful migrants as a response to osmotic stress. The random forest algorithms were trained on
smolts of known fate and classi�ed suspect smolts on an individual basis compared to the cluster
analysis where smolts were classi�ed by group, leading to a mixture of fates in each cluster.

Differences in model results and prediction accuracies among years highlight the importance of having a
large sample size not only for greater power in model predictions but also in an attempt of balancing
classes for individuals of known fates. Random forests are among the least sensitive classi�cation
algorithms to reductions in sample size (Maxwell et al., 2018; Moghaddam et al., 2020) however, issues of
class imbalance and potentially unrepresentative data remain when using small training data sets (Chen
et al., 2004; Brownscombe et al., 2020). A recommendation for machine learning in general is to have a
training sample size ten times the number of predictor variables, but the minimum recommended sample
size for classi�cation algorithms speci�cally is dependent on the type of data and algorithm (Indira et al.,
2010; Maxwell et al., 2018).

Other considerations to optimize model performance are receiver con�guration and coverage, which are
vital to capturing the distinct behaviour needed to differentiate predator and prey species. The distances
between receivers in a river system limits the accuracy of distance travelled and speed calculations
because the movement of the individual between receiver detection ranges is unknown. It is therefore not
ideal to have large gaps between receivers but the number of receivers available is often limited, especially
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for large study areas. The behavioural metrics required for machine learning approaches are context-
speci�c and must be tailored to the prey and predator species of interest. Deciding on behavioural metrics
prior to receiver deployment can aid in array design to ensure receiver coverage is adequate for calculating
the necessary metrics. However, it is possible to have multiple or unknown predatory species in a study
system, calculating metrics or concentrating receiver coverage for only one species could mask predation
by another. Additionally, avian predation typically resembles mortalities in terms of detection data and
could therefore not be identi�ed here, other researchers have identi�ed avian predation by searching
colonies or nesting sites for evacuated tags (Evans et al., 2012). For tracking salmon smolts speci�cally,
good up and downstream receiver coverage of the river is important for distinguishing predator and prey
movement based on smolt migration behaviour. Predation tags are recommended when tracking smolts
due to the high predation pressure from various species during out-migration.

A limitation of the modelling approaches used here is that a timestamp for the moment of predation is not
provided. A bene�t to using predation tags is that detection histories can be truncated to represent only
movements of the live prey based on the change in tag ID and estimated signal lag time (Fig. 2). A �ne
scale or gridded receiver array where the position of the tagged �sh can be triangulated allows for more
accurate calculations of speed and turning angle, which can be used for behavioural change point
analysis. Behavioural change point analysis identi�es signi�cant changes in movement parameters
across a time series (Gurarie et al., 2009) so not only can it be used for identifying predated individuals
based on behavioural anomalies, but it can also provide a time estimate for when the predation occurred.
However, triangulation is di�cult to achieve in rivers given their size and shape.

K-means clustering underestimated the number of predations and due to type II error, the tag sensor did as
well. Random forest modelling and the example work�ow we provide, allows one to study predation by
using predation tags, therefore removing the need to tag predators, while also accounting for sensor
malfunctions. We recommend combining acoustic tag sensors with supervised machine learning
approaches to identify mortalities and predations of tagged �shes thereby increasing con�dence in
telemetry study results.
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Figure 1

Map showing receiver and release site locations for each study year in the Stewiacke River watershed and
Minas Basin, Nova Scotia, Canada. Inset shows location of study area (box) in relation to Nova Scotia
(NS), New Brunswick (NB), and the Bay of Fundy (BoF).
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Figure 2

Plots showing detections of four individual Atlantic salmon (Salmo salar) smolts in 2017 representing
typical migration paths of a successful migrant (S), a predated smolt (P), a mortality of unknown cause
(M), and a smolt indicated to have successfully completed migration but suspected of being predated
(S?). Receiver stations listed in order from release on the Stewiacke River (00ST) to the mouth of the
Shubenacadie River (14-16SH). Receivers 07-12SH are upstream of the ST-SH con�uence.
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Figure 3

Cluster plots for all study years showing k=3 clusters representing the three fate groups (mortality M,
successful migrant S, predation P). Cluster colour corresponds to fate, point shape corresponds to cluster
number. Small points are individual smolts, large points are cluster centroids. Clusters plotted on the �rst
two principal components (Dim1, Dim2 [% variance explained]).
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Figure 4

Plots showing detections of three individual smolts in 2017, 2018, and 2019. Receiver stations listed in
order from release on the Stewiacke River (00ST) or Pembroke River (00PB) to the mouth of the
Shubenacadie River (14-16SH; 17-21SH; 22-25SH). Smolt 1262412 was classi�ed as a successful migrant
based on tag detections but classi�ed as predated by both k-means clustering and random forest. Smolt
1297052 was classi�ed as a successful migrant based on tag detections and k-means clustering but
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classi�ed as predated by random forest. Smolt 1324762 was classi�ed as a mortality based on tag
detections but classi�ed as predated by both k-means clustering and random forest.

Figure 5

a) Rate at which V5 predation tags accurately identi�ed predation events in Hanssen (2020) tank study. b)
Model accuracies for k-means clustering (CA) and random forest (RF) models by year, mean accuracy
shown by black circle.
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Figure 6

Diagram of example work�ow to identify predated individuals in telemetry data using predation tags and
a machine learning framework.
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