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Abstract We introduce a new state called photon-added-and-subtracted two modes pair coherent
state (PAASTMPCS) by simultaneously adding and subtracting photons to the different modes
of a pair coherent state. Its nonclassical and non-Gaussian properties are strengthened via the
negative values of its Wigner function as the numbers of adding and subtracting photons are in-
creased. It indicates that the PAASTMPCS is an entangled state. When increasing the numbers of
photon-added and photon-subtracted to a pair coherent state, the degree of entanglement in the
PAASTMPCS is enhanced compared with the original pair coherent state. By using a PAASTM-
PCS as a non-Gaussian entangled resource, the quantum teleportation processes are studied in
detail. It is shown that the number sum and phase difference measurements protocol is more
appropriate than the orthogonal quadrature components measurements protocol in the quantum
teleportation process of a coherent state.

Keywords Photon-added and photon-subtracted states; Pair coherent state; Wigner function;
Entanglement; Quantum teleportation
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1 Introduction

The addition and subtraction of photons to the classical states such as a coherent state [1] or a
thermal state [2] are the normal operations that can transform to a nonclassical one [3–5]. Moreover,
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these effects to the nonclassical states such as pair coherent state [6,7] or two-mode squeezing state
[8] may increase the nonclassicality of the proposed states [9–12]. The schemes of generating the
classes of photon-added and photon-subtracted states were proposed [13–15] and the experimental
setups to generate these states in the laboratory were performed [16–18]. In continuous variables,
the photon-added and photon-subtracted actions to the multi-mode Gaussian and non-Gaussian
states can enhance their nonclassicality, especially their entanglement property [19–23]. Besides,
the non-Gaussian entangled states can provide the potential applications in quantum information
as non-Gaussian entangled resources to perform the quantum tasks such as quantum teleportation
[24–26], quantum steering [27], and quantum key distribution [28,29].

In the two modes of continuous variables systems, the adding and subtracting photons to the
Gaussian states can cause these states to become non-Gaussian states. For example, the Gaus-
sian state that is most interested in is the two-mode squeezing state [8]. The photons added and
subtracted to a two-mode squeezing state have introduced many non-Gaussian states [30–33], in
which the nonclassical and the entanglement properties have been investigated. These non-Gaussian
states can be considered to perform many quantum tasks such as improvement of the quantum
optical interferometry via the photon-added two-mode squeezed vacuum states [31], enhancement
of the quantum entanglement and quantum teleportation by the multiple-photon subtraction and
addition to a two-mode squeezing state [26,32].

Along with continuous variables systems, the pair coherent state is a non-Gaussian state, in
which its nonclassical properties were studied [7,34,35]. Moreover, the schemes for generating this
state were proposed [6,36–38]. The pair coherent state is an entangled state, and the quantita-
tive measures of entanglement, quantum teleportation, and quantum key distribution by using
this state were also studied [39–43]. The photon addition to two modes of pair coherent state
as photon-added pair coherent state [44] and generalized photon-added pair coherent state [45]
were introduced. Furthermore, the photon-added and photon-subtracted pair coherent state [46],
in which the added or subtracted photons only take place in one mode of the pair coherent state
was also introduced. In these states, the nonclassical and the entanglement properties of them were
studied in detail. Because the pair coherent state is a non-Gaussian state, the proposed states by
adding or subtracting photons to this state are non-Gaussian states as well, and the non-Gaussian
characteristics of them can be strengthened.

In this paper, so as to extend simultaneously adding and subtracting photons to both modes
of a pair coherent state, we introduce a new state called photon-added-and-subtracted two modes
pair coherent state (PAASTMPCS) in Section 2. We show the nonclassical and non-Gaussian char-
acteristics of the new state by examining the Wigner function in Section 3 and the entanglement
degree by using the linear entropy of the PAASTMPCS in Section 4. We use the PAASTMPCS as
a non-Gaussian resource for the quantum teleportation processes by using the orthogonal quadra-
ture components measurements protocol in Section 5, and the number sum and phase difference
measurements protocol in Section 6. Finally, the main results of the paper are summarized in the
conclusions.

2 Photon-added-and-subtracted two modes pair coherent state

The pair coherent state (PCS) |ξ, q〉ab is a state of the two-mode radiation field [7], which is the

eigenstate of both the boson annihilation operators âb̂ and the charge operator Q̂ = b̂†b̂ − â†â as
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follows

âb̂|ξ, q〉ab = ξ|ξ, q〉ab, (1)

Q̂|ξ, q〉ab = q|ξ, q〉ab, (2)

where ξ = |ξ| eiφ is a complex number with φ real, q is an integer referred to the difference in the
number of photons between modes a and b. In case q ≥ 0, in the term of Fock states, |ξ, q〉ab is
written as

|ξ, q〉ab =

( ∞∑
m=0

|ξ|2m

m!(m+ q)!

)−1/2 ∞∑
n=0

ξn

[n!(n+ q)!]
1/2
|n, n+ q〉ab, (3)

|n, n+ q〉ab is a two-mode Fock state.

Now, we introduce a new state called photon-added-and-subtracted two modes pair coherent
state (PAASTMPCS) by acting k times of creation operator â† on mode a and l times with l ≤ q
of annihilation operator b̂ on mode b of a PCS |ξ, q〉ab as

|ξ, q; k, l〉ab = Bq;k,l(ξ)â
†k b̂l |ξ, q〉ab , (4)

where k and l are non-negative integers and the normalized factor Bq;k,l(ξ) is determined by

Bq;k,l(ξ)
−2 =

∞∑
m=0

|ξ|2m (m+ k)!

(m!)
2

(m+ q − l)!
. (5)

It should be noted that, the PAASTMPCS in the form of |ξ, q; k, l〉ab in Eqs. (4) and (5) does not
explicitly depend on q or on l but it only depends on the difference between q and l. Therefore,
we set h = q− l, the PAASTMPCS is written as |ξ, k, h〉ab in the term of two-mode Fock states in
the form

|ξ, q; k, l〉ab ≡ |ξ, k, h〉ab =

∞∑
n=0

Cn;k,h(ξ)|n+ k, n+ h〉ab, (6)

where

Cn;k,h(ξ) =

( ∞∑
m=0

|ξ|2m (m+ k)!

(m!)
2

(m+ h)!

)−1/2
ξn

√
(n+ k)!

(n!)
2

(n+ h)!
. (7)

When k = 0 and h = q, or k = l = 0, the PAASTMPCS is reduced to the PCS [6]. In what follows,
we will use PAASTMPCS in the form of |ξ, k, h〉ab in Eqs. (6) and (7) for calculation.
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3 Wigner function

In quantum optics, a Wigner function is used to describe a quantum state in the phase space.
In some states, their Wigner function can take the negative values. Via the negative values of its
Wigner function, it confirms a certain state is a nonclassical and non-Gaussian state [20,47,48]. In
the PAASTMPCS, the Wigner function can be given in the term of coherent states as

W =
4e2(|αa|2+|αb|2)

π4

∫
d2γad

2γbe
2(γ∗

aαa+γ
∗
bαb−γaα∗

a−γbα
∗
b )

× ba〈−γb,−γa|ρ̂ab|γa, γb〉ab, (8)

where αa and αb are complex numbers in the phase space, |γa〉a and |γb〉b denote the coherent
states, and ρ̂ab is the density operator of the PAASTMPCS. Using Eq. (6), the density operator
ρ̂ab is written as

ρ̂ab = |ξ, k, h〉ab〈ξ, k, h| =
∞∑

n,m=0

Cn;k,h(ξ)C∗m;k,h(ξ)|n+ k, n+ h〉ab〈m+ h,m+ k|. (9)

Substituting the density operator ρ̂ab in Eq. (9) into Eq. (8) then calculating the complex integrals
(see Appendix), we obtain the Wigner function of the PAASTMPCS in the form

W =
4e−2(|αa|2+|αb|2)

π2

[ ∞∑
j=0

|ξ|2j(j + k)!

(j!)2(j + h)!

]−1
×

∞∑
m,n=0

(4|ξαaαb|)m+n cos[(m− n)(ϕa + ϕb − φ)]|2αa|2k|αb|2h

m!n!(m+ h)!(n+ h)!

× 2F0[−n− k,−m− k; ;−1/(2|αa|)2] 2F0[−n− h,−m− h; ;−1/(2|αb|)2], (10)

where αa = |αa|eiϕa , αb = |αb|eiϕb , and 2F0 denotes the hypergeometric function.
We use the analytical expression in Eq. (10) to investigate the nonclassical and non-Gaussian

behaviours in the PAASTMPCS. In Fig. 1, we plot the dependence of the Wigner function W as a
function of both real and imaginary parts of αa with |ξ| = 0.2, αb = 0.5, φ = 0, and h = k = 1. The
result shows that the Wigner function of the PAASTMPCS gets negative values in some regions of
the phase space. Therefore, we conclude that the PAASTMPCS is a nonclassical and non-Gaussian
state. Besides, in the region corresponding to the appropriate values of |ξ|, the depth of the Wigner
function can become higher when increasing the numbers of photon-added k and photon-subtracted
l (see Fig. 2). The blue solid line (k = 0, h = q = 6) corresponding to the PCS is the least negative.
The other lines corresponding to the PAASTMPCS are more negative compared with the PCS.
This proves that adding and subtracting photons to the different modes are very important in
enhancing the nonclassical and non-Gaussian properties of the PAASTMPCS compared with the
original PCS.

4 Linear entropy

In two modes states, some criteria can be used effectively to detect the entanglement [49–51] and
the degree of entanglement [39,52,53] of them. In order to investigate the degree of entanglement in
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Fig. 1 The Wigner function W as a function of real and imaginary parts of αa with |ξ| = 0.2, αb = 0.5, φ = 0,
and h = k = 1.
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Fig. 2 The Wigner function W as a function of |ξ| with |αa| = 0.21, |αb| = 0.26, ϕa+ϕb−φ = π for (k, h) = (0, 6)
(the blue solid line), (3, 3) (the green dot-dashed curve), and (6, 0) (the red dashed curve).

the PAASTMPCS, we use the linear entropy criterion [39]. Accordingly, the entanglement degree
coefficient Elin is given in the form

Elin = 1− Tr
(
ρ̂2k
)
, (11)

where Tr is denoted as the trace of the matrix. A state is entangled if Elin > 0. When Elin = 1,
the state becomes maximum entangled. For the PAASTMPCS, from the density operator ρ̂ab was
given in Eq. (9), we get

ρ̂2a =

∞∑
n=0

|Cn;k,h (ξ)|4|n+ k〉a〈n+ k|, (12)

ρ̂2b =

∞∑
n=0

|Cn;k,h (ξ)|4|n+ h〉b 〈n+ h| . (13)
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From Eqs. (12) and (13), we have Tr
(
ρ̂2a
)

= Tr
(
ρ̂2b
)
. It is easy to obtain the linear entropy Elin of

the PAASTMPCS as follows

Elin = 1−
∞∑
n=0
|Cn;k,h (ξ)|4

= 1−
( ∞∑
m=0

|ξ|2m(m+k)!

(m!)2(m+h)!

)−2 ∞∑
n=0

(
|ξ|2n(n+k)!
(n!)2(n+h)!

)2
.

(14)

We examine the entanglement degree of the PAASTMPCS by using Eq. (14). In Fig. 3, we plot
the dependence of Elin on |ξ| for several values of k and h = q − l, therein, the case of k = 0 and
h = q = 6 (the solid blue line) corresponds to the PCS, and the others are the PAASTMPCS. At
the same values of |ξ|, the curves on the graphs show that the entanglement degree coefficient Elin

in the PAASTMPCS is always higher than that in the original PCS. Besides, the curves in Figs. 3
(a) and (b) show the entanglement degree coefficient Elin increases if the numbers of photon-added
k and photon-subtracted l increase (i.e., h decreases). It means that the degree of entanglement
of the PAASTMPCS is enhanced by simultaneously increasing the number of photon-added and
photon-subtracted to the original PCS. In addition, in the case of adding and subtracting more
photons, the value of the entanglement degree coefficient Elin is increasing, especially in the case
of the difference of k − h is getting bigger and bigger (see Fig. 3 (c)).

5 Quantum teleportation uses the orthogonal quadrature components measurements
protocol

In continuous variables quantum teleportation, both sender (Alice) and receiver (Bob) must be
shared by a two-mode entangled state. In this section, we use the PAASTMPCS as an entangle-
ment resource for teleportation by exploiting the orthogonal quadrature components measurements
protocol [54]. In this first protocol, we assume that Alice possesses the mode a and Bob holds the
mode b. Alice needs to teleport to Bod a coherent state |α〉c of mode c, in which this state is
expanded in the term of the Fock states as

|α〉c =

∞∑
m=0

dm|m〉c, (15)

with dm = e−|α|
2/2αm/

√
m!. The input state of the system is written as

|Φin〉abc = |ξ, k, h〉ab|α〉c =

∞∑
m=0

∞∑
n=0

Cn;k,h(ξ)dm|n+ k, n+ h〉ab|m〉c, (16)

where Cn;k,h(ξ) is given by Eq. (7). Next, Alice measures the orthogonal quadrature components
on two modes a and c. After this measurement, the state of Bob (non-normalized) becomes

|Φ〉b=ac〈β | ξ, k, h〉ab ⊗ |α〉c, (17)

where |β〉ac is the eigenstate of two commutative operators x̂− = x̂c − x̂a and ŷ+ = ŷa + ŷc [54].
Such state is expressed in the term of the Fock states as

|β〉ac =
1√
π

∞∑
m=0

D̂c (β) |m,m〉ac, (18)
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Fig. 3 The linear entropy Elin as a function of |ξ| for in (a) (k, h) = (0, 6) (the blue solid line), (2, 6) (the purple
dotted curve), (6, 6) (the green dot-dashed curve), and (12, 6) (the red dashed curve), in (b) (k, h) = (0, 6) (the
blue solid line), (4, 6) (the purple dotted curve), (4, 4) (the green dot-dashed curve), and (4, 1) (the red dashed
curve), and in (c) (k, h) = (0, 6) (the blue solid line), (5, 5) (the purple dotted curve), (14, 2) (the green dot-dashed
curve), and (64, 1) (the red dashed curve).

with x̂−|β〉ac = Re (β) |β〉ac, ŷ+|β〉ac = Im (β) |β〉ac, where D̂c(β) is denoted as the displacement
operator acting on the state of mode c. The state in the Eq. (17) is expanded in normalized form
as follows

|Φnor〉b =
e−|α−β|

2/2e(αβ
∗−α∗β)/2√

P (β)π

∞∑
n=0

Cn;k,h(ξ)
(α− β)

n+k√
(n+ k)!

|n+ h〉b, (19)

where P (β) is the probability of the measurement given by

P (β) =
e−|α−β|

2

π

∞∑
n=0

|Cn;k,h(ξ)|2 |α− β|
2(n+k)

(n+ k)!
. (20)

The results of the measurement are sent to Bob by a classical channel. Finally, Bob restores the
teleported state by using the operator D̂ (β). The quantum teleportation process is completed. The
output state (normalized) reads

|Ψnor〉out =
e−|α−β|

2/2e(αβ
∗−α∗β)/2√

P (β)π

∞∑
n=0

Cn;k,h(ξ)
(α− β)

n+k√
(n+ k)!

D̂ (β) |n+ h〉. (21)
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The quality of the quantum teleportation process is shown by the average fidelity. The fidelity is
an overlap of the output and input states

F = |c〈α | Φnor〉out|
2

=
e−2|α−β|

2

P (β)π

∞∑
n,m=0

Cn;k,h(ξ)C∗m;k,h(ξ)|α− β|2(n+m+k+h)√
(n+ k)! (n+ h)! (m+ k)! (m+ h)!

. (22)

Therefore, the average fidelity is determined as

Fav =

∫
P (β)Fd2β. (23)

The quantum teleportation process is successful when Fav > 0.5 and perfect at Fav = 1. The our
calculated result is

Fav =

∞∑
m,n=0

Cn;k,h(ξ)C∗m;k,h(ξ) (n+m+ k + h)!

2n+m+k+h+1
√

(n+ k)! (n+ h)! (m+ k)! (m+ h)!
. (24)

In case ξ = |ξ|, the average fidelity in Eq. (24) is explicitly written as

Fav =

 ∞∑
j=0

|ξ|2j(j + k)!

(j!)
2

(j + h)!

−1 ∞∑
m,n=0

2−(n+m+k+h+1)|ξ|n+m (n+m+ k + h)!

n!m! (n+ h)! (m+ h)!
. (25)

From Eq. (25) it is easy to see that the average fidelity Fav does not depend on the amplitude |α| of
a coherent state to be teleported. In Fig. 4, the curves show the dependence of the average fidelity
Fav as a function of |ξ| with the different values of parameters k and h, in which, the case k = 0
and h = q = 6 (the solid blue line) corresponds to the PCS, and the others are the PAASTMPCS.
It is clear that the average fidelity in the PAASTMPCS is always bigger than that in the PCS.
More importantly, when the parameter |ξ| is increasing, the average fidelity in the PAASTMPCS
is improved by increasing the number of photon added and photon subtracted to the PCS. That
is shown in Figs. 4 (a) and (b). Besides, the average fidelity Fav gets the biggest values in case
the number of photons in mode a and mode b are equal, i.e., h = k = q − l (see Fig. 4 (c)). Thus,
the role of adding and subtracting photons is very important in enhancing the degree of average
fidelity of the quantum teleportation process by using the first protocol.

6 Quantum teleportation uses the number sum and phase difference measurements
protocol

In the second protocol as the number sum and phase difference measurements [55], the input state
of the system is also given by Eq. (16). Now, Alice measures the photon number sum and phase
difference on two modes a and c, the state of the system becomes

|Φ〉b = P−1/2ac
〈
φ−N

∣∣ Φin

〉
abc
, (26)
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Fig. 4 The average fidelity Fav as a function of |ξ| for in (a) (k, h) = (0, 6) (the blue solid line), (3, 6) (the purple
dotted curve), (4, 6) (the green dot-dashed curve), and (6, 6) (the red dashed curve), in (b) (k, h) = (0, 6) (the blue
solid line), (2, 6) (the purple dotted curve), (2, 5) (the green dot-dashed curve), and (2, 2) (the red dashed curve),
and in (c) (k, h) = (0, 6) (the blue solid line), (1, 5) (the purple dotted curve), (2, 4) (the green dot-dashed curve),
and (3, 3) (the red dashed curve).

where P is the probability to obtain the photon number sum N and the phase difference φ−, and∣∣φ−N〉ac is the eigenstate of the photon number sum operator N̂ = N̂a+N̂c and the phase difference

operator φ̂− = φ̂a − φ̂c. Such state reads [56]

∣∣φ−N〉ac =
1√
2π

N∑
j=0

eijφ
−
|j〉a|N − j〉c, (27)

in which, φ− is restricted in the windows φ−0 ≤ φ− < φ−0 + 2π, φ−0 is an arbitrary real number. We
clearly write the Eq. (26) as

|Φb〉 = (2πP )
−1/2

N−k∑
n=0

e−i(n+k)φ
−
Cn;k,h(ξ)dN−(n+k)|n+ h〉b, (28)

with P = 1
2π

∑N−k
n=0 |Cn;k,h(ξ)|2

∣∣dN−(n+k)∣∣2. After the measurement, Alice sends to Bob the num-
bers of N and φ− by a classical channel. Based on these data, Bob rotates his phase by using the
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unitary operator Û = ei(N̂b+k−h)φ−
with N̂b is the photon number operator of mode b. The state

of Bob becomes

|Ψ〉 = Û |Φb〉 = (2πP )
−1/2

N−k∑
n=0

Cn;k,h(ξ)dN−(n+k)|n+ h〉b. (29)

Then, Bob transforms the photon number n+h to become N − (n+ k). The teleportation process
is completed. The output state is

|Ψ〉out = (2πP )
−1/2

N−k∑
n=0

Cn;k,h(ξ)dN−(n+k)|N − (n+ k)〉b. (30)

In order to estimate the efficacy of this teleportation process, we also use the average fidelity. The
fidelity of the quantum teleportation process is determined by

F = |c〈α | Φ〉out|
2

=
1

2πP

∣∣∣∣∣
N−k∑
n=0

Cn;k,h(ξ)
∣∣dN−(n+k)∣∣2

∣∣∣∣∣
2

. (31)

From that, the average fidelity is represented by

Fav =

∞∑
N=k

∫ φ−
0 +2π

φ−
0

PFdφ− =

∞∑
N=k

∣∣∣∣∣
N−k∑
n=0

Cn;k,h(ξ)
∣∣dN−(n+k)∣∣2

∣∣∣∣∣
2

. (32)

Using Eq. (32) with the assumption that ξ = |ξ|, we obtain the result as follows

Fav =

 ∞∑
j=0

|ξ|2j (j + k)!

(j!)
2

(j + h)!

−1 ∞∑
m=0

(
m∑
n=0

|ξ|n|α|2(m−n)
√

(n+ k)!

e|α|
2
n! (m− n)!

√
(n+ h)!

)2

. (33)

It is clear in Eq. (33) that the average fidelity Fav not only depends on the parameters in the
PAASTMPCS, but also depends on the amplitude |α| of a teleported state. In Fig. 5, we plot the
dependence of the average fidelity Fav on |ξ| with several values of |α| when k = 4 and h = 6.
We see that the average fidelity Fav increases with the decreasing of |α|, and it can approach to
unit if |α| = 0.25 and |ξ| is large enough. In order to compare the degree of average fidelity Fav

between PAASTMPCS and PCS, we plot the dependence of the average fidelity Fav on |ξ|, k and
h for |α| = 1.00 in Fig. 6. The case k = 0, h = q = 6 (the blue solid line) corresponds to the
PCS, and the others are the PAASTMPCS. When increasing the numbers of photon-added and
photon-subtracted to both modes a and b of PCS, the average fidelity Fav in the PAASTMPCS is
always higher than that in the PCS (see Figs. 6 (a) and (b)). It proves that the average fidelity of
the quantum teleportation process is enhanced by adding and subtracting photons. These indicate
the important role of the photon addition and photon subtraction operation to enhance the degree
of average fidelity of the quantum teleportation process by using the second protocol, where the
entangled resource is the PAASTMPCS.
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Fig. 5 The average fidelity Fav as a function of |ξ| for k = 4, h = 6 and |α| = 2.00 (the blue solid line), |α| = 1.00
(the purple dotted curve), |α| = 0.50 (the green dot-dashed curve), and |α| = 0.25 (the red dashed curve).
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Fig. 6 The average fidelity Fav as a function of |ξ| for |α| = 1.00 in (a) (k, h) = (0, 6) (the blue solid line), (3,
5) (the purple dotted curve), (3, 3) (the green dot-dashed curve), and (3, 0) (the red dashed curve), and in (b)
(k, h) = (0, 6) (the blue solid line), (6, 6) (the purple dotted curve), (16, 6) (the green dot-dashed curve), and (64,
6) (the red dashed curve).

7 Conclusions

In this paper, we have introduced a new state called photon-added-and-subtracted two modes
pair coherent state (PAASTMPCS) and studied their nonclassical and non-Gaussian properties
based on the Wigner function. It is shown that the Wigner function of the PAASTMPCS gets
negative values in some regions of the phase space and depends on the adding and subtracting
photons to the PCS. It proves that the PAASTMPCS is a nonclassical and non-Gaussian state.
The nonclassical and non-Gaussian properties of this state are enhanced by adding and subtracting
photons to the original PCS. We have quantified the entanglement degree of PAASTMPCS based
on the linear entropy criterion. It is shown that the PAASTMPCS is an entangled state, and the
entanglement degree of this state is greater than that of the original PCS. The more photon-added
and photon-subtracted are, the more increasing the entanglement degree is. The entanglement
degree can approach to the unit when the amplitude of the PAASTMPCS |ξ| as well as the
numbers of adding and subtracting photons are very large. It proves that the PAASTMPCS is
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a non-Gaussian resource for performing quantum teleportation process. For the first protocol by
using the orthogonal quadrature components measurements, the average fidelity of the quantum
teleportation process is always bigger than that of the original PCS. Moreover, the average fidelity
gets the maximum values in case the numbers of photons in mode a and mode b are equal, i.e., the
photon-added k and photon-subtracted l satisfy the condition k + l = q. For the second protocol
by using the number sum and phase difference measurements, it is shown that the average fidelity
can approach to the unit when the amplitude |α| of the input state |α〉c is small and the amplitude
|ξ| of the PAASTMPCS is not large. For example, when |α| = 0.25, and |ξ| = 4, the Fav reaches
0.998. Besides, if the numbers of photon-added and photon-subtracted to the PCS increase, the
average fidelity Fav also increases and the value of Fav is higher than that compared with the case
of using the PCS. Since the average fidelity can reach to unit, the second protocol is more suitable
than the first one for quantum teleportation of a coherent state using the non-Gaussian entangled
resource is the PAASTMPCS.
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Appendix

A Derivation of Eq. (10)

Substituting the density operator ρ̂ in Eq. (9) to Eq. (8), then expanding a coherent state |γ〉x in terms of a Fock

state as |γ〉x = e−|z|
2/2

∑
k(zk/

√
k!)|k〉x with x = {a, b}, we get

W =
4e2(|αa|2+|αb|2)

π4

∞∑
m,n=0

Cn;k,h(ξ)C∗m,k,h(ξ)(−1)k+h√
(n+ h)!(m+ h!(n+ k)!(m+ k)!

×
∫
d2γad

2γbe
2γ∗aαa+2γ∗bαb−2γaα

∗
a−2γbα

∗
b

×e−|γa|
2−|γb|2 (γ∗a)n+kγm+k

a (γ∗b )n+hγm+h
b . (34)

We re-write the Eq. (34) as follows

W =
4e2(|αa|2+|αb|2)

π2

∞∑
m,n=0

Cn;k,h(ξ)C∗m,k,h(ξ)(−1)k+h√
(n+ h)!(m+ h!(n+ k)!(m+ k)!

×
1

π

∫
d2γae

−|γa|2+2γ∗aαa−2γaα
∗
a (γ∗a)n+kγm+k

a

×
1

π

∫
d2γbe

−|γb|2+2γ∗bαb−2γbα
∗
b (γ∗b )n+hγm+h

b

=
8e2(|αa|2+|αb|2)

π3
×

∞∑
m,n=0

Cn;k,h(ξ)C∗m,k,h(ξ)(−1)k+h√
(n+ h)!(m+ h!(n+ k)!(m+ k)!

J1J2, (35)

with

J1 =
1

π

∫
d2γae

−|γa|2+2γ∗aαa−2γaα
∗
a (γ∗a)n+kγm+k

a , (36)
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and

J2 =
1

π

∫
d2γbe

−|γb|2+2γ∗bαb−2γbα
∗
b (γ∗b )n+hγm+h

b . (37)

To calculate J1 and J2 in Eqs. (36) and (37), we consider an integral

J =
1

π

∫
d2βe−|β|

2+αβ∗
(β∗)qe−α

∗ββl. (38)

By using a complex integral 1
π

∫
d2βe−|β|

2+αβ∗
(β∗)nf(β) = (∂/∂α)nf(α), the integral in Eq. (38) is given as

J = (∂/∂α)q [e−α
∗ααl]. (39)

From the definition of the Laguerre function Lin(z) = z−iez

n!
(d/dz)n(e−zzn+i), and setting |α|2 = y, we have

α = y/α∗ or (∂/∂α)q = (α∗)q(∂/∂y)q . Thus the integral in Eq. (38) is given in form

J = q!(−|α|2)−qL
−(−l)−q
q (|α|2)(−1)qαl(α∗)qe−|α|

2
. (40)

Using the correlation between the Laguerre function and the hypergeometric function

2F0(−n, b; ;−1/z) = n!(−z)−nL−b−nn (z), (41)

we have

J = (−1)qαl(α∗)qe−|α|
2

2F0(−q,−l; ;−1/|α|2). (42)

From Eq. (42), the integrals J1 and J2 in Eqs. (36) and (37) are given by

J1 = (−1)n+k(2αa)m+k(2α∗a)n+ke−|2αa|2
2F0(−n− k,−m− k; ;−1/|2αa|2), (43)

and

J2 = (−1)n+h(2αb)
m+h(2α∗b )n+he−|2αb|2

2F0(−n− h,−m− h; ;−1/|2αb|2). (44)

After putting the Eqs. (43) and (44) to Eq. (35), the Wigner function is determined as

W =
4e−2(|αa|2+|αb|2)

π2

∞∑
m,n=0

Cn;k,h(ξ)C∗m,k,h(ξ)√
(n+ h)!(m+ h!(n+ k)!(m+ k)!

×(2αa2αb)
m(2α∗a2α∗b )n|2αa|2k|2αb|2h2F0(−n− k,−m− k; ;−1/|2αa|2)

×2F0(−n− h,−m− h; ;−1/|2αb|2). (45)

Note that ξ = |ξ|eiφ, αx = |αx|eiϕx with x = {a, b}, the Wigner function in Eq. (45) becomes

W =
4e−2(|αa|2+|αb|2)

π2

[ ∞∑
j=0

|ξ|2j(j + k)!

(j!)2(j + h)!

]−1
∞∑

m,n=0

|ξ|n+mei(m−n)(ϕa+ϕb−φ)

n!m!(n+ h)!(m+ h)!

×|2αa|n+m+2k|2αb|n+m+2h
2F0(−n− k,−m− k; ;−1/|2αa|2)

×2F0(−n− h,−m− h; ;−1/|2αb|2). (46)

Because the imaginary parts of the Wigner function in Eq. (46) are vanished, so the Wigner function is reduced to

W =
4e−2(|αa|2+|αb|2)

π2

[ ∞∑
j=0

|ξ|2j(j + k)!

(j!)2(j + h)!

]−1
∞∑

m,n=0

|ξ|n+m cos[(m− n)(ϕa + ϕb − φ)]

n!m!(n+ h)!(m+ h)!

×|2αa|n+m+2k|2αb|n+m+2h
2F0(−n− k,−m− k; ;−1/|2αa|2)

×2F0(−n− h,−m− h; ;−1/|2αb|2). (47)

Obviously, the Wigner function in Eq. (47) coincides with the function in Eq. (10).
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