The present study was conducted to evaluate a pilot implementation of a model of care designed to facilitate patient flow in ED. The model of care comprised senior early assessment in ED supported by a validated clinical analytics tool called START. The tool was used to support senior early decision making by alerting senior ED clinicians to appropriate patients for whom in-patient admission was likely and bed management facilitated at an earlier stage. The key driver of the study was to assist with engagement and confidence of senior clinicians and hospital administration in the model of care prior to formal implementation and more controlled studies, and the present study provides important insights in this regard.
The present study demonstrated that over 90% of patients assessed using the START tool as likely requiring an admission and briefly assessed by the ED Consultant were in fact admitted. In such patients, the median length of stay was just under three hours less than control patients, contributing to a marked improvement in the proportion of intervention group patients meeting the four hour ED length of stay benchmark. These initial findings provide the basis to evaluate this model of care further determine its effectiveness and translate it across other settings.
There are a number of important implications for these findings. Firstly, although there are numerous analytics and risk prediction tools in use clinically, [12-14] and several that have reported admission prediction models, [15-18] this is the first initiative in the Australian context to demonstrate performance improvements associated with real-time use of a clinical analytics tool. It should be noted that the tool itself was not designed to directly alter patient flow. Rather, it was the use of this tool to support senior early assessment and identify appropriate patients who require in-patient admission prior to completion of ED assessment, which provided the basis for expedited bed management strategies. The basic premise of the model of care was that earlier and data-driven disposition making would assist clinicians and bed managers to locate an appropriate inpatient ward bed earlier in the ED encounter, making it more likely that the bed would be ready by the time ED assessment and treatment were complete. This is in contrast to the current model of care whereby patient assessment is completed and care “accepted” by in-patient teams before the bed finding process is initiated. Under the proposed model, in-patient bed finding would commence several hours earlier and expedited particularly for patients with chronic medical conditions.
Secondly, the model of care provides an example of the effectiveness of patient flow strategies when supported by hospital and bed managers. Previous studies of senior early assessment in ED, which included ED Navigators and other bed management strategies at this institution showed no improvement in the proportion of admitted patients meeting the four hour length of stay benchmark, which remained around 20%. [19] These were consistent with the length of stay in the control group reported this study, and current performance data at this institution. The present study extended this model to include not just a clinical analytics tool assisted senior early assessment, but also the finding and allocation of beds based on senior early assessment. There will of course be many times, during periods of access block, when an appropriate bed will not be available regardless of the lead time provided through senior early assessment, but on average, providing earlier notification of the need for an in-patient bed was shown to reduce overall ED length of stay.
There are several acknowledged limitations to this study. This was a relatively small single centre pilot study using a tool that was developed by the investigators at this site. The study was designed to reflect how the tool would be implemented in clinical practice. In this case, a sample of patients was selected based on the likelihood of in-patient admission using the START tool and compared to matched controls based on day of presentation and admitting in-patient service. Matching introduced the potential for selection bias, and this was minimised by randomly selecting matched controls on the basis of arrival date and time, START score, age and admission specialty. In addition, the length of stay and ETP performance in the control group was consistent with current data on in-patient admission and ED length of stays at this institution, suggesting that selection bias was not a substantial factor in this study. [19] Finally, we did not examine hospital length of stay or readmissions to hospital and this would be a useful measure for future implementation studies.
Given the findings of the present study, it would be important for this model of care to be evaluated more rigorously using either a patient level randomised control study or cluster randomised control study at a number of different sites to confirm external validity. A randomised control trial may be difficult to perform in this context given the likelihood of crossover contamination, but the lessons from this pilot will be used in a forthcoming and ethics approved implementation trial using a randomised control design. Efforts are also now underway to fund a translational research study to implement this at scale, and further refine the tool using machine learning with linked datasets.
Finally, the study was conducted only on Mondays and Tuesdays, as these were high demand times with respect to inpatient admissions and the tool is designed to assist with the flow of inpatients through the ED. Uncontrolled confounders include workflow styles of particular consultants and openness to model of care changes. Mondays and Tuesdays were also the busiest and challenging days of the week in terms of patient volume and access block, which would be expected to bias results towards the null hypothesis. Differences in time of day of presentation in control group patients may have accounted some of the differences in ED length of stay, however in this study, control patients presenting after hours were not associated with a longer length of stay compared to control patients presenting during business hours.
Further challenges include the incorporation of the START score into existing patient information systems. As most of the variables that comprise the START score can be automatically calculated or observed at the point of triage, opportunities exist for this clinical analytics tool to be displayed in real time within existing electronic patient information systems. Adjustments to the triage process may need to be required to accommodate this and further studies are required to determine which groups of patients would benefit most from the additional intervention required at triage.