[1] NICE Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease 2014.
[2] Goldstein BA, Navar AM, Pencina MJ, Ioannidis J. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. Journal of the American Medical Informatics Association. 2017;24(1):198-208.
[3] Reps JM, Schuemie MJ, Suchard MA, Ryan PB, Rijnbeek PR. Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data. Journal of the American Medical Informatics Association. 2018;25(8):969-75.
[4] Steyerberg EW, Moons KG, van der Windt DAet al. . Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013;102:e1001381.
[5] Lee YH, Bang H, Kim DJ. How to Establish Clinical Prediction Models. Endocrinol Metab (Seoul). 2016;31(1):38–44. doi:10.3803/EnM.2016.31.1.38
[6] Collins GS, Reitsma JB, Altman DGet al. . Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med 2015;131:1–9.
[7] Xue X, Kim MY, Gaudet MM, Park Y, Heo M, Hollenbeck AR, Strickler HD, Gunter MJ. A comparison of the polytomous logistic regression and joint cox proportional hazards models for evaluating multiple disease subtypes in prospective cohort studies. Cancer Epidemiology and Prevention Biomarkers. 2013;22(2):275-85.
[8] Howards PP, Hertz-Picciotto I, Poole C. Conditions for bias from differential left truncation. American journal of epidemiology. 2006;165(4):444-52.
[9] Moriguchi, S., Hayashi, Y., Nose, Y., Maehara, Y., Korenaga, D. and Sugimachi, K., 1993. A comparison of the logistic regression and the cox proportional hazard models in retrospective studies on the prognosis of patients with castric cancer. Journal of surgical oncology, 52(1), pp.9-13.
[10] Peduzzi P, Holford T, Detre K, Chan YK. Comparison of the logistic and Cox regression models when outcome is determined in all patients after a fixed period of time. Journal of chronic diseases. 1987;40(8):761-7.
[11] Vock, D.M., Wolfson, J., Bandyopadhyay, S., Adomavicius, G., Johnson, P.E., Vazquez-Benitez, G. and O’Connor, P.J. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting. Journal of biomedical informatics. 2016;61():119-131.
[12] Macaulay D, Sun SX, Sorg RA, Yan SY, De G, Wu EQ, Simonelli PF. Development and validation of a claims-based prediction model for COPD severity. Respiratory medicine. 2013;107(10):1568-77.
[13] Chandran U, Reps J, Stang PE, Ryan PB. Inferring disease severity in rheumatoid arthritis using predictive modeling in administrative claims databases. PloS one. 2019;14(12).
[14] Tai D, Dick P, To T, Wright JG. Development of pediatric comorbidity prediction model. Archives of pediatrics & adolescent medicine. 2006;160(3):293-9.
[15] Wang Q., Reps JM., Kostka KF., Ryan PB., Zou Y., et al. Development and Validation of a Prognostic Model Predicting Symptomatic Hemorrhagic Transformation in Acute Ischemic Stroke at Scale in the OHDSI Network. PloS one. <add when published>
[16] Ezaz G, Long JB, Gross CP, Chen J. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. Journal of the American Heart Association. 2014;3(1):e000472.
[17] Suchard MA, Simpson SE, Zorych I, Ryan P, Madigan D. Massive parallelization of serial inference algorithms for complex generalized linear models. ACM Transactions on Modeling and Computer Simulation. 2013;23(10).
[18] Bootkrajang, J. and Kabán, A., 2012, September. Label-noise robust logistic regression and its applications. In Joint European conference on machine learning and knowledge discovery in databases (pp. 143-158). Springer, Berlin, Heidelberg.
[19] Natarajan, N., Dhillon, I.S., Ravikumar, P.K. and Tewari, A., 2013. Learning with noisy labels. In Advances in neural information processing systems (pp. 1196-1204).
[20] Jakobsen, J.C., Gluud, C., Wetterslev, J. and Winkel, P., 2017. When and how should multiple imputation be used for handling missing data in randomised clinical trials–a practical guide with flowcharts. BMC medical research methodology, 17(1), p.162.
[21] Al-Janabi, S. and Alkaim, A.F., 2020. A nifty collaborative analysis to predicting a novel tool (DRFLLS) for missing values estimation. Soft Computing, 24(1), pp.555-569.
[22] Sullivan, T.R., Lee, K.J., Ryan, P. and Salter, A.B., 2017. Multiple imputation for handling missing outcome data when estimating the relative risk. BMC medical research methodology, 17(1), p.134.