Patient characteristics.
Between April 2015 and November 2016, a total of 51 patients were enrolled in a prospective observational study (Figure 1A). The characteristics of the patients are summarized in Table 1. The median age of the patients was 67 (range, 36–81) years. Twenty-eight (55%) were male. All the patients had adenocarcinoma, although the selection criteria allowed other NSCLC histology than adenocarcinoma. Forty-five (88%) patients had an ECOG PS score of 0 or 1, while 6 (12%) patients had an ECOG PS or 2 or 3. Thirty-two (63%) had a 19del mutation, 13 (25%) had L858R, and 6 (12%) had minor EGFR mutations. Thirty-nine (76%) patients received treatment with afatinib as a first-line EGFR-TKI setting (A group), and 12 (26%) patients received afatinib as a second or subsequent EGFR-TKI therapy after gefitinib and/or erlotinib (G/E→A group).
Detection of EGFR driver and T790M mutation in plasma in patients treated with afatinib.
Among 51 patients, 24 (47%) and 5 (9.8%) patients were positive for EGFR driver and T790M in plasma as assessed using the cobas test, respectively. In the A group (39 patients), 16 (41%) patients were positive for a driver mutation and 3 (8%) patients were positive for T790M in plasma using the cobas test at the time of progression. In the G/E→A group (12 patients), 8 patients (67%) were positive for a driver mutation and 2 (17%) patients were positive for T790M in plasma. The detection rates for EGFR driver and T790M mutations in plasma in the A group were lower than the G/E→A group, although the differences were not significant (Figure 2A). Regarding the results of ddPCR, 19 (37%) of the 51 patients had T790M mutation copies in plasma using ddPCR, and the T790M copy number ranged from 80 to 375000 (Figure 2B). Among these patients, 5 patients who had more than 400 copies/mL also tested positive for the T790M mutation using the cobas test. In one patient who continued to receive afatinib treatment after RECIST-PD, blood samples were collected serially (Figure 2C). The result of the first cfDNA analysis for T790M mutation using the cobas test was negative. However, the copy numbers for EGFR driver mutation and T790M increased as the site of metastasis progressed, and the second cfDNA analysis using cobas test resulted in a positive result for T790M mutation.
Regarding the concordance between the results of T790M mutation from plasma and tissue samples in patients with T790M mutation negative in plasma as assessed using the cobas test, 8 of the 14 patients with T790M copy positive in plasma using ddPCR underwent rebiopsy, and 3 of these patients had T790M mutation in tissue (Figure 2D). In contrast, 20 of the 32 patients with T790M copy negative using ddPCR underwent rebiopsy, and 5 patients had T790M mutation in tissue. The presence of T790M mutation copy as detected using ddPCR did not influence the T790M mutation status in tissue obtained from patients with T790M negative results in plasma using the cobas test (37.5% vs. 40%, P=0.6508). In addition, we evaluated the PFS of initial-TKIs according to T790M mutation positivity (T790M copy: ≥400 copies, 0< T790M copy: <400, and T790M copy: negative). The copy number of T790M mutation as assessed using ddPCR did not affect the PFS (Supplemental Figure 1).
Detection rate of EGFR driver and T790M mutation between Gefitinib/Erlotinib and Afatinib groups.
Next, we evaluated whether the types of EGFR-TKIs (G/E or afatinib) as first-line EGFR-TKI affected the detection of EGFR driver and T790M mutations in plasma. Among the 51 patients who were enrolled in the prospective observational study, 29 patients who were treated with afatinib in a first-line setting and who had major EGFR mutations (Ex19 del and L858R) were selected (A arm). In addition, we retrospectively collected data from 33 patients who had been treated with only first-generation EGFR-TKIs (G/E) as a first-line setting and whose plasma samples had been assessed using the cobas test (G/E arm). The patient characteristics are shown in Table 2. The prevalences of males, smokers, and EGFR 19del were significantly higher in the A arm than in the G/E arm (males: 68.9% vs. 27.2%, P<0.01; smoking: 44.8% vs. 24.2%, P=0.01; EGFR 19del: 79.3% vs. 51.5%, P=0.01).
Regarding the efficacies of EGFR-TKIs, no significant difference in PFS was observed between the A arm and the G/E arm (16.4 vs. 13.5 months, P=0.5580) (Figure 3A). Regarding the presence of EGFR-driver and T790M mutations in plasma, the detection rates for EGFR-driver and T790M mutation in plasma using the cobas test in patients treated with afatinib were lower than in those treated with G/E, although the differences were not significant (EGFR driver mutation: 34% [A arm] vs. 52% [G/E arm], P=0.2072; and T790M: 10% [A arm] vs. 27% [G/E arm], P=0.1161) (Figure 3B). In addition, among patients who tested positive for the EGFR driver mutation in plasma, the detection rate for T790M mutation was not significant between the G/E and A arms (20% vs. 52.9%, P=0.1241).
After initial EGFR-TKIs failure, 9 (31%) patients in the A group and 15 (45%) patients in the G/E group received osimertinib treatment. No significant difference in the PFS after osimertinib treatment was seen between the patients in the A and G/E groups (9.0 months [G/E] vs. 9.0 months [A], P=0.7696, Figure 3C).
Assessment of EGFR wild-type CNV in plasma.
In this study, we also analyzed the EGFR wild-type (wt) CNV in cfDNA in an exploratory manner using digital PCR. Twenty-three patients had a sufficient cfDNA volume for the assessment of EGFR-wt copy number. Two of the 23 patients had the T790M mutation in plasma as detected using the cobas test. An EGFR-wt copy number gain and loss were detected in each one patient (EGFR CNV: 1.28 and 23.9) (Figure 4A and B). Interestingly, the patient who had a high EGFR CNV were treated with osimertinib after afatinib failure, but did not respond to the osimertinib treatment.