Identifying genetic determinants of subjectively assessed phenotypes, such as gilts’ vulvae size, seems hardly feasible. However, comparing the genotypes of seventeen gilts exhibiting relatively small vulvae with those of fertile sows enabled us to identify a distinct region on the X-chromosome to carry a potential causal mutation in a genome-wide association study. The availability of whole-genome sequence information of ancestors of the affected animals enabled us to readily identifying a likely causal variant, i.e. a nonsense mutation in BMP15.
Only eleven of the seventeen animals with apparently small vulvae that we considered as cases in the GWAS turned out to be homozygous for the mutant allele. This finding demonstrates the power of GWAS for identifying genetic causes even of a poorly phenotype, such as vulva size. Several factors affect their appearance. Vulvae are smaller in pre- than in postpubescent gilts, and the age of puberty varies considerably between animals [4]. A more reliable assessment of the vulva size as a possible indicator of follicular development would require the inspection of postpubescent gilts [5], which was not feasible for the present study.
BMP15 has fundamental roles in ovarian function. Its actions include (1) promotion of follicle growth and maturation; (2) regulation of the sensitivity of granulosa cells (GC) to follicle stimulation hormone (FSH); (3) prevention of GC apoptosis; (4) promotion of oocyte developmental competence and (5) determination of ovulation quota [6]. Natural mutations of BMP15 cause primary ovarian insufficiency (POI) in women (reviewed by Patiño et al., 2017) [7]). Natural missense and nonsense mutations of ovine BMP15 cause both an increased ovulation rate and infertility, depending on the dosage of the mutant allele [3, 8–12]. Notable exceptions are missense mutations of BMP15 in the Grivette and Olkuska sheep breeds, as they do not cause infertility. They increase the ovulation rate and the litter size in a dosage-dependent manner without causing infertility [12]. BMP15 acts through homodimerization of the mature protein and heterodimerization with GDF9 (growth differentiation factor 9), another member of the transforming growth factor β (TGF-β) family [13]. Mutations of GDF9 also affect fertility in sheep in the same mode as mutations of BMP15 [8, 14, 15]. A mutation of the bone morphogenetic protein IB receptor (BMPR1B), finally, causes the high prolificacy Booroola phenotype [16–18] without a negative effect in the homozygous state.
While mutations of BMP15 critically affect follicular development and ovulation rate in dosage-sensitive manners in the mono-ovulatory human and ovine species, the effects of such mutations seem to be less pronounced in the poly-ovulatory species mouse. BMP15-knockout female mice have minimal ovarian histopathological defects but are subfertile due to a decreased ovulation rate [19]. However, knockdown of BMP15 in the poly-ovulatory species swine completely inhibits ovarian follicular development, leading to infertility [20]. This latter study did not allow to assess the effect of the null allele's heterozygous state on the ovulation rate and litter size. The natural nonsense mutation of BMP15 that we describe in the present study is most likely a null allele as it results in a severely truncated protein (47.5% are missing) and / or nonsense-mediated mRNA decay. Our data indicate that heterozygosity of a BMP15 mutation also enhances litter size in poly-ovulatory swine, just as has been amply reported in mono-ovulatory sheep. GDF9 and BMP15 mutations also seem to be more frequent in mothers of dizygotic twins than mothers of single infants or monozygotic twins [21], pointing to the possibility of an increased ovulation rate due to heterozygosity of deleterious variants in the human species as well.
Galloway et al. (2000) [3] set out to explain the paradoxical dosage effect of BMP15 and GDF9 mutations. They hypothesized that 50% of normal levels of the proteins might reduce granulosa cell mitosis and delay suppressive effects on plasma follicle-stimulating hormone (FSH) concentrations and that the concomitant reduction of the amount of steroid or inhibin would lead to the ovulation of an additional oocyte in mono-ovulatory species (or additional oocytes in poly-ovulatory species). McNatty et al. (2009) [22] showed that an earlier acquisition of responsiveness to the luteinizing hormone (LH) by granulosa cells in a higher proportion of follicles accounts for the higher ovulation-rate in heterozygous carriers of a BMP15 mutation.
To increase the litter size is an objective of pig breeding. Breeding gilts that are heterozygous for the nonsense mutation of the BMP15 mutation could expedite the breeding for increased litter size. In detail, German Landrace boars carrying the mutation could be mated with German Large White sows. Homozygous female littermates of these boars can be diagnosed by a DNA-test and directed to fattening. All crossbred gilts sired by these boars would be carriers of the mutation. Symptomatic homozygous crossbred progeny would not result in this crossbreeding scheme since German Large White animals do not carry the BMP15 mutation (data not shown). When mated with Piétrain boars, crossbred sows will produce an increased number of piglets suitable for fattening.
The outlined selection scheme to achieve an increased litter size is only advisable if the BMP15 mutation does not negatively affect other economically relevant traits. However, our data reveal a significantly negative effect of the BMP15 mutation on traits of lean meat growth. We did not expect such an effect since the BMP15 gene is expressed exclusively in oocytes, and the protein does not seem to have any other function than to control the development of follicles and ovulation [7, 21]. However, an indirect effect of a linked variant on traits of lean meat growth cannot formally be excluded. When taking the economic weights [23] for significantly affected traits into account, we can assess the effect of the BMP15 mutation economically. Each additional live-born piglet has a monetary value of 3.98 €, each kg less feed consumed per kg gain 22.70 €, and each percentage point of lean meat content 1.66 €, yielding a total monetary effect of the mutant allele of -0.48 € per finisher pig. Thus, using the BMP15 mutation to increase litter size is not advisable, and the eradication of the mutant allele from the German Landrace population, if carefully executed with regard to the genetic diversity, should not cause losses.