[1] A. Corma (2003) State of the art and future challenges of zeolites as catalysts. J. Catal. 216: 298-312 https://doi.org/10.1016/S0021-9517(02)00132-X
[2] B. Smit, T.L.M. Maesen (2008) Towards a molecular understanding of shape selectivity. Nature 451: 671-678 https://doi.org/10.1038/nature06552
[3] A. Corma , S. Iborra, A. Velty (2007) Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107: 2411-2502 https://doi.org/10.1021/cr050989d
[4] A. Bhan, E. Iglesia (2008) A link between reactivity and local structure in acid catalysis on zeolites. Acc. Chem. Res. 41: 559-567 https://doi.org/10.1021/ar700181t
[5] D. Fan, D.J. Dai, H.S. Wu (2013) Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6: 101-115 https://doi.org/10.3390/ma6010101
[6] A. Morschbacker (2009) Bio-ethanol based ethylene. Polymer Reviews 49: 79-84 https://doi.org/10.1080/15583720902834791
[7] I. Takahara, M. Saito, M. Inaba, K. Murata (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal. Lett. 105: 249-252 https://doi.org/10.1007/s10562-005-8698-1
[8] V.F. Tret'yakov, Y.I. Makarfi, K.V. Tret'yakov, N.A. Frantsuzova, R.M. Talyshinskii (2010) The catalytic conversion of bioethanol to hydrocarbon fuel: A review and study. Catalysis in Industry 2: 402-420 https://doi.org/10.1134/S2070050410040161
[9] A.J.J. Straathof (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem.Rev. 114: 1871-1908 https://doi.org/10.1021/cr400309c
[10] J.F. Haw, T. Xu (1998) NMR Studies of Solid Acidity. Advances in Catalysis 42: 115-180 https://doi.org/10.1016/S0360-0564(08)60628-8
[11] C. Lamberti, E. Groppo, G. Spoto, S. Bordiga, A. Zecchina (2007) Infrared Spectroscopy of Transient Surface Species. Advances in Catalysis 51: 1-74 https://doi.org/10.1016/S0360-0564(06)51001-6
[12] W. Wang, M. Seiler, M. Hunger (2001) Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. J. Phys. Chem. B 105: 12553-12558 https://doi.org/10.1021/jp0129784
[13] R. Batchu, V.V. Galvita, K. Alexopoulos, T.S. Glazneva, H. Poelman, M.F. Reyniers, G.B. Marin (2020) Ethanol dehydration pathways in H-ZSM-5: Insights from temporal analysis of products. Catal. Today 355: 822-831 https://doi.org/10.1016/j.cattod.2019.04.018
[14] Z. Wang, L.A. O'Dell, X. Zeng, C. Liu, S. Zhao, W. Zhang, M. Gaborieau, Y. Jiang, J. Huang (2019) Insight into Three-Coordinate Aluminum Species on Ethanol-to-Olefin Conversion over ZSM-5 Zeolites. Angewandte Chemie - International Edition 58: 18061-18068 https://doi.org/10.1002/anie.201910987
[15] C.Y. Wu, H.S. Wu (2017) Ethylene Formation from Ethanol Dehydration Using ZSM-5 Catalyst. ACS Omega 2: 4287-4296 https://doi.org/10.1021/acsomega.7b00680
[16] B.C. Bukowski, J.S. Bates, R. Gounder, J. Greeley (2018) First principles, microkinetic, and experimental analysis of Lewis acid site speciation during ethanol dehydration on Sn-Beta zeolites. J. Catal. 365: 261-276 https://doi.org/10.1016/j.jcat.2018.07.012
[17] D.T. Sarve, S.K. Singh, J.D. Ekhe (2020) Kinetic and mechanistic study of ethanol dehydration to diethyl ether over Ni-ZSM-5 in a closed batch reactor. Reaction Kinetics, Mechanisms and Catalysis 131: 261-281 https://doi.org/10.1007/s11144-020-01847-z
[18] J.N. Kondo, D. Nishioka, H. Yamazaki, J. Kubota, K. Domen, T. Tatsumi (2010) Activation energies for the reaction of ethoxy species to ethene over zeolites. Journal of Physical Chemistry C 114: 20107-20113 https://doi.org/10.1021/jp107082t
[19] J.N. Kondo, K. Ito, E. Yoda, F. Wakabayashi, K. Domen (2005) An ethoxy intermediate in ethanol dehydration on Brønsted acid sites in zeolite. J. Phys. Chem. B 109: 10969-10972 https://doi.org/10.1021/jp050721q
[20] L.Y. Kunz, L. Bu, B.C. Knott, C. Liu, M.R. Nimlos, R.S. Assary, L.A. Curtiss, D.J. Robichaud, S. Kim (2019) Theoretical determination of size effects in zeolite-catalyzed alcohol dehydration. Catalysts 9: 700 https://doi.org/10.3390/catal9090700
[21] R.J. Costa, E.A.S. Castro, J.R.S. Politi, R. Gargano, J.B.L. Martins (2019) Methanol, ethanol, propanol, and butanol adsorption on H-ZSM-5 zeolite: an ONIOM study. J. Mol. Model. 25: 34 https://doi.org/10.1007/s00894-018-3894-2
[22] C.C. Lee, R.J. Gorte, W.E. Farneth (1997) Calorimetric study of alcohol and nitrile adsorption complexes in H-ZSM-5. J. Phys. Chem. B 101: 3811-3817 https://doi.org/10.1021/jp970711s
[23] S. Kim, D.J. Robichaud, G.T. Beckham, R.S. Paton, M.R. Nimlos (2015) Ethanol dehydration in HZSM-5 studied by density functional theory: Evidence for a concerted process. J. Phys. Chem. A 119: 3604-3614 https://doi.org/10.1021/jp513024z
[24] K. Alexopoulos, M. John, K. Van Der Borght, V. Galvita, M.F. Reyniers, G.B. Marin (2016) DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5. J. Catal. 339: 173-185 https://doi.org/10.1016/j.jcat.2016.04.020
[25] C.M. Nguyen, M.F. Reyniers, G.B. Marin (2010) Theoretical study of the adsorption of C1-C4 primary alcohols in H-ZSM-5. Physical Chemistry Chemical Physics 12: 9481-9493 https://doi.org/10.1039/c000503g
[26] C.M. Nguyen, M.F. Reyniers, G.B. Marin (2015) Adsorption thermodynamics of C1-C4 alcohols in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22. J. Catal. 322: 91-103 https://doi.org/10.1016/j.jcat.2014.11.013
[27] K. Alexopoulos, M.S. Lee, Y. Liu, Y. Zhi, Y. Liu, M.F. Reyniers, G.B. Marin, V.A. Glezakou, R. Rousseau, J.A. Lercher (2016) Anharmonicity and Confinement in Zeolites: Structure, Spectroscopy, and Adsorption Free Energy of Ethanol in H-ZSM-5. Journal of Physical Chemistry C 120: 7172-7182 https://doi.org/10.1021/acs.jpcc.6b00923
[28] X. Zhou, C. Wang, Y. Chu, J. Xu, Q. Wang, G. Qi, X. Zhao, N. Feng, F. Deng (2019) Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nature Communications 10: 1961 https://doi.org/10.1038/s41467-019-09956-7
[29] C.T.W. Chu, C.D. Chang (1985) Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM-5. J. Phys. Chem. 89: 1569-1571 https://doi.org/10.1021/j100255a005
[30] S. Jungsuttiwong, J. Lomratsiri, J. Limtrakul (2011) Characterization of acidity in [B], [Al], and [Ga] isomorphously substituted ZSM-5: Embedded DFT/UFF approach. Int. J. Quantum Chem. 111: 2275-2282 https://doi.org/10.1002/qua.22531
[31] R.C. Deka, R. Vetrivel, S. Pal (1999) Application of Hard-Soft Acid-Base Principle to Study Brönsted Acid Sites in Zeolite Clusters: A Quantum Chemical Study. J. Phys. Chem. A 103: 5978-5982 https://doi.org/10.1021/jp984267k
[32] S.P. Yuan, J.G. Wang, Y.W. Li, H. Jiao (2002) Brønsted acidity of isomorphously substituted ZSM-5 by B, Al, Ga, and Fe. Density functional investigations. J. Phys. Chem. A 106: 8167-8172 https://doi.org/10.1021/jp025792t
[33] S.P. Yuan, J.G. Wang, Y.W. Li, H. Jiao (2004) Density functional investigations into the siting of Fe and the acidic properties of isomorphously substituted mordenite by B, Al, Ga and Fe. Journal of Molecular Structure: THEOCHEM 674: 267-274 https://doi.org/10.1016/S0166-1280(03)00463-9
[34] Y. Wang, G. Yang, D. Zhou, X. Bao (2004) Density functional theory study of chemical composition influence on the acidity of H-MCM-22 zeolite. J. Phys. Chem. B 108: 18228-18233 https://doi.org/10.1021/jp049384w
[35] Y. Wang, D. Zhou, G. Yang, S. Miao, X. Liu, X. Bao (2004) A DFT study on isomorphously substituted MCM-22 zeolite. J. Phys. Chem. A 108: 6730-6734 https://doi.org/10.1021/jp0376875
[36] R.E. Patet, M. Koehle, R.F. Lobo, S. Caratzoulas, D.G. Vlachos (2017) General Acid-Type Catalysis in the Dehydrative Aromatization of Furans to Aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA Zeolites. Journal of Physical Chemistry C 121: 13666-13679 https://doi.org/10.1021/acs.jpcc.7b02344
[37] W. Wannapakdee, D. Suttipat, P. Dugkhuntod, T. Yutthalekha, A. Thivasasith, P. Kidkhunthod, S. Nokbin, S. Pengpanich, J. Limtrakul, C. Wattanakit (2019) Aromatization of C5 hydrocarbons over Ga-modified hierarchical HZSM-5 nanosheets. Fuel 236: 1243-1253 https://doi.org/10.1016/j.fuel.2018.09.093
[38] E.G. Derouane, C.D. Chang (2000) Confinement effects in the adsorption of simple bases by zeolites. Microporous Mesoporous Mater. 35-36: 425-433 https://doi.org/https://doi.org/10.1016/S1387-1811(99)00239-5
[39] B. Boekfa, S. Choomwattana, P. Khongpracha, J. Limtrakul (2009) Effects of the zeolite framework on the adsorptions and hydrogen-exchange reactions of unsaturated aliphatic, aromatic, and heterocyclic compounds in ZSM-5 zeolite: A combination of perturbation theory (MP2) and a newly developed density functional theory (M06-2X) in ONIOM scheme. Langmuir 25: 12990-12999 https://doi.org/10.1021/la901841w
[40] Y. Zhao, D.G. Truhlar (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120: 215-241 https://doi.org/10.1007/s00214-007-0310-x
[41] B. Boekfa, P. Pantu, M. Probst, J. Limtrakul (2010) Adsorption and tautomerization reaction of acetone on acidic zeolites: The confinement effect in different types of zeolites. Journal of Physical Chemistry C 114: 15061-15067 https://doi.org/10.1021/jp1058947
[42] S. Klinyod, B. Boekfa, S. Pornsatitworakul, T. Maihom, N. Jarussophon, P. Treesukol, C. Wattanakit, J. Limtrakul (2019) Theoretical and Experimental Study on the 7-Hydroxy-4-Methylcoumarin Synthesis with H-Beta Zeolite. ChemistrySelect 4: 10660-10667 https://doi.org/10.1002/slct.201902596
[43] Y. Injongkol, T. Maihom, S. Choomwattana, B. Boekfa, J. Limtrakul (2017) A mechanistic study of ethanol transformation into ethene and acetaldehyde on an oxygenated Au-exchanged ZSM-5 zeolite. RSC Advances 7: 38052-38058 https://doi.org/10.1039/c7ra06313j
[44] V. Paluka, T. Maihom, C. Warakulwit, P. Srifa, B. Boekfa, P. Treesukol, P. Poolmee, J. Limtrakul (2020) Density functional study of the effect of cation exchanged Sn-Beta zeolite for the diels-alder reaction between furan and methyl acrylate. Chem. Phys. Lett. 754: 137743 https://doi.org/https://doi.org/10.1016/j.cplett.2020.137743
[45] B. Boekfa, E. Pahl, N. Gaston, H. Sakurai, J. Limtrakul, M. Ehara (2014) C-Cl bond activation on Au/Pd bimetallic nanocatalysts studied by density functional theory and genetic algorithm calculations. Journal of Physical Chemistry C 118: 22188-22196 https://doi.org/10.1021/jp5074472
[46] B. Boekfa, P. Treesukol, Y. Injongkol, T. Maihom, P. Maitarad, J. Limtrakul (2018) The activation of methane on Ru, Rh, and Pd decorated carbon nanotube and boron nitride nanotube: A DFT study. Catalysts 8: 190. https://doi.org/10.3390/catal8050190
[47] S. Ketrat, T. Maihom, P. Treesukul, B. Boekfa, J. Limtrakul (2019) Theoretical study of methane adsorption and C─H bond activation over Fe-embedded graphene: Effect of external electric field. J. Comput. Chem. 40: 2819-2826 https://doi.org/10.1002/jcc.26058
[48] N. Pueyo Bellafont, G. Álvarez Saiz, F. Viñes, F. Illas (2016) Performance of Minnesota functionals on predicting core-level binding energies of molecules containing main-group elements. Theor. Chem. Acc. 135: 1-9 https://doi.org/10.1007/s00214-015-1787-3
[49] A. Gupta, B. Boekfa, H. Sakurai, M. Ehara, U.D. Priyakumar (2016) Structure, Interaction, and Dynamics of Au/Pd Bimetallic Nanoalloys Dispersed in Aqueous Ethylpyrrolidone, a Monomeric Moiety of Polyvinylpyrrolidone. J. Phys. Chem. C 120: 17454-17464 https://doi.org/10.1021/acs.jpcc.6b05097
[50] P. Nimnual, J. Tummatorn, B. Boekfa, C. Thongsornkleeb, S. Ruchirawat, P. Piyachat, K. Punjajom (2019) Construction of 5-Aminotetrazoles via in Situ Generation of Carbodiimidium Ions from Ketones Promoted by TMSN3/TfOH. J. Org. Chem. 84: 5603-5613 https://doi.org/10.1021/acs.joc.9b00555
[51] K. Khownium, J. Romsaiyud, S. Borwornpinyo, P. Wongkrasant, P. Pongkorpsakol, C. Muanprasat, B. Boekfa, T. Vilaivan, S. Ruchirawat, J. Limtrakul (2019) Turn-on fluorescent sensor for the detection of lipopolysaccharides based on a novel bispyrenyl terephtalaldehyde-bis-guanylhydrazone. New J. Chem. 43: 7051-7056 https://doi.org/10.1039/c9nj00323a
[52] P. Zhao, B. Boekfa, T. Nishitoba, N. Tsunoji, T. Sano, T. Yokoi, M. Ogura, M. Ehara (2020) Theoretical study on 31P NMR chemical shifts of phosphorus-modified CHA zeolites. Microporous Mesoporous Mater. 294: 109908 https://doi.org/10.1016/j.micromeso.2019.109908
[53] K. Kongpatpanich, T. Nanok, B. Boekfa, M. Probst, J. Limtrakul (2011) Structures and reaction mechanisms of glycerol dehydration over H-ZSM-5 zeolite: A density functional theory study. Physical Chemistry Chemical Physics 13: 6462-6470 https://doi.org/10.1039/c0cp01720e
[54] S. Dapprich, I. Komáromi, K.S. Byun, K. Morokuma, M.J. Frisch (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Journal of Molecular Structure: THEOCHEM 461-462: 1-21 https://doi.org/10.1016/S0166-1280(98)00475-8
[55] E.G. Derouane (1998) Zeolites as solid solvents. J. Mol. Catal. A: Chem. 134: 29-45 https://doi.org/10.1016/S1381-1169(98)00021-1
[56] E.V. Stefanovich, T.N. Truong (1996) Embedded density functional approach for calculations of adsorption on ionic crystals. J. Chem. Phys. 104: 2946-2955 https://doi.org/10.1063/1.471115
[57] M. Allavena, K. Seiti, E. Kassab, G. Ferenczy, J.G. Ángyán (1990) Quantum-chemical model calculations on the acidic site of zeolites including Madelung-potential effects. Chem. Phys. Lett. 168: 461-467 https://doi.org/10.1016/0009-2614(90)85144-2
[58] T. Maihom, B. Boekfa, J. Sirijaraensre, T. Nanok, M. Probst, J. Limtrakul (2009) Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over h-zsm-5: An ONIOM study. Journal of Physical Chemistry C 113: 6654-6662 https://doi.org/10.1021/jp809746a
[59] B. Boekfa, P. Pantu, J. Limtrakul (2008) Interactions of amino acids with H-ZSM-5 zeolite: An embedded ONIOM study. J. Mol. Struct. 889: 81-88 https://doi.org/10.1016/j.molstruc.2008.01.026
[60] M.J. Frisch, ; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnen Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. (2009) Gaussian 09, Gaussian, Inc., Wallingford CT.:
[61] D. Freude, J. Klinowski, H. Hamdan (1988) Solid-state NMR studies of the geometry of brønsted acid sites in zeolitic catalysts. Chem. Phys. Lett. 149: 355 - 362 https://doi.org/10.1016/0009-2614(88)85107-8
[62] L. Palin, C. Lamberti, Å. Kvick, F. Testa, R. Aiello, M. Milanesio, D. Viterbo (2003) Single-crystal synchrotron radiation X-ray diffraction study of B and Ga silicalites compared to a purely siliceous MFI: A discussion of the heteroatom distribution. J. Phys. Chem. B 107: 4034-4042 https://doi.org/10.1021/jp027586r
[63] N.W. Cant, W.K. Hall (1972) Studies of the hydrogen held by solids. XXI. The interaction between ethylene and hydroxyl groups of a Y-zeolite at elevated temperatures. J. Catal. 25: 161-172 https://doi.org/10.1016/0021-9517(72)90213-8
[64] Y. Furumoto, Y. Harada, N. Tsunoji, A. Takahashi, T. Fujitani, Y. Ide, M. Sadakane, T. Sano (2011) Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General 399: 262-267 https://doi.org/10.1016/j.apcata.2011.04.009