Hand movements are essential for tactile perception of objects. However, the specific functions served by active touch strategies, and their dependence on physiological parameters, is unclear and understudied. Focusing on planar shape perception, we tracked at high resolution the hands of eleven participants during shape recognition task. Two dominant hand movements strategies were identified: Contour-following movements, either tangential to the contour or oscillating perpendicular to it, and exploration by scanning movements, crossing between distant parts of the shapes’ contour. Both strategies exhibited non-uniform coverage of the shapes’ contours. Idiosyncratic movement patterns were specific to the sensed object and could be explained in part by spatial and temporal tactile thresholds of the participant. Using simulations, we show how some strategy choices may affect receptors activation. These results suggest that motion strategies of active touch adapt to both the sensed object and to the perceiver’s physiological parameters.