Ashburn T.T, Thor K.B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3 673–683, https://doi.org/10. 1038/nrd1468.
Ashraf M.U., Iman K., Khalid M.F., Salman H.M., Shafi T., Rafi M., Javaid N., Hussain R., Ahmad F., Shahzad-Ul-Hussan S., Mirza S., Shafiq M., Afzal S., Hamera S., Anwar S., Qazi R., Idrees M., Qureshi S.A., Chaudhary S.U. (2019). Evolution of efficacious pangenotypic hepatitis C virus therapies. Med. Res. Rev. 39 1091–1136 https://doi.org/10.1002/med.21554
Astuti, I., & Ysrafil (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr, 14(4), 407–412. https://doi.org/10.1016/j.dsx.2020.04.020
Berman HM (2000). The Protein Data Bank. Nucleic Acids Res. 28(1):235-242, DOI 10.1093/nar/28.1.235
Bhardwaj K, Sun J, Holzenburg A, Guarino LA, Kao CC (2006). RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J. Mol. Biol. 361:243–256 https://doi.org/10.1016/j.jmb.2006.06.021
Bosseboeuf E., Aubry M., Nhan T., de Pina J.J., Rolain J.M., Raoult D. (2018). Azithromycin inhibits the replication of Zika virus. J Antivirals Antiretrovirals;10(1):6–11 DOI: 10.4172/1948-5964.1000173
Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E. J., Canard B., Decroly E. (2010). In vitro reconstitution of SARS- coronavirus mRNA cap methylation. PLoS Pathogens, 6 (4) (2010) e1000863 https://doi.org/10.1371/journal.ppat.1000863
Brimacombe, K. R. et al. (2020). An OpenData portal to share COVID-19 drug repurposing data in real time. bioRxiv, p. 2020.06.04.135046. doi: 10.1101/2020.06.04.135046.
Caly, L. et al. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 178, 104787. doi:https://doi.org/10.1016/j.antiviral.2020.10478.
Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Napoli R. Di, (2020). Features, evaluation and treatment coronavirus (COVID-19). StatPearls, StatPearls Publishing, Treasure Island (FL), http://www.ncbi.nlm.nih.gov/books/NBK554776/
Cavalla, D., Oerton, E., Bender, A. (2017). 1.02 - Drug Repurposing Review. in Chackalamannil, S., Rotella, D.P., Ward, S. E. (eds). Oxford: Elsevier, 11–47. https://doi.org/10.1016/B978-0-12-409547-2.12283-8.
Chemical Computing Group ULC (2019), Molecular Operating Environment (MOE). Montreal, QC, Canada
Chen Y., Liu Q., Guo D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92(4):418-423 https://doi.org/10.1002/jmv.25681
Chen, Y., Su, C., Ke, M., Jin, X., Xu, L., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., & Guo, D. (2011). Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS pathogens, 7(10), e1002294. https://doi.org/10.1371/journal.ppat.1002294
Clark A, Jit M, Warren-Gash C, Guthrie B, Wang HHX, Mercer SW, Sanderson C, McKee M, Troeger C, Ong KL, Checchi F, Perel P, Joseph S, Gibbs HP, Banerjee A, Eggo RM., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group. (2020). Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. The Lancet Global Health, 8(8), e1003 - e1017 https://doi.org/10.1016/S2214-109X(20)30264-3
Colson P., Raoult D. (2016). Fighting viruses with antibiotics: an overlooked path. Int. J. Antimicrob. Agents 48:349–352 https://doi.org/10.1016/j.ijantimicag.2016.07.004
Deng X., Baker S.C. (2018). An “Old” protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defences. Virology 517, 157–163 https://doi.org/10.1016/j.virol.2017.12.024
Ellinger, B. et al. (2020). Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection. Research Square, doi: 10.21203/RS.3.RS-23951/V1.
Fehr, A. R., Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23. doi: 10.1007/978-1-4939- 2438- 7_1
Ganeshpurkar, A. Saluja, A. K. (2017). The Pharmacological Potential of Rutin. Saudi Pharm. J. 25(2), pp. 149–164. doi: https://doi.org/10.1016/j.jsps.2016.04.025
Gautret.P. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID- 19: results of an open label non- randomized clinical trial. Int. J. Antimicrob. Agents, 56(1) 105949 doi: 10.1016/j.ijantimicag.105949
Ge, Y. et al. (2020). A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID- 19. bioRxiv, p. 2020.03.11.986836. doi: 10.1101/2020.03.11.986836
Gordon, D. E.; Jang, G. M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K. M.;O’Meara, M. J.; Rezelj, V. V.; Guo, J. Z.; Swaney, D. L.; Tummino, T. A.; Huettenhain, R.; Kaake, R. M.; Richards, A. L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B. J.; Braberg, H.; Fabius, J. M.; Eckhardt, M.; Soucheray, M.; Bennett, M. J.; Cakir, M.; McGregor, M. J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z. Z. C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I. T.; Melnyk, J. E.; Chorba, J. S.; Lou, K.; Dai, S. A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C. J. P.; Perica, T.; Pilla, K. B.; Ganesan, S. J.; Saltzberg, D. J.; Rakesh, R.; Liu, X.; Rosenthal, S. B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.-P.; Liu, Y. F.; Wankowicz, S. A.; Bohn, M.; Safari, M.; Ugur, F. S.; Koh, C.; Savar, N. S.; Tran, Q. D.; Shengjuler, D.; Fletcher, S. J.;O’Neal, M. C.; Cai, Y.; Chang, C. J.; Broadhurst, D. J.; Klippsten, S.; Sharp, P. P.; Wenzell, N. A.; Kuzuoglu, D.; Wang, H.-Y.; Trenker, R.; Young, J. M.; Cavero, D. A.; Hiatt, J.; Roth, T. L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R. M.; Frankel, A. D.; Rosenberg, O. S.; Verba, K. A.; Agard, D. A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H. S.; Fujimori, D. G.; Ideker, T.; Craik, C. S.; Floor, S. N.; Fraser, J. S.; Gross, J. D.; Sali, A.; Roth, B. L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K. M.; Shoichet, B. K.; Krogan, N. J. (2020). A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature, 583, 459–468 DOI: 10.1038/s41586-020-2286-9
Hackbart M., Deng X., Baker S.C. (2020). Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc Natl Acad Sci USA 117 8094–8103 https://doi.org/10.1073/pnas.1921485117
Hawkins P.C.D. et al. (2010). Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 50(4) 572–584. https://pubs.acs.org/doi/10.1021/ci100031x
Heiser, K. et al. (2020). Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2. bioRxiv, p. 2020.04.21.054387. doi: 10.1101/2020.04.21.054387.
Hoffmann, M. et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2) 271-280.e8. doi: 10.1016/j.cell.2020.02.052.
Hsieh, P. K., Chang, S. C., Huang, C. C., Lee, T. T., Hsiao, C. W., Kou, Y. H., Chen, I. Y., Chang, C. K., Huang, T. H., & Chang, M. (2005). Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol., 79(22), 13848–13855. https://doi.org/10.1128/JVI.79.22.13848-13855.2005
Ispas, G., Koul, A., Verbeeck, J., Sheehan, J., Sanders-Beer, B., Roymans, D., Andries, K., Rouan, M. C., De Jonghe, S., Bonfanti, J. F., Vanstockem, M., Simmen, K., & Verloes, R. (2015). Antiviral Activity of TMC353121, a Respiratory Syncytial Virus (RSV) Fusion Inhibitor, in a Non-Human Primate Model. PloS one, 10(5), e0126959. https://doi.org/10.1371/journal.pone.0126959
Jiménez-Alberto A., Ribas-Aparicio R.M., Aparicio-Ozores G., Castelán-Vega, J.A. (2020). Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Comput. Biol. Chem. 88, 107325. doi: https://doi.org/10.1016/j.compbiolchem.2020.107325.
Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, Xinglou, You, T., Liu, Xiaoce, Yang, Xiuna, Bai, F., Liu, H., Liu, Xiang, Guddat, L.W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z., Yang, H., (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature 582, 289–29. https://doi.org/10.1038/s41586-020-2223-y
Ke, M. et al. (2012). Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2′-O-methyltransferase activity of nsp10/nsp16 complex. Virus Res. 167(2) 322–328. doi: https://doi.org/10.1016/j.virusres.2012.05.017.
Kesel, AJ, Huang, Z, Murray, MG, Prichard, MN, Caboni, L, Nevin, DK, Fayne, D, Lloyd, DG, Detorio, MA, Schinazi, RF. (2014). Retinazone inhibits certain bloodborne human viruses including Ebola virus Zaire. Antiviral Chem. Chemother. 23(5), 197- 215 https://doi.org/10.3851/IMP2568
Kim, Y. et al. (2020). Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. bioRxiv, p. 2020.06.26.173872. doi: 10.1101/2020.06.26.173872.
Kumar V., Jena M. (2020). In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19. PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-31775/v1
Kumar, Y., Singh, H., Patel, C.N. (2020). In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing’. J. Infect. Public Heal. S1876-0341(20)30526-8. https://doi.org/10.1016/j.jiph.2020.06.016
Ladbury, J.E. (1996). Just add water! The effect of water on the specificity of protein- ligand binding sites and its potential application to drug design. Chem. Biol., 3(12), 973–980. doi: 10.1016/S1074-5521(96)90164-7.
Leach, A.R. et al. (2010). Three-dimensional pharmacophore methods in drug discovery. J. Med. Chem. 53(2), 539–558. doi: 10.1021/jm900817u.
Lei J., Kusov Y., Hilgenfeld R. (2018). Nsp3 of coronaviruses: structures and functions of a large multi‐domain protein. Antiviral Res. 149 58‐74 https://doi.org/10.1016/j.antiviral.2017.11.001
Li, G., De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019- nCoV). Nat. Rev. Drug Discov. 19 (3) 149–150. https://doi.org/10.1038/d41573-020-00016-0
Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., Zhang, X., Hua, S. N., Yu, J., Xiao, P. G., Li, R. S., & Tan, X. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral. Res. 67(1), 18–23. https://doi.org/10.1016/j.antiviral.2005.02.007
Long, D., Yang, D. (2009). Buffer interference with protein dynamics: a case study on human liver fatty acid binding protein. Biophys. J. 96(4), 1482–1488. https://doi.org/10.1016/j.bpj.2008.10.049
Madrid P.B., Panchal R.G., Warren T.K., Shurtleff A.C., Endsley A.N., Green C.E., Kolokoltsov A. (2015). Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect. Dis. 1(7):317–326. https://doi.org/10.1021/acsinfecdis.5b00030
Marra, M.A., Jones, S.J., Astell, C.R., Holt, R.A., Brooks-Wilson, A., Butterfield, Y.S., et al. (2003). The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404. doi: 10.1126/science.1085953
Martin, W. R., Cheng, F. (2020). Repurposing of FDA-Approved Toremifene to Treat COVID-19 by Blocking the Spike Glycoprotein and NSP14 of SARS-CoV-2. chemRxiv doi: 10.26434/CHEMRXIV.12431966.V1.
Masters, P.S., Sturman, L.S. (1990). Background paper: functions of the coronavirus nucleocapsid protein. Adv. Exp. Med. Biol., 276, 235-238. https://doi.org/10.1007/978-1-4684-5823-7_32
Mawhinney, L., Armstrong, M., O'Reilly, C., Bucala, R., Leng, L., Fingerle-Rowson, G., Fayne, D., Keane, M., Tynan, A., Maher, L., Cooke, G., Lloyd, D., Conroy, H., Donnelly, S. (2015). Macrophage migration inhibitory factor (MIF), enzymatic activity & lung cancer. Mol. Med. 20(1) 729-35. https://doi.org/10.2119/molmed.2014.0013
McBride, R., van Zyk, M., Fielding, B.C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6(8) 2991-3018. https://doi.org/10.3390/v6082991
McKay, P.B., Fayne, D., Horn, H.W., James, T., Peters, M.B., Carta, G., Caboni, L., Nevin, D.K., Price, T., Bradley, G., Williams, D.C., Rice, J.E., Lloyd, D.G. (2012). Consensus computational ligand-based design for the identification of novel modulators of human Estrogen Receptor alpha. Mol. Inf. 31(3-4) 246–258. https://doi.org/10.1002/minf.201100127
McInnes, C. (2007). Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11 494–502. https://doi.org/10.1016/j.cbpa.2007.08.033
Menachery, V.D., Mitchell, H.D., Cockrell, A.S., Gralinski, L.E., Yount, B.L. Jr, Graham, R.L., et al. (2017). MERS-CoV accessory ORFs play key role for infection and pathogenesis. mBio 8:e00665-17. doi: 10.1128/mBio.00665-17
Mousavizadeh, L. and Ghasemi, S. (2020). Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. S1684-1182(20)30082-7. https://doi.org/10.1016/j.jmii.2020.03.022
Munster, V.J. et al. (2020). A novel coronavirus emerging in China - Key questions for impact assessment. N. Engl. J. Med. 382(8) 692–694. doi: 10.1056/NEJMp2000929.
Muthas, D., Sabnis Y.A., Lundborg M., Karlen A. (2008). Is it possible to increase hit rates in structure-based virtual screening by pharmacophore filtering? An investigation of the advantages and pitfalls of post filtering. J. Mol. Graph. Model. 26 1237–51. https://doi.org/10.1016/j.jmgm.2007.11.005
Najmanovich, R., Kuttner, J., Sobolev, V., Edelman, M. (2000). Side-chain flexibility in proteins upon ligand binding. Proteins, 39(3) 261–268. https://doi.org/10.1002/(sici)1097-0134(20000515)39:3<261::aid-prot90>3.0.co;2-4
Nevin, D.K., Peters, M.B., Carta, G., Fayne, D., Lloyd, D.G. (2012). Integrated virtual screening for the identification of novel and selective Peroxisome Proliferating Activated Receptor (PPAR) modulators. J. Med. Chem. 55(11) 4978-89 https://doi.org/10.1021/jm300068n
OMEGA 3.1.1.2: OpenEye Scientific Software. Santa Fe, NM, USA, 2019. url: http://www.eyesopen.com
O’Neill, L.A.J., Netea, M.G. (2020) BCG-induced trained immunity: can it offer protection against COVID-19? Nat. Rev. Immunol. 20, 335–337. https://doi.org/10.1038/s41577-020-0337-y
Pacios, O., Blasco, L., Bleriot, I., Fernandez-Garcia, L., González Bardanca, M., Ambroa, A., López, M., Bou, G., Tomás, M. (2020). Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases. Antibiot. Basel Switz. 9 (2). https://doi.org/10.3390/antibiotics9020065
Pan, J., Peng, X., Gao, Y., Li, Z., Lu, X., Chen, Y., Ishaq, M., Liu, D., Dediego, M. L., Enjuanes, L., Guo, D. (2008). Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PloS one 3(10) e3299. https://doi.org/10.1371/journal.pone.0003299
Pandey, A., Nikam, A. N., Shreya, A. B., Mutalik, S. P., Gopalan, D., Kulkarni, S., Padya, B. S., Fernandes, G., Mutalik, S., Prassl, R. (2020). Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci. 256, 117883. https://doi.org/10.1016/j.lfs.2020.117883
Pant, S. et al. (2020). Peptide-like and small-molecule inhibitors against Covid-19. J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2020.1757510
Pár A., Pár G. (2018). Three decades of the hepatitis C virus from the discovery to the potential global elimination: the success of translational researches. Orv. Hetil. 159 455–465. DOI: 10.1556/650.2018.30997.
Patskovsky Y.V., et al. (1996). Aromatic thiosemicarbazones, their antiviral action and interferon. 1. The decreasing of adenovirus type 1 resistance against interferon by methisazone in vitro. Biopolym. Cell. 12 74-83. DOI: 10.7124/bc.000425.
Peele, K. A., Chandrasai, P., Srihansa, T., Krupanidhi, S., Sai, A.V., Babu, D. J., Indira, M., Reddy, A.R., Venkateswarulu, T.C. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform. Med. Unlocked, 19, 100345. https://doi.org/10.1016/j.imu.2020.100345
Perlman, S., Netland, J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7(6), 439–450. https://doi.org/10.1038/nrmicro214
Qadir A., Riaz M., Saeed M., Shahzad-Ul-Hussan S. (2018). Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur. J. Med. Chem. 156 444–460. https://doi.org/10.1016/j.ejmech.2018.07.014
Sanders, M.P.A. et al. (2012). From the protein’s perspective: The benefits and challenges of protein structure-based pharmacophore modelling. MedChemComm, 3(1) 28–38. doi: 10.1039/c1md00210d.
Santibáñez-Morán, M.G., López-López, E., Prieto-Martínez, F.D., Sánchez-Cruz, N., Medina-Franco, J.L. (2020). Consensus Virtual Screening of Dark Chemical Matter and Food Chemicals Uncover Potential Inhibitors of SARS-CoV-2 Main Protease. Version 1. ChemRxiv. https://doi.org/10.26434/chemrxiv.12420860.v1
Schiebel, J., Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, T.E., Cavalli, A., Ostermann, A., Heine, A., Klebe, G. (2018). Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat. Commun. 9(1) 3559. https://doi.org/10.1038/s41467-018-05769-2
Schneider G. (2018). Automating drug discovery. Nat. Rev. Drug Discov. 17(2) 97-113. doi:10.1038/nrd.2017.232
Schneider P., Schneider G. (2018). Polypharmacological Drug-target Inference for Chemogenomics. Mol. Inform. 37 9- 10:e1800050. doi:10.1002/minf.201800050
Shah, B., Modi, P., Sagar, S.R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci. 252, 117652. https://doi.org/10.1016/j.lfs.2020.117652
Snijder, E.J., Bredenbeek, P.J., Dobbe, J.C., Thiel, V., Ziebuhr, J., Poon, L.L., et al. (2003). Unique and conserved features of genome and proteome of SARS- coronavirus, an early split-o from the coronavirus group 2 lineage. J. Mol. Biol. 331 991– 1004. doi: 10.1016/s0022-2836(03)00865-9
Snijder, E.J., Decroly, E., Ziebuhr, J. (2016). The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59– 126. doi: 10.1016/bs.aivir.2016.08.008
Su, H. et al. (2020). Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in- vitro. bioRxiv, p. 2020.04.13.038687. doi: 10.1101/2020.04.13.038687
Subissi, L., Posthuma, C.C., Collet, A., ZevenhovenDobbe, J.C., Gorbalenya, A.E., Decroly, E., Snijder, E.J., Canard, B., Imbert, (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA 111, e3900–3909 https://doi.org/10.1073/pnas.1323705111
Surjit, M., Liu, B., Chow, V.T., Lal, S.K. (2006). The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem. 281(16), 10669–10681. https://doi.org/10.1074/jbc.M509233200
Talevi, A., Bellera, CL. (2020) Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Dis. 15 397–401, https://doi.org/10.1080/17460441.2020.1704729
Tazikeh-Lemeski, E. et al. (2020). Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2020.1779133.
von Brunn, A., Teepe, C., Simpson, J.C., Pepperkok, R., Friedel, C.C., Zimmer, R., Roberts, R., Baric, R., Haas J. (2007), Analysis of intraviral protein–protein interactions of the SARS coronavirus. PLoS One, 2(5) e459 https://doi.org/10.1371/journal.pone.0000459
Wagner M.C. (2011). The therapeutic potential of adenosine triphosphate as an immune modulator in the treatment of HIV/AIDS: a combination approach with HAART. Curr. HIV Res. 9(4), 209–222. https://doi.org/10.2174/157016211796320289
Walters WP, Stahl MT, Murcko MA. (1998); ‘Virtual screening — an overview’. Drug Discov. Today. 3 160–78 https://doi.org/10.1016/S1359-6446(97)01163-
WHO (2020) https://www.who.int/dg/speeches/detail/who-director-general-s-statement-on-ihr-emergency-committee- on-novel-coronavirus-(2019-ncov)
Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
Xiong, H.-L. et al. (2020). Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro. bioRxiv. doi: 10.1101/2020.06.05.135996.
Yamaguchi, K., Honda, M., Ikigai, H., Hara, Y., Shimamura, T. (2002). Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antivir. Res. 53(1), 19–34. https://doi.org/10.1016/s0166- 3542(01)00189-9
Zhou N., Pan T., Zhang J., Li Q., Zhang X., Bai C. (2016). Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J. Biol. Chem. 291 9218–9232 https://doi.org/10.1074/jbc.M116.716100
Ziebuhr J. (2005). The coronavirus replicase. Curr. Top. Microbiol. 287, 57–94. https://doi.org/10.1007/3-540-26765-4_3