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Abstract

Nanopore sequencing is an emerging technology that utilizes a unique method of reading nucleic acid
sequences and, at the same time, it detects various chemical modifications. Deep learning has increased
in popularity as a useful technique to solve many complex computational tasks. Selective sequencing
has been widely used in genomic research; although it introduces several caveats to the process of
sequencing, its advantages supersede them. In this study we demonstrate an alternative method of
software-based selective sequencing that is performed in real time by combining nanopore sequencing
and deep learning. Our results show the feasibility of using deep learning for classifying signals from
only the first 200 nucleotides in a raw nanopore sequencing signal format. Using custom deep learning
models and a script utilizing "Read-Until" framework to target mitochondrial molecules in real time from a
human cell line sample, we achieved a significant separation and enrichment ability of more than 2-fold.
In a series of very short sequencing runs (10, 30, and 120 minutes), we identified genomic and
mitochondrial reads with accuracy above 90%, although mitochondrial DNA comprises only 0.1% of the
total input material. We believe that our results will lay the foundation for rapid and selective sequencing
using nanopore technology and will pave the way for future clinical applications using nanopore
sequencing data.

Highlights

 First study showing deep learning’s ability to classify raw nanopore sequencing data
e Comparison of 5 neural network architectures for raw nanopore data

e More than 90% accuracy for the classification of mitochondrial DNA

e Enrichment (2.3 fold) of mitochondrial DNA proportion with our method

» Successful use of nanopore selective sequencing feature

1. Introduction

1.1 Next generation sequencing

Next generation sequencing (NGS) has revolutionized DNA sequencing and laid the foundation for a
plethora of scientific and clinical opportunities. One recent emerging sequencing technology uses
nanopore sequencing (for example, those developed by Oxford Nanopore Technologies, ONT) . In this
study we used ONT's portable MinlON sequencer, which was released in 2014. The sequencing is
performed by measuring changes in ionic current produced by individual nucleic acids as single DNA
strands that pass through an array of protein nanopores. These changes are detected by a sensor and are
saved on a computer for later analysis?. The recorded ionic current, known as the "raw signal" or
"squiggle,’ is mainly used for basecalling by translating the raw signal into nucleotides. To date, the vast
majority of studies that use nanopore sequencers ignore the raw signal after using it to generate a
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nucleotide sequence. A few researchers, however, have used this signal for other tasks, such as improving

the accuracy of a consensus sequence, or for investigating chemical modifications on the DNA3#9.

1.2 Deep learning

Deep learning is a subset of machine learning methods that have gained increased popularity in recent
years after overtaking other methods in the field of image classification®. Deep learning has been applied
to fields such as image, video, audio, and natural language processing where it has been used to perform
tasks such as classification, generation, prediction, and detection®~8. Therefore, it is plausible that similar
deep learning approaches could be applied to nanopore sequencing data analysis. These approaches
include methods such as convolutional neural network (CNN) and recurrent neural network (RNN)
architectures that have been used for audio signal analysis®®~"". Initially, raw nanopore signal was
translated to nucleotides using a Hidden Markov Model (HMM)'213, but recently, deep learning was found
to perform the task better and it is now used to translate a raw nanopore signal into a nucleotide
sequence 415, Deep learning is also used to perform tasks such as predicting DNA methylation® and
simulating a raw signal based on a reference genome'”. These findings reinforce our suggestion to use
deep learning in order to classify reads based on their raw signal. Hence, we tested several commonly
used deep learning architectures that were previousely applied on similar data in order to select the one
that we preferred for our analysis.

1.3 Selective sequencing

Selective sequencing (or sequencing of targeted genomic regions) is a widespread technique used in
many applications when the goal is to sequence specific portions of a DNA molecule from a larger pool
of genetic material. When targeting only part of the DNA, one can save resources, time, and money.
Selective sequencing is traditionally based on physically isolating parts of the DNA during the library
preparation steps and prior to sequencing’®72°. Recently, it was also performed during standard
nanopore library preparation?'22. Traditional selective methods, however, have been found to introduce
bias to the output like lack of evenness of coverage and divergent results from different library
preparation kits?3, therefore an alternative method could benefit researchers.

1.4 Nanopore selective sequencing

With the introduction of nanopore sequencing, an exciting new feature, "Read Until", makes it possible to
selectively “reject” DNA molecules before the entire molecule has been completely sequenced?*. The
decision to reject the molecule is based on the initial portion of the DNA molecule, potentially saving time
and reagents by not sequencing the entire molecule. Several studies have demonstrated real-time
selective sequencing using the nanopore “Read Until” feature. In this regard, Loose et al. demonstrated in
a first published study the ability to perform selective sequencing with the genome of Lambda phage?*;
dynamic time warping (DTW) was used to determine whether the DNA molecule should be sequenced or
not. This approach imposed restrictions on the length of the possible target and reference sequences. In
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another study, Edwards et al. performed real-time selective sequencing by online basecalling the start of
the molecules and then deciding which molecule to sequence by mapping it to a reference library using
the LAST aligner?®, which is similar to the method used by Payne et al. who mapped the base-called
nucleotides to a reference genome using minimap22°. This approach removed the constraints caused by
using the DTW algorithm; however, it introduced two separate steps (basecalling and mapping) into the
decision process. Another study used the same concept of basecalling and mapping the reads to a
reference genome, but for a different purpose, namely, to achieve more uniform coverage?”. Finally, in a
more recent work, Kovaka et al. probabilistically decoded the raw signal into k-mers by using a technique
based on an HMM achieving enrichment factor of 4.4628.

1.5 Our contribution

Here we apply selective sequencing on nanopore sequencing via a unique deep learning approach. We
begin by developing a deep learning model capable of accepting only the first 2,000 values of a raw
signal, which equates to roughly 200 base pairs as input. We decided to focus on a biologically
significant region of human DNA that potentially will provide enough data in whole genome sequencing
experiments. This is a prerequisite for training the deep learning model. We chose to perform selective
sequencing on mitochondrial DNA. The mitochondrial DNA is a cellular organelle within eukaryotic cells
containing about 16K base pairs; it encodes 13 proteins. It has been sequenced many times, has high
coverage in publicly available nanopore datasets, and is of biological and medical significance when
analyzing human sequencing data?®. We trained the model to classify sequencing reads into
‘mitochondrial’ or ‘genomic’ reads based on the signal. Analysis of the raw signal directly bypasses the
error prone basecalling step while also allowing the deep learning model to incorporate additional
information present in the raw signal such as DNA modifications*®, this potentially could increase
accuracy of DNA classification by eliminating data analysis steps and increasing the information volume
for the deep learning model. Unlike the previous attempts at real-time selective sequencing, our method
neither requires a nucleotide reference nor a generated signal reference. Bypassing a reference decreases
the run time and complexity restriction as the reference database expands. We also tested several deep
learning architectures for sequence analysis; we tried it on several datasets of nanopore signal data, and
applied it for classifying reads of different DNA origins. Finally, we selected the model with the highest
classification accuracy and combined it with the “Read Until” APl in order to perform a sequencing
experiment where we used our model to successfully selectively sequence mitochondrial DNA.

Overall, by developing a new real-time selective sequencing method, we will not only alleviate the
challenges caused by the additional steps during library preparation—we can also change the targeted
regions during the experiment simply by modifying a parameter in the software. Our method has the
potential to increase accuracy, speed up the sequencing process, and it can eventually be applied to any
clinical settings where time-sensitive DNA sequencing is of the essence.

2. Methods
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2.1 Data organization, preprocessing, and augmentation

For the purpose of training and testing our deep learning models, we used two publicly available
nanopore sequencing datasets: (i) Jain et al. produced a human genome assembly using long reads from
nanopore sequencing3?. About 14 million reads were sequenced and aligned to the 1000 genome
GRCh38 reference genome®'. From this dataset, we used 60,000 reads that were aligned to the
mitochondria and 200,000 random reads that were aligned to the rest of the human genome. (ii) The
"Cliveome" dataset, which was sequenced by ONT and released to the public in 2016 32. From this
dataset, we used 8,000 reads that mapped to the mitochondria as well as 200,000 random reads that
mapped to the rest of the human genome. In each dataset we separated the sequenced reads randomly
into training, validation, and test sets containing 80%, 10%, and 10%, respectively, of the total reads. Only
the first portion of each raw signal were used to simulate reading the beginning of the molecule with the
Read Until feature.

Deep learning requires iterating through the training dataset by mini-batches, which allows handling large
datasets and improves the training results33. In this research we used the Pytorch3* deep learning
framework, which contains a Dataloader class; we customized this class to allow parallel data loading
with custom data transformations. Our custom dataloader applies four transformations to the signal: the
first transformation randomly selected a region of 2,000 values from the total 5,000 values. The second
transformation changed the signal from the raw values, which represent the electric current level, to
differential values in order to eliminate possible bias between voltages of different devices and flow cells.
The third transformation cut the signal into a sliding window array, transforming the 1D-long linear signal
into a 2D array of stacked sliding windows. The final transformation added Gaussian noise to the sample
to mimic the background noise in nanopore sequencing. All of the transformations improved the training
process and the final accuracy; further details are in the Supplementary Methods.

2.2 Model architecture, training, and testing

We decided to test 5 neural network varieties for our deep learning model architecture: regular CNN3%, very
deep CNN (VDCNN)3, regular LSTM37, LSTM with recurrent batch normalization®8, and regular GRU®?,
further model details and justification for their selection are presented in the Supplementary Methods. All
models were tested with three different sizes corresponding to the number of hidden parameters: large
size, medium size, and small size models. All models were tested extensively with different configurations
as explained in the supplementary methods section.

We also attempted to combine a CNN model with an RNN model whose schematic overview can be seen
in Supplementary Figure 1. In theory, CNN is good at proximal feature representation and RNN can find
long distance dependencies; by combining those techniques, our model could utilize both short- and long-
distance information hidden in the raw signal*®. We combined the VDCNN with regular GRU as well as
VDCNN with LSTM with recurrent batch normalization and tested multiple configurations of these models
as well as described in the supplementary methods section..
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To eliminate any differences in model accuracy due to a different training process, the same python
script was used to train all models similarly. We used the training dataset during training, the validation
dataset for hyperparameter tuning, and the test dataset was used exclusively at the final stage to
measure the accuracy of each model. Accuracy was measured separately for genomic reads and for
mitochondrial reads, total accuracy was calculated by averaging the accuracy of the mitochondrial reads
and the accuracy of the genomic reads. An Adam (A Method for Stochastic Optimization) optimizer*’
was used; the learning rate and other parameters for the optimizer were determined by a manual search.
All models were trained for 300 epochs and the learning curve of each model was assessed to determine
whether the loss curve plateaued and whether overfitting became an issue. Supplementary Figure 2
illustrates the learning curve of the model with LSTM and recurrent batch normalization as an example of
a successfully trained model.

After training all models on the primary dataset, a second dataset (Cliveome) was used to test the models
for generalization. At first, the accuracy of the models was tested on the test dataset from the second
dataset without any additional training. Later, all models were trained for 30 epochs on the second
dataset training data in order to improve the accuracy specifically for the second dataset (fine-tuning).
After the additional training, all models were tested again with the second dataset and its accuracy was
recorded.

2.3 DNA extraction, library preparation, and MinlON sequencing

Monolayer-adherent HEK-293T cells (transformed human embryonic kidney cells, ATCC, USA) were grown
in Dulbecco's modified Eagle's medium (DMEM) (Thermo Fisher Scientific, USA) supplemented with 10%
(vol/vol) fetal bovine serum (FBS) (Thermo Fisher Scientific, USA), 0.3 g/liter L-glutamine, 100 unit/ml
penicillin, and 100 units/ml streptomycin (Biological Industries, Israel). Cells were incubated at 37°C in 5%
CO, atmosphere. Before use, cells were confirmed to have no mycoplasma contamination using the EZ-
PCR Mycoplasma test kit (Biological Industries, Israel). Prior to each experiment, the cells were counted
using the Countess automated cell counter (Thermo Fisher Scientific, USA).

Qiagen’s QlAamp DNA mini kit was used to extract DNA from HEK-293T cells. Next, 2.5 x 10° or 1 x 10°
cells were centrifuged at 1,400 x g for 5 minutes, and the resulting pellet was resuspended in 200 ul PBS.
DNA was then extracted according to the manufacturer’s protocol and eluted in 200 pl H,0. The DNA
concentration was measured using the dsDNA High Sensitivity assay on a Qubit fluorometer (Thermo
Fisher Scientific, USA). DNA purity was assessed using a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Thermo Scientific, USA), to ensure OD 260/280 and OD 263/230 > 1.8.

Approximately 400 ng of purified DNA in a total volume of 7.5 pl in a 0.2 ml PCR tube was used as input
for sequencing library preparation using Oxford Nanopore Technologies’ Rapid Sequencing kit (SQK-
RADQ04, version RSE_9046_v1_revB_17Nov2017) according to the manufacturer’s instructions. For
fragmentation and transposase adapter attachment, 2.5 pyl FRA was added to the DNA and mixed by
inversion. The sample was then incubated at 30°C for 1 minute, followed by 80°C for 1 minute, and finally
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cooled on ice. Sequencing adapters were then attached by adding 1 pl RAP to the mixture and mixing by
inversion. The sample with sequencing adapters was incubated at room temperature for 5 minutes, and
then stored on ice until it was ready for sequencing.

MinlON sequencing was conducted according to the manufacturer’s instructions using R9.4 and R9.4.1
rev. D flow cells (FLO-MIN106, ONT). After flow cell priming, 4.5 pl nuclease-free water, 34 ul sequencing
buffer (SQB), and 25.5 pl mixed loading beads (LB) were added to the library and mixed by gently flicking
the tube immediately before loading into the SpotOn port.

Three sequencing experiments were performed under those conditions; they will be referred to as the
"HEK1", "HEK2", and "HEK3" runs. The results of the first two experiments were used for testing and
training the model, whereas the third experiment was run in conjunction with the read-until script to
perform real-time selective sequencing.

2.4 Sequencing data analysis

After data were acquired from the first two sequencing experiments, HEK1 and HEK2, the reads were
translated to nucleotides using ONT Albacore version 2.2.5. Although Albacore is currently not supported,
a recent comparison between base-calling software indicated that the differences between Albacore and
more modern basecallers*2 are miniscule for the purposes of our experiments. The reads were mapped to
the GRCh38 human reference genome using minimap2 software*3 version 2.11. Reads were separated
into mitochondrial reads and genomic reads based on their mapping, and each group was separated into
training/validation/testing groups with proportions of 80%/10%/10% of the total reads, respectively.
Initially, the accuracy of the models trained on the first dataset was tested with the HEK1 data. Later, the
models were trained for 30 epochs on the HEK1 data and accuracy was tested again (finetunned). The
best performing model was determined by the highest accuracy value on the HEK2 data and saved for

later use with read-until on the HEK3 sequencing experiment.

To test the performance of read-until, we utilized the developmental API provided by ONT and wrote a
custom script to perform selective sequencing based on the "simple.py" file from the GitHub repository of
Read-Until. This script receives the raw signal at the beginning of every DNA molecule, the raw signal is
analyzed by the deep learning model, and finally the script sends a signal to the MinlON device to either
keep sequencing the DNA molecule or to stop and remove the unwanted DNA molecule from the pore.
Reads that were classified by the model as mitochondrial reads were allowed to be fully sequenced,
whereas the rest of the reads had received a signal to terminate their sequencing. In order to gather the
validated results, we performed the experiments with 3 technical repeats for 3 different time spans: 10
minutes, 30 minutes, and 120 minutes. In each time span we performed 3 regular sequencing
experiments without using read-until and 3 sequencing experiments utilizing Read Until. To account for
the deterioration of the flow cell over time and to reduce technical bias, we performed the experiments
with read-until and without it sparingly. The reads were translated and mapped to a human reference
genome, then for each sequencing experiment the alignment statistics were collected. Logistic regression
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with proportions and a random effects variable** analysis were performed to test for differences in the
proportion of the sequenced mitochondrial nucleotides to the total sequenced nucleotides. A comparison
was made between pairs of the technical repeats as follows: 10min_with_read-until_run1 VS
T10min_without_read-until_run1, 10min_with_read-until_run2 VS 10min_without_read-until_run2, etc.
Additionally, read lengths were collected for each of the experiments and analyzed using the Fisher-
Pitman permutation test*® to check for statistical differences between the read lengths of different
groups.

3. Results

3.1 Deep Learning model selection

We trained 90 models in total while saving the accuracy statistics (see Supplementary Data File 1). More
than half of the models exhibited total accuracy above 70% for all datasets after training. A summary of
the results can be seen in Table 1. Larger models, generally, achieve higher accuracy than the smaller
versions, as can be seen in Supplementary Data File 1. In addition, the models perform better after fine-
tuning on a particular dataset (Table 1 as well as the rest of the results in Supplementary Data File 1).
Furthermore, the addition of a dropout or a batch normalization layer generally improved the performance
in all models. When comparing different architecture types, the RNN type models: regular LSTM, LSTM
with BN and GRU achieved higher accuracy than the CNN-type networks: regular CNN and VDCNN, as
seen in Table 1 with the total accuracy scores.
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Table 1. Accuracy values of the best performing deep learning models as measured on different
datasets.

Data from public datasets Data from internal experiments
Primary Secondary Secondary HEKT, HEKT, HEK?2, HEK?2, Total
dataset dataset dataset with- with with- with Accuracy
(NA12878)  (ONT), $ONT), with  out fine- out fine-

without Ine-tuning fine- tuning fine- tuning

fine-tuning tuning tuning on

HEK1

56.61% 57.20% 66.30% 62.48% 63.10% 77.38% 55.00% 62.58%
88.70% 72.22% 72.83% 93.83% 77.67% 82.56% 74.79%  80.37%
82.40% 68.14% 73.61% 86.62% 86.26% 81.81% 81.73%  80.08%
89.42% 82.98% 87.52% 98.01% 97.93% 95.48% 95.81% 92.45%
94.04% 81.72% 83.64% 98.61% 94.55% 96.13% 93.60% 91.76%
94.71% 63.07% 89.40% 96.45% 97.60% 80.33% 91.70%  87.90%
88.37% 60.76% 77.94% 92.40% 95.39% 87.29% 84.20% 83.76%

Small/Medium/Large — refers to the size of the model, +D — dropout, +S — shortcut, +MP — max-
pooling, +BN — regular batch normalization, +LS — last step taken from RNN, +HO — hidden output
taken from RNN

3.2 Real-time selective sequencing with Read Until

Based on the previous results, we selected the LSTM with recurrent batch normalization model that
achieved the highest accuracy of 95.81% with the HEK 2 data and the highest accuracy of 92.45% overall.
The selected model was used in conjunction with Read-Until to perform real-time selective sequencing.
The Read-Until script was configured to sequence only molecules that were classified as mitochondrial
reads by the model. During sequencing HEK3, the accuracy of the model was above 90%, which
corresponds to the accuracy measured on HEK1 and HEK2 without fine-tuning.

The enrichment factor of our method was measured by calculating the difference in the percentage of
mitochondrial nucleotides between experiments with and without selective sequencing. This was carried
out in order to normalize the samples for total sequencing output and to eliminate any variance due to its
interchangability throughout the experiment. We achieved a normalized enrichment factor of 2.3X (p.val <
0.05, Figure 1). When we compared the averages of the mitochondrial nucleotides in all the experiments
with and without selective sequencing (normalization or not), we achieved an enrichment factor of 1.34X.
When we compared the means of the mitochondrial coverages (as shown in Table 2), we achieved an
enrichment factor of 1.32X. Even though most of the molecules were classified as genomic by the deep
learning model and should not have been sequenced, most of the molecules classified as genomic were
sequenced and saved to the hard-drive (see the Discussion).
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Table 2 summarizes the results of all the selective sequencing experiments. Table 2 shows the mean
percentage of mitochondrial nucleotides for each time interval, averaged across three experiments
performed for each time interval; in addition, the average read length is shown for all of the reads. When
comparing the percentage of mitochondrial nucleotides between sequencing experiments with selective
sequencing against experiments without selective sequencing, there was a significant difference (p.val <
0.05) between them.

Table 2. The mean coverage of mitochondria and the mean percentage of nucleotides aligned to
mitochondria from all the sequenced nucleotides. Also presented are the mean enrichment factor
based on percentage and the mean genomic and mitochondria read lengths, for each triplicate of
experiments separated by the length of the experiment (the sequencing time), and whether Read Until
(selective sequencing) was used.
Sequencing Read Mitochondria % Enrichment  Genomic Mitochondria
Time Until  coverage Mitochondria Factor read read lengths
nucleotides lengths

10 Minutes  No 3.26 0.088 2.3 6165 5965

Yes 4.75 0.170 3450 4563
30 minutes  No 12.95 0.104 1.38 7598 8088

Yes 13.78 0.143 5106 6382
120 No 37.6 0.112 3.12 8089 7570
minutes

Yes 53.98 0.269 2488 4319

In addition to differences in the percentage of nucleotides, we examined alterations in read lengths: there
was a clear distinction in the read length between the groups. There was no significant variances between
the read lengths of the mitochondrial and genomic reads in experiments without selective sequencing
(p.val>0.8, difference between means=~75). However, there was a trend towards mitochondrial reads
being longer than genomic reads in experiments with selective sequencing (p.val<0.1, diff=~1400). When
comparing the read lengths of the mitochondrial reads in experiments with selective sequencing to those
without it, the mitochondrial reads with selective sequencing were shorter than mitochondrial reads from
experiments without selective sequencing (p.val<0.005, diff=~2100). Larger and more significant
difference was observed between the genomic read lengths in experiments with selective sequencing and
those without it; the genomic read lengths were significantly longer in experiments without selective
sequencing (p.val<0.0005, diff=~3600).

4. Discussion

4.1 The process and the results of the deep learning model training

When we examined the results of the deep learning model training, the overall high accuracy (>70%) of
most of the models indicated that deep learning in general might be an appropriate solution for read
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classification based on raw signals. The higher accuracy of larger models is an expected outcome
because larger networks have more weight that could be adjusted during the training process and could
possibly capture more variability of the data*®. However, the smaller reqular CNN model, which performed
better than the medium and large CNN models, is surprising. This could be explained by comparing all of
the CNN networks; the larger networks performed well (>90% accuracy) on some datasets but on other
datasets the larger models would either over-fit or would not train at all. However, the smaller CNN
network had much lower accuracy but performed similarly across all datasets; therefore, the smaller
network had a higher total accuracy. This is possibly due to the relative simplicity of a CNN model and
the fact that smaller CNN models have fewer weights to train; thus, smaller CNN models have to
generalize better than the larger models?’.

VDCNN expectedly outperformed a regular CNN, as was shown in the original paper3®. Another expected
result is the RNN-type architectures (regular LSTM, LSTM with recurrent batch normalization, and GRU),
which outperformed the CNN-type architectures. The data in our study could be described as a sequential
input, which is the type of data that RNN architecture was designed to analyze®. However, we observed
that the average accuracies of regular LSTM and VDCNN are similar, which can be explained by the
relative simplicity of the one-layered LSTM model against the more complex VDCNN with 17 layers.Even
though we expected the combination of the CNN + RNN model to outperform each type individually,
based on the fact that convolutional networks are useful for feature extraction*®, and when used in
conjunction with RNN, it could produce better results*®. In our case, the combination of CNN + RNN
produced results similar in accuracy to those of LSTM with recurrent batch normalization. These results
could be explained either by the very optimal training of LSTM with a recurrent batch normalization
model or the sub-optimal training of the CNN + RNN models.

Fine-tuning the models on a small portion of the dataset before analyzing the rest of the dataset
improved the results for some models, as seen in Table 1. Each dataset was acquired from a different
sequencing experiment and possibly various variables could affect the raw signal such as different
chemistry kits, different MinlON devices, different library preparation protocols, and different sample
qualities. Therefore, by fine-tuning the model to each experiment, we increased the model’s accuracy for
those specific conditions.

Dropout and batch normalization improved the performance of most models as was expected, based on
their contribution to the training process of the deep learning models®°C. In addition, the results after
training models before the addition of the difference transformation to the raw input were dire; overfitting
was a big problem before adding artificial noise, which is known to help with the training of the deep
learning models®’; therefore, those two transformations were applied to the training of all models.

The mechanism by which the deep learning models perform the classification remains unknown, the
model could either "simply remember" the relatively short sequence of the mitochondria (only 16.5K
nucleotides) and can determine which reads originate from this sequence; or, the models could extract

specific features from the reads such as GC content/ k-mer content and more complex features such as
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the protein sequence and structure or DNA methylations and, during training, learn which features are
present in genomic sequences and which features are present in mitochondrial sequences. We also
postulated that the models could have learned more sophisticated features of the mitochondrial DNA,
such as a different encoding codond,or the density of the genetic information®2. Furthermore, deep
learning models have been shown to successfully detect circular plasmids, based on their sequencing
data, by examining larger chunks of the plasmid sequences achieved by longer reads as well as
additional genomic features®?, information that could contribute to a successful classification. We think
a thorough analysis of a trained deep learning model from this work, as was done for the visual analysis
models*8, could provide useful insights for further research in this field and perhaps new biological
features that were not considered important before would be discovered.

4.2 Real-time selective sequencing

Our experiments, which utilized the ability of MinlON to perform selective sequencing combined with a
deep learning model, demonstrated from several different angles the validity of this method. From the
aspect of classification accuracy, our deep learning achieved >90% accuracy in real time which is similar
to the results during training and testing on the previous data. Even though we had some variance in the
mitochondrial proportions between the experiments, which were caused by the relatively small amount of
mitochondrial DNA present in the sample, when statistically examining the mitochondrial nucleotide
proportions, the results show significant differences between experiments with and without selective
sequencing, thus indicating that our method worked successfully. Also, the differences in the read lengths
of the mitochondrial and genomic reads between the different experiments also support that executing
the selective sequencing script prioritized the mitochondrial reads over the genomic reads during
sequencing.

To assess the results of our selective sequencing script, we can calculate the expected results in a
theoretically perfect hardware-software configuration (where each read that was marked for rejection
would not have been sequenced): with a 90% accuracy model () and samples where 0.1% of reads are
mitochondrial (similar to our samples ). We can calculate this theoretical expected mitochondrial
percentage using the following formula (the expected “true” mitochondrial reads divided by genomic
reads falsely classified as mitochondrial reads):

_ (Mmm.p X Acc)
P (1 — Mggmp) X (1 — Acc)

Ibféﬂr

From this calculation, we could infer that with selective sequencing in theoretically perfect conditions, we
should achieve 0.9% mitochondrial reads; therefore, we would achieve an enrichment of 9X when using
selective sequencing and with perfect software-hardware performance. In our experiments achieved an
enrichment of 2.3X, demonstrating that the hardware is working but also that there is still much room for
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optimization in terms of software-hardware interaction with the Read-Until feature of nanopore
sequencing.

Statistical analysis of the difference between the percentages of mitochondrial nucleotides sequenced
with selective sequencing and those without it revealed a significant difference. The fact that there was a
smaller difference between the percentages of mitochondrial reads in experiments with and without
selective sequencing when compared to the differences in the genomic reads with and without selective
sequencing also supports the idea that selective sequencing prioritizes the mitochondrial reads. Our
claim that our selective sequencing method allowed us to sequence more mitochondrial sequences is
further supported when we combined the differences in the raw mitochondrial nucleotide counts without
normalization, which showed that more mitochondrial sequences are sequenced in experiments with
selective sequences, Therefore, even in its current state, our approach could assist researchers in
achieving better coverage of a certain region and theoretically save time, resources, and budget by
requiring less sequencing to a achieve a similar goal. Furthermore, theoretically, it is possible to change
the classification model to target a different region in the genome, thus increasing the utility of this
selective sequencing method. We can conclude that the genomic reads were shorter in experiments with
selective sequencing probably because our script sent signals to the MinlON device to stop sequencing
the reads that were classified as genomic, thus non-mitochondrial reads would be shorter than in
experiments without the stopping signal. We currently do not know why the signals sent to the hardware
to stop sequencing did not entirely prevent the sequencing of reads classified as genomic. However, other
studies reported a delayed ejection of unwanted DNA molecules,?8 which shows that the software-
hardware interaction is not perfect and could cause “rejected” DNA to be sequenced and saved.

5. Conclusion

From the results of the deep learning models training, we can conclude that the deep learning approach is
a valid choice for classifying sequenced reads based on the first 2,000 values of raw signal of the read.
There might be better models than those we tested here; however, even using our relatively simple and
straighforward approach, when we tested different datasets we achieved good results in terms of
accuracy and generalization. Furthermore, for the first time, we showed the ability of deep learning
models to classify whole reads based on raw nanopore signals.

The selective sequencing experiments we performed with our script, using the best deep learning model
from the previous steps, produced enough evidence to conclude that our script prioritized mitochondrial
reads over genomic reads. The deep learning model classified the reads correctly while they were being
sequenced; an analysis of the proportion of mitochondrial DNA and the differences in the read lengths
revealed that the mitochondrial reads were being prioritized during sequencing and were enriched by a
factor of 2.3X.

When combining the results from both parts of the experiment, we concluded that real-time selective
sequencing is possible by using deep learning models to analyze the raw signal at the beginning of each
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read. It is possible to develop better models to perform classification with increased accuracy; however,
the main improvement will come from optimizing the selective sequencing script.

We believe that our findings provide a solid basis for building upon for future research in this field. We
hope that our deep learning models will serve as a building block for studies on improving the analysis of
raw signals. The discrepancies between our predicted performance and the actual results indicate that
further research should be carried out to determine which parts of the selective sequencing scripts and
parameters must be optimized. Our method could spark interest in improving the selective sequencing
optimization to provide a much better procedure. Our study might also serve as an alternative to other
selective sequencing methods.
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Figure 1

Differences in the percentage of mitochondrial nucleotides between experiments with selective
sequencing and without it. A. Box plot illustrating differences in the mitochondrial reads between
experiments with and without selective sequencing. B. Cumulative percentage of mitochondrial DNA in
relation to the final amount of total DNA throughout the experiments, different timeframes adjusted to a
scale of 0% to 100% of the experiment'’s duration. Green and red solid lines denote the mean percentage
of mitochondrial DNA throughout all experiments with and without selective sequencing, respectively.
Light green and light red dotted lines denote the percentage of mitochondrial DNA throughout individual
experiments with and without selective sequencing, respectively.
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