Cell Banking of HEK293T Cell Line for Clinical-Grade Lentiviral Particles Manufacturing
Background: Cell banks have been widely used to preserve cell properties as well as to record and control cell line access in research. However, the generation of cell banks involved in the manufacturing of Advanced therapy medicinal products such as cell or gene therapy products must comply with the current Good Manufacturing Practice regulation. Similarly, the quality of those cell lines used as starting materials in viral-vector manufacturing processes must be also evaluated.
Methods: Three batches of both Master Cell Bank and Working Cell Bank of the HEK293T cell line were manufactured under the current Good Manufacturing Practices regulation. Quality control test were performed according to the product specifications. The process validation includes previous qualification of the manufacturing personnel by performing simulation tests as well as the continuous measure of environmental parameters during manufacturing such as air particles and microorganism. Cell number and viability of cryopreserved cells were periodically measured in order to define the stability of these cellular products.
Results: All batches of Master Cell Bank and Working Cell Bank fulfilled the acceptance criteria of their specifications showing the robustness and homogeneity of the processes. In addition, both Master and Working cell bank maintain the defined viability and cell number 37 months after cryopreservation.
Conclusions: Manufacturing cell banks under Good Manufacturing Practices regulation for its use as raw material or final cellular product is feasible. HEK293T cell banks have been used to manufacture clinical-grade lentiviral particles for Chimeric Antigen Receptor T-cell based clinical trials.
Figure 1
Figure 2
Figure 3
Posted 13 Aug, 2020
Cell Banking of HEK293T Cell Line for Clinical-Grade Lentiviral Particles Manufacturing
Posted 13 Aug, 2020
Background: Cell banks have been widely used to preserve cell properties as well as to record and control cell line access in research. However, the generation of cell banks involved in the manufacturing of Advanced therapy medicinal products such as cell or gene therapy products must comply with the current Good Manufacturing Practice regulation. Similarly, the quality of those cell lines used as starting materials in viral-vector manufacturing processes must be also evaluated.
Methods: Three batches of both Master Cell Bank and Working Cell Bank of the HEK293T cell line were manufactured under the current Good Manufacturing Practices regulation. Quality control test were performed according to the product specifications. The process validation includes previous qualification of the manufacturing personnel by performing simulation tests as well as the continuous measure of environmental parameters during manufacturing such as air particles and microorganism. Cell number and viability of cryopreserved cells were periodically measured in order to define the stability of these cellular products.
Results: All batches of Master Cell Bank and Working Cell Bank fulfilled the acceptance criteria of their specifications showing the robustness and homogeneity of the processes. In addition, both Master and Working cell bank maintain the defined viability and cell number 37 months after cryopreservation.
Conclusions: Manufacturing cell banks under Good Manufacturing Practices regulation for its use as raw material or final cellular product is feasible. HEK293T cell banks have been used to manufacture clinical-grade lentiviral particles for Chimeric Antigen Receptor T-cell based clinical trials.
Figure 1
Figure 2
Figure 3