Andersson, F.A.T., Karlsson, A., Svensson, B.H., Ejlertsson, J., 2004. Occurrence and abatement of volatile sulfur compounds during biogas production. J. Air Waste Manag. Assoc. 54, 855–861. https://doi.org/10.1080/10473289.2004.10470953
Andriamanohiarisoamanana, F.J., Shirai, T., Yamashiro, T., Yasui, S., Iwasaki, M., Ihara, I., Nishida, T., Tangtaweewipat, S., Umetsu, K., 2018. Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances. J. Environ. Manage. 208, 134–141. https://doi.org/10.1016/j.jenvman.2017.12.012
Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G., 2018. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 36, 452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011
Angenent, L.T., Usack, J.G., Xu, J., Hafenbradl, D., Posmanik, R., Tester, J.W., 2018. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresour. Technol. 247, 1085–1094. https://doi.org/10.1016/j.biortech.2017.09.104
Bajracharya, S., 2020. Microbial fuel cell coupled with anaerobic treatment processes for wastewater treatment, in:, Integrated Microbial Fuel Cells for Wastewater Treatment. Butterworth-Heinemann, pp. 295–311. https://doi.org/https://doi.org/10.1016/B978-0-12-817493-7.00014-X
Bassani, I., Kougias, P.G., Angelidaki, I., 2016. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate. Bioresour. Technol. 221, 485–491. https://doi.org/10.1016/j.biortech.2016.09.083
Charalambous, P. and Vyrides, I., 2020. In situ biogas upgrading and enhancement of anaerobic digestion of cheese whey by addition of scrap or powder zero-valent iron (ZVI). J. Environ. Manage, p.111651. https://doi.org/10.1016/j.jenvman.2020.111651
Cheng, J., Zhu, C., Zhu, J., Jing, X., Kong, F., Zhang, C., 2020. Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge. J. Clean. Prod. 242, 118195. https://doi.org/10.1016/j.jclepro.2019.118195
Farghali, M., Andriamanohiarisoamanana, F.J., Ahmed, M.M., Kotb, S., Yamamoto, Y., Iwasaki, M., Yamashiro, T., Umetsu, K., 2020. Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. Waste Manag. 101, 141–149. https://doi.org/10.1016/j.wasman.2019.10.003
Fu, S., Angelidaki, I. and Zhang, Y., 2020. In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnol. https://doi.org/10.1016/j.tibtech.2020.08.006
Jiang, Y., May, H.D., Lu, L., Liang, P., Huang, X., Ren, Z.J., 2019. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. Water Res. 149, 42–55. https://doi.org/10.1016/j.watres.2018.10.092
Liu, Y., Zhang, Y., Ni, B.J., 2015. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Res. 75, 292–300. https://doi.org/10.1016/j.watres.2015.02.056
Menikea, K.K., Kyprianou, A., Samanides, C.G., Georgiou, S.G., Koutsokeras, L., Constantinides, G., Vyrides, I., 2020. Anaerobic granular sludge and zero valent scrap iron (ZVSI) pre-treated with green tea as a sustainable system for conversion of CO2 to CH4. J. Clean. Prod. 268. https://doi.org/10.1016/j.jclepro.2020.121860
Muñoz, R., Meier, L., Diaz, I., Jeison, D., 2015. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 14, 727–759. https://doi.org/10.1007/s11157-015-9379-1
Mystrioti, C., Sparis, D., Papasiopi, N., Xenidis, A., Dermatas, D., Chrysochoou, M., 2015. Assessment of polyphenol coated Nano zero Valent iron for hexavalent chromium removal from contaminated waters. Bull. Environ. Contam. Toxicol. 94, 302–307. https://doi.org/10.1007/s00128-014-1442-z
Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y., McCarty, P.L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492. https://doi.org/10.1016/0043-1354(79)90043-5
Paolini, V., Petracchini, F., Carnevale, M., Gallucci, F., Perilli, M., Esposito, G., Segreto, M., Occulti, L.G., Scaglione, D., Ianniello, A., Frattoni, M., 2018. Characterisation and cleaning of biogas from sewage sludge for biomethane production. J. Environ. Manage. 217, 288–296. https://doi.org/10.1016/j.jenvman.2018.03.113
Prévoteau, A., Carvajal-Arroyo, J.M., Ganigué, R., Rabaey, K., 2020. Microbial electrosynthesis from CO2: forever a promise? Curr. Opin. Biotechnol. 62, 48–57. https://doi.org/10.1016/j.copbio.2019.08.014
Ruan, R., Cao, J., Li, C., Zheng, D., Luo, J., 2017. The influence of micro-oxygen addition on desulfurization performance and microbial communities during waste-activated sludge digestion in a rusty scrap iron-loaded anaerobic digester. Energies 10. https://doi.org/10.3390/en10020258
Salazar Gómez, J.I., Lohmann, H., Krassowski, J., 2016. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption. Chemosphere 153, 48–57. https://doi.org/10.1016/j.chemosphere.2016.02.128
Samanides, C.G., Koutsokeras, L., Constantinides, G., Vyrides, I., 2020. Methanogenesis Inhibition in Anaerobic Granular Sludge for the Generation of Volatile Fatty Acids from CO2 and Zero Valent Iron. Front. Energy Res. 8, 1–16. https://doi.org/10.3389/fenrg.2020.00037
Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., Stolten, D., 2015. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 40, 4285–4294. https://doi.org/10.1016/j.ijhydene.2015.01.123
Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X., 2015. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532. https://doi.org/10.1016/j.rser.2015.06.029
Vyrides, I., Andronikou, M., Kyprianou, A., Modic, A., Filippeti, A., Yiakoumis, C., Samanides, C.G., 2018. CO2 conversion to CH4 using Zero Valent Iron (ZVI) and anaerobic granular sludge: Optimum batch conditions and microbial pathways. J. CO2 Util. 27, 415–422. https://doi.org/10.1016/j.jcou.2018.08.023
Vyrides, I., Stuckey, D.C., 2009. Effect of fluctuations in salinity on anaerobic biomass and production of soluble microbial products (SMPs). Biodegradation 20, 165–175. https://doi.org/10.1007/s10532-008-9210-6
Wei, J., Hao, X., van Loosdrecht, M.C.M., Li, J., 2018. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review. Renew. Sustain. Energy Rev. 89, 16–26. https://doi.org/10.1016/j.rser.2018.02.042
Zabranska, J., Pokorna, D., 2018. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol. Adv. 1–14. https://doi.org/10.1016/j.biotechadv.2017.12.003