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Abstract
Objective: The purpose of this research was to explore differentially expressed circRNA between OA and
KBD and the potential differential diagnosis biomarkers.

Methods: Total RNA was extracted from 5 pairs of KBD and OA knee joint cartilage specimens, and the
expression of circRNAs was analyzed by Chip Scanning Analysis. The microarray data was verified by
quantitative polymerase chain reaction (qRT-PCR) analysis. GO enrichment analysis and KEGG pathway
were used to predict the functions of the differentially expressed circRNAs. A circRNA-miRNA network
was constructed to predict targeting microRNAs of differentially expressed circRNA genes. On the basis
of microarray, we expanded the sample size, peripheral blood samples from 25 KBD patients and 25 OA
patients (five pairs of patients for chondrocyte microarray study included) were collected and qRT-PCR
was performed for hsa_circRNA_0020014 verification. Diagnostic value was evaluated by the area under
the receiver operator characteristic (ROC) curve.

Results: A total of 1627 circRNAs were differentially expressed between OA and KBD (P<0.05; 0.5<fold
change>2), 1328 were up-regulated and 299 were down-regulated among them. Five differentially
expressed genes associated with bone and joint disease were chosen for further qRT-PCR validation. After
obtaining the parental genes of them, functional annotations were performed on the top ten enrichment
GO items and KEGG pathways. The difference in expression profile of hsa_circRNA_0020014 was
confirmed by qRT-PCR at articular cartilage level, and its circRNA-miRNA regulation network was set up.
The ROC curve demonstrated that hsa_circ_0020014_CBC1 in peripheral blood could distinguish patients
with KBD and OA (area under the curve: 0.6415, P< 0.01). The hsa_circ_0020014_CBC1 may be a
potential biomarker for differential diagnosis between KBD and OA patients

Conclusion: Our results suggested that the expression profiles of circRNA were significantly different
between OA and KBD. hsa_circRNA_0020014 is a potential biomarker for the differential diagnosis
between these two diseases.

Background
CircRNAs belong to the non-coding RNA family and are highly expressed in eukaryotic cells. First found in
plants and confirmed to encode a sub-virus [1], they are characterized by being single-stranded, covalent,
and closed loops [2]. Later, circRNA was found to be highly expressed in mammalian brain tissues [3]. It
has been demonstrated that the circRNA transcripts of sex-determining region Y (SRY) and circular RNA
CDR1as [4] can be used as miRNA sponges [5]. Studies have shown that circRNA is widely involved in
gene expression regulation, and has been proved to play an important role in the occurrence and
development of nervous system diseases [6]. Due to their high degree of conservation [7], stablility [8] and
accessible characteristics, the circRNAs could serve as biomarkers for diagnostics of clinical disease,
such as gastric cancer [9], hepatocellular carcinoma [10] and oesophageal cancer [11]. The
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hsa_circ_0005836 was found as a biomarker and therapeutic target of active pulmonary tuberculosis
[12].

Osteoarthritis (OA) is a joint disease characterized by cartilage degeneration and secondary subchondral
bone thickening, osteophyte formation and synovitis, which eventually leads to joint stiffness, pain,
swelling and functional loss [13, 14]. Due to tissue wear and chondrocyte death, cytokines and growth
factors lead to increased catabolism and abnormal differentiation in OA, leading to degradation of
extracellular matrix (ECM) [15].

Kashin–Beck disease (KBD) is a unique osteoarthropathy in China, diagnosed based on the national KBD
diagnostic criteria (WS/T 207–2010). The disease is mainly distributed in the low-selenium areas of the
soil from the northeast to the southwest of China. At present, there are more than 2.5 million current KBD
patients and about 30 million residents at high risk [16]. Similar to OA, such as chondrocyte degeneration,
ECM degradation and other basic pathological features were displayed [17, 18], although specific
differences between OA and KBD chondrocyte gene expressions have been revealed [19]. In contrast to
OA, which commonly appears in middle-aged and elderly people, the onset of KBD occurs mostly in 3–12
years old children. The main clinical manifestations of KBD were enlarged finger joints, short fingers,
curvature of distal fingers and short stature [17]. Until now, the diagnosis of KBD has been based on
clinical features and typical imaging characteristics of metaphyseal bone, typical manifestations are
irregular sclerosis and the appearance of calcification. KBD may be classified as early, stage І, II and III,
based on the “Diagnosis Criteria of KBD in China (WS/T207–2010). The above methods are not sensitive
enough to the early stage diagnosis of the disease, and it is difficult to intervene early in the late
performance such as short stature and joint deformation.

At present, the generally accepted pathogenic theories of environmental factors concerning the
pathogenesis of KBD include environmental selenium deficiency, high levels of humic acid in drinking
water and contamination of grains by mycotoxins [20]. The exact pathologic mechanism of KBD is not
yet fully understood. Because of the similar clinical manifestations between KBD and OA, KBD is known
as an endemic OA. In recent years, circRNA has been proved to be a new biomarker in human peripheral
blood [21] for diagnosis of diseases, such as coronary artery disease, OA and rheumatoid arthritis (RA)
[22–24]. Until now, there have been no identification and characterization of circRNAs for OA and KBD in
bone or cartilage tissue as well as in peripheral blood. Therefore, we focused on articular chondrocytes of
patients with KBD and OA, to explore the genetic features that could be associated with early diagnosis.

Methods

2.1. The definitions of KBD and OA and collection of
chondrocyte samples
In our research, adult patients with KBD were diagnosed in accordance with WS/T 207–2010 criteria, OA
patients were diagnosed based on the Western Ontario and McMaster Universities OA Index of stiffness
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and pain [25]. Patients with genetic bone disease and RA were excluded. In this research, a total of 10
participants were selected and matched according to gender and age and were divided into two groups (5
patients with KBD and 5 patients with OA). Samples were selected randomly from outpatients and
inpatients at The First Affiliated Hospital of Xi’an Jiaotong University, and from the KBD- endemic area
Linyou County (Baoji, China) from April 2016 to October 2017. The study was approved by the Human
Ethics Committee of Xi’an Jiaotong University, project approval number (2016–28), and all subjects
signed informed consent. KBD and OA chondrocyte samples were taken from the same anatomical
region of the femoral condyle of the knee joints. The chondrocyte specimens were obtained and cut part
rapidly, and then frozen in liquid nitrogen and immediately stored at –80°C until RNA extraction.

2.2 Collection of peripheral blood samples
Total of 3 ml peripheral blood was drawn from each donor before breakfast by peripheral venipuncture
and gathered in ethylene diamine tetra acetic acid (EDTA) anticoagulant vacutainers, and kept in the –
80℃ degree refrigerator until used for RNA isolation.

2.3 Isolation and extraction of RNA
First, total RNA was collected from the joint cartilage samples of five OA patients and five KBD patients
using the TRIzol reagent Invitrogen (Invitrogen Corporation, Gaithersburg, MD, USA) and purification of
the extracted RNA was performed use the mirVana miRNA Isolation Kit (Ambion, Austin, TX, USA)
following the manufacturer’s recommendation. Then the RNA was dissolved in RNase-free water. The
yield and purity were monitored using a NanoDrop 2000 instrument (Thermo Scientific, Waltham, MA,
USA). Samples were analyzed in a 1% formaldehyde denaturing agarose gel to confirm RNA integrity.
Complementary DNA (cDNA) was generated by reverse transcription using Prime Script RT Reagent Kit
(Takara Bio, Nojihigashi, Kusatsu, Japan) according to the manufacturer’s instructions. Then, we
expanded the sample size, total RNA was extracted from the peripheral blood samples of twenty-five
patients with OA and twenty-five patients with KBD (Five pairs of patients for chondrocyte microarray
study included).

2.4 CircRNA microarray analysis
The circRNA microarray analysis was summarized, normalized and quality control using GeneSpring
software v13.0 (Agilent Technologies). The differentially expressed circRNAs in OA and KBD
chondrocytes were identified through fold change, hierarchical clustering was used to display
differentially expressed circRNAs between them. The limit values are as follows: fold change for up-
regulated circRNAs was ≥ 2 and for down-regulated ones ≤ 0.5 and P < 0.05.
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2.5 qRT-PCR validation of microarray data
While writing this paper, we have consulted a lot of relevant literature. Matta C et al [26] published a
review article in 2014 showing that the calcium signaling pathway may be related to OA, while the target
gene PDE1C of hsa_circ_0134111_CBC1 participates in the same pathway. Wang L et al [27] reported in
2015 that the PRKCH gene is associated with RA, systemic lupus erythematosus, ankylosing spondylitis
and OA, our research found that the target gene of hsa_circ_0032131_CBC1 is PRKCH. Sun HY et al
reported in 2017 that the MAPK signaling pathway is related to OA, and the target gene dusp5 of hsa-
circ–0020014-cbc1 is involved in the MAPK signaling pathway [28]. In 2018, Hu J et al [29] found that the
development of microRNA–17–5p was closely related to the development of OA, and the prediction of
microRNA–17–5p could be combined with hsa_circ_0094742_CBC1. Fang Y et al reported in 2019 [30]
that OA may be associated with protein digestion and absorption, while col3a1, the target gene of hsa-
circ–0057421- CBC1, is involved in protein digestion and absorption. The above literature is the
theoretical basis for us to select the five differentially expressed genes for further qRT-PCR verification.
The selected circRNAs were analyzed using the ABI PRISM 7500 Sequence Detection System (Applied
Biosystems, Life Technologies, Waltham, MA, USA). The primers used in our study are listed in Table 1.

2.6 qRT-PCR verification of related circRNAs in peripheral
blood samples
To further validate the results of microarray analysis, the significant differentially expressed gene was
chosen as target genes for qRTPCR. Total RNA in peripheral blood samples were reverse transcribed into
cDNA using superscript II reverse transcriptase (invitrogen; Thermo Fisher Scientific, Inc.) according to the
product’s technical guidelines. The selected circRNA was analyzed using the Applied Biosystems® Quant
Studio™ 7 Flex Real-Time PCR System (Invitrogen™ Life Technologies™, Carlsbad, CA). The primer
specificity was confirmed at the melting curve stage. The PCR results were analyzed using Quant Studio™
Real-Time PCR Software Vesersion1.1 (Invitrogen™ Life Technologies™, Carlsbad, CA).

2.7. Prediction of circRNA-targeting miRNAs
As a miRNA sponge, circRNA exerts transcriptional control through competitive endogenous RNAs
(CeRNAs) mechanisms. We used miRanda miRNA prediction software based on the miRanda3.3
software to explore functional annotations of the identified circRNA and predict circRNA/miRNA
interactions. The selected circRNA-miRNA pairs were chosen to construct the network with the open
source bioinformatics software Cytoscape. Then a circRNA-miRNA interaction network has been created.

2.8 Data analysis
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First, raw data extraction from scanned images by Genepix Pro 6.0 software (Axon; Molecular Devices,
LLC, Sunnyvale, CA, USA). Next, the original data is normalized and processed using the R software
package. Finally, exclude low-intensity substances. The fold change of each cirRNA was calculated and
the difference between OA and KBD patients was compared. The limit values are as follows: P < 0.05and
fold change≥ 2 and ≤ 0.5, the differentially expressed circRNAs were arranged according to the P-value
and fold change.

Results

3.1 Differential expression profiling of circRNAs in knee
joint chondrocytes of KBD and OA
Differentially expressed circRNAs were distinguished between OA and KBD chondrocyte samples
according to the statistical analysis of the microarray data. A total of 1627 circular RNA expressions were
significantly different, containing 1328 up-regulated circRNAs and 299 down-regulated circRNAs, the top
10 most significant circRNAs are shown in Table 2. According to the refseq database annotation of
circRNAs, the genomic origin of human circRNAs includes introns, exons, intergenic regions, untranslated
regions, antisense regions of known transcripts and unmarked regions of the genome [31]. Hierarchical
clustering was performed to reflect all differentially expressed circRNA expression profiles. The
microarray expression profiles of circRNAs are represented in figure 1. The top 20 differentially expressed
circRNAs in the KBD group and the OA group are shown in figure 1A. The scatter plot represents the
changes in circRNA expression directly, and the overall proportion of gene expression（Fig 1B）. The
volcano plot reflects the number, significance and reliability of different genes. The closer each point in
the graph is to the upper left corner and the upper right corner, the more significant the difference is (Fig
1C). Among the up-regulated circRNAs, 1037 were exonic, 2 intronic, 289 were in the other genomic
regions, while the down-regulated circRNAs consisted of 254 exonic, 1 intronic circRNA, and 44 in the
other genomic regions (Figure 2).

Figure 1. Identification of differentially expressed circRNAs in KBD and OA patients.

Fig.1A. The cluster graph of the top 20 circRNAs Cluster diagram directly reflect the similarity between
groups, each column represents a sample, each line represents a circRNA, with red indicating a relatively
high level of expression and the green part denoting a relatively low level of expression. The color bar in
the upper left corner represents a comparison table with numbers and colors, the top sample tree
represents the clustering relationships of similarity between samples. Fig.1B. The scatter plot expresses
the changes in circRNA expression, the horizontal ordinate represents the average expression value of OA
samples, the vertical axis represents the average expression value of KBD samples. Both abscissa and
ordinate use the value transformed by log2. The up-regulated genes labeled red, down-regulated genes
labeled green and non-significantly different genes labeled black. Fig.1C. The volcano plot intuitively
reflects the number, significance and reliability of differentially expressed genes. The horizontal ordinate
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is - log10 (p-values) and the vertical axis is log2 (fold change). The closer each point in the graph is to the
upper left corner and the upper right corner, the more significant the difference is.

Figure 2. Classification of differentially expressed genes according to genome origin.

3.2. qRT-PCR validation of differentially expressed circRNAs
between OA and KBD chondrocyte samples
The chosen 5 differentially expressed circRNAs for further validation by qRT-PCR. There were one up-
regulated circRNA (hsa_circ_0057421_CBC1) and four down-regulated circRNAs
(hsa_circ_0020014_CBC1, hsa_circ_0032131_CBC1, hsa_circ_0094742_CBC1, hsa_circ_0134111_CBC1)
for validation among the five pairs of cartilage samples (five patients with primary OA and five with
endemic KBD), hsa_circ_20014_CBC1 has been shown to be the most reliable in terms of reliability in
microarrays and RT-PCR (Figure 3).

Figure 3. The consistency of qRT-PCR and chip analysis of 5 differentially expressed circRNA molecules.
From left to right represent Hsa_circ_0020014_CBC1, hsa_circ_0032131_CBC1, hsa_circ_0057421_CBC1,
hsa_circ_0094742_CBC1, hsa_circ_0134111_CBC1.

3.3 Bioinformatics analysis of differentially expressed
circRNAs between OA and KBD
In our research, we used the KOBAS (KEGG Orthology Based Annotation System) to analyze the
differentially expressed circRNAs and their parental genes, GO analyses were performed on three different
aspects: cellular component (CC), biological process (BP), and molecular function (MF). The top 10
enriched GO entries are displayed in Figure 4, the most enriched CC terms were related to “organelle part
(GO: 0044422)“, “centriole (GO: 0005814)" and “microtubule cytoskeleton (GO:0015630)“. The most
enriched and meaningful BP related to “cell projection organization (GO: 0030030)“, “triglyceride
mobilization (GO: 0006642)“, and “inositol biosynthetic process (GO: 0006021)“. Regarding MF terms, the
most enriched terms were related to “inositol monophosphate phosphatase activity (GO: 0052834)“, “ATP
binding (GO: 0005524)“, and “adenyl ribonucleotide binding (GO: 0032559)“. In addition, we also
conducted KEGG pathway analysis (Figure 5), and the top 10 pathways are shown. The most enriched
and meaningful pathways from the BioCyc database are related to “D-myo-inositol (1,4,5)-trisphosphate
degradation”, “ascorbate recycling (cytosolic)" and “mRNA capping”, “phosphatidylinositol signaling
system”, “RNA degradation” and “RNA transport” (from the KEGG pathway database). The most enriched
and meaningful pathways from the PANTHER database are related to the “PDGF signaling pathway”,
“inflammation mediated by chemokine and cytokine signaling pathway”, “endothelin signaling pathway”,
and the “p53 pathway”. From the Reactome database, the most meaningful and enriched pathways were
“Rev-mediated nuclear export of HIV RNA”, “regulation of HSF1-mediated heat shock response” and
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“interactions of Rev with host cellular proteins”. The KEGG disease pathway (Figure 6) gives us the
following enlightenment, the most enriched and meaningful disease pathways were related to “vascular
diseases, short rib−polydactyly syndrome, distal hereditary motor neuropathies” (from KEGG-disease
database). “epidermolysis bullosa, generalized atrophic benign, chondrodysplasia with joint dislocations
(GPAPP type), and Parkinson’s disease” from Online Mendelian Inheritance in Man (OMIM) database.

Figure 4. Functional annotations for the parental genes of circRNAs in the OA and KBD groups,
(GO.p_value.top, the top10 from all terms in the three categories of BP, CC, and MF).

Figure 5. Functional annotations for the parental genes of circRNAs in the OA and KBD groups, and KEGG
analysis of the pathways of the differential circRNA parental genes from four different biological
pathway databases (the Kyoto Encyclopedia of Genes and Genomes, BioCyc, PANTHER and Reactome).
The figure shows only the top 10 enrichment KEGG pathways. The enrichment factor is the ratio of the
number of genes in the GO entry to the total number of genes in the GO entry. The larger the enrichment
factors the greater the enrichment.

Figure 6. Disease annotations for the parental genes of circRNAs. Analysis of the disease pathways of
the differential circRNA parental genes from three different disease pathways databases
(NHGRI_GWAS_Catalog, OMIM, KEGG_DISEASE).

3.4 Related target miRNAs and the miRNA/circRNA
interaction network
Considering microarray analysis and verification results, hsa_circRNA_0020014 was expressed
significantly differentially in chondrocytes between OA patients and KBD patients and closely related to
bone and joint diseases. To explore target miRNAs that may be associated with OA and KBD, the
validated hsa_circRNA_0020014 was selected for further analysis and the miRNA/circRNA interaction
network was predicted by miRNA targeting prediction software. We ranked the top 10 from low to high
according to the tot energy (table 3), and the circRNA/microRNA regulatory network diagram of
hsa_circ_0020014_CBC1 was drawn on this basis (Figure 7).

Figure 7. CircRNA-miRNA regulation network constructed and visualized by Target Scan and miRanda.

Network diagram shows the interaction based on the predicted target genes of hsa_circRNA_0020014
targeting miRNAs.

3.5 Further validation in peripheral blood of OA and KBD
patients
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On the basis of circRNA microarray, we expanded the sample size, confirmed the results by qRT-PCR and
ROC (receiver operator characteristic) curve analysis. Peripheral blood samples from 25 KBD patients and
25 OA patients (five pairs of patients for chondrocyte microarray study included) were collected and qRT-
PCR was performed for hsa_circRNA_0020014 verification. The ROC curve demonstrated that
hsa_circ_0020014_CBC1 in peripheral blood could distinguish patients with KBD and OA (area under the
curve: 0.6415, P< 0.01). The hsa_circ_0020014_CBC1 may be a potential biomarker for differential
diagnosis between KBD and OA patients (Figure 8). When hsa_circ_0020014_CBC1 = 9.478 CT, the Yoden
index reaches a maximum of 0.30, the sensitivity and specificity were 0.90 and 0.30, respectively.

Figure 8. ROC curve of hsa_circ_0020014_CBC1, hsa_circ_0032131_CBC1 in peripheral blood of KBD
patients and OA patients (two ROC graphs will be combined into one picture later).

Discussion
Protein-coding genes and their transcription in eukaryotic cells have been extensively studied [32]. The
reality is that a large number of sequences in the human genome do not encode proteins, and non-coding
RNA accounts for almost 95% of the total RNA transcribed from the eukaryotic genome, including circular
RNA [33]. There are two main types of RNA molecules: endogenous RNA molecules formed by nonlinear
reverse splicing and intron-derived cyclic RNA molecules [33]. In the 1970s, circular RNA was first
discovered in RNA viruses [34, 35]. CircRNA was also found in the transcripts of human cells in 1993, but
at that time, it was considered to be a low-abundance RNA molecule formed by mis-splicing of exons
during transcription [36]. With the rapid development of RNA sequencing and bioinformatics, circRNAs
are not a rare phenomenon, but present widely in the cytoplasm of eukaryotic cells and play an important
role in regulating gene expression at the post-transcriptional level. Studies have shown that circRNAs acts
as a microRNA sponge that competitively inhibits miRNA activity and thereby regulating target genes of
miRNA. Research has shown that circRNAs are involved in the initiation and development of many kinds
of diseases. For example, due to the deficiency in the “sponge” effect of CIRS–7, miRNA–7 is up-
regulated, lead to down-regulating Alzheimer’s disease-relevant target genes [6]. Some scholars have
reported that circRNAs play an important role in the progression of cardiovascular diseases, such as
hsa_circ_0124644, which may be associated with coronary artery disease [22]. And many studies have
reported that circRNAs are closely related to a variety of tumors. In one study, Weihai Liu et al [37] noted
that hsa_circRNA_103801 and hsa_circRNA_104980 can be used as biomarkers for the diagnosis and
treatment of osteosarcoma. Research on circRNAs relating to osteoarticular diseases mainly includes the
following results. Some studies have systematically explored the potential functions of non-coding RNAs
in osteoclast genesis by microarray technology, and constructed co-expression networks of lncRNA-
mRNA and circRNA-miRNA [38].

In another study, circRNA was shown to potentially affect the development and progression of RA and
play an important role in the regulation of related gene expression (24). Liu Qiang et al explored the
function of human cartilage degeneration mechanical stress-related circRNA (circRNAs-MSR) and
concluded that inhibition of circRNAs-MSR can limit the degradation of the ECM of chondrocytes,
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therefore, circRNAs-MSR may be a potential target for the treatment of osteoarthritis [39]. However, as a
prevalent degenerative joint disease, the role of circRNAs in the pathogenesis of OA is not very clearly. A
recent study indicated that hsa-circ–0045714 inhibits the progression of OA by promoting aggregation of
type II collagen and proteoglycan expression and chondrocyte proliferation [40]. For the special endemic
OA (KBD) in China, there has been no report related to circRNA until now.

In our study, we found a large number of differentially expressed circRNAs in OA and KBD cartilage
specimens. The microarray analysis between KBD and osteoarthritis chondrocytes was conducted to
analyse the differentially expressed circRNAs. A total of 1627 circRNAs were differentially expressed,
include 1328 upregulated circRNAs and 299 downregulated circRNAs. We use qRT-PCR to detect the
expression levels of five selected circRNAs, the results were consistent with the results of the analysis of
the microarray analysis data, demonstrating the reliability of the spectrogram. GO and KEGG pathway
analyses were used for functional annotation of differentially expressed circRNA genes. We found that
these genes are involved in RNA transport, RNA degradation, and the p53 pathway. The most enriched
and meaningful disease pathways were related to “vascular diseases, short rib−polydactyly syndrome,
distal hereditary motor neuropathies” (from KEGG-disease database). “generalized atrophic benign,
chondrodysplasia with joint dislocations (GPAPP type), and Parkinson’s disease” (from OMIM database).

In addition, the most significantly differentially expressed and confirmed circRNA (hsa_circRNA_0020014)
was further explored and revealed the potential molecular mechanisms of regulation by circRNAs in joint
disease pathogenesis. we expanded the number of samples of the subjects, 25 KBD patients and 25 OA
patients were selected and divided into two groups according to the age and gender matching principle,
peripheral blood samples were collected and RNAs were extracted for qRT-PCR verification. Peripheral
blood verification results were consistent with chondrocyte verification results, and
hsa_circ_0020014_CBC1 was significantly different between OA and KBD. Moreover, ROC curve was used
to evaluate the diagnostic value and reliability, the levels of hsa_circ_0020014_CBC1 in peripheral blood
appeared potential diagnostic value between KBD and OA, and a high ROC AUC value (0.6415, P< 0.01)
compared with traditional bone metabolism indicators, it has great potential as a diagnostic biomarker.
Furthermore, research on the function of hsa_circ_0020014_CBC1 can improve the understanding of the
mechanism of these two diseases occurrence and development.

According to the sponge theory, we predicted the potential target miRNAs and constructed a circRNA-
miRNA interaction regulation network. The predicted microRNAs were selected according to tot energy
using Cytoscape software, and the smaller the energy was, the tighter interaction between circRNAs and
miRNAs. Top ten predicted miRNAs of hsa_circRNA_0020014 were identified in the networks. Therefore,
they are theoretically related to osteoarthrosis and require further study. Two of the top 10 predicted
miRNAs have been reported in a recent study, hsa-circ–0061012 was up-regulated in psoriasis lesions
compared to normal healthy skin tissue [41]. Some scholars reported that miR–6743–5p acts as an
oncomiRNA in glioma by targeting GRIM–19 and STAT3 (39). And miR–6743–5p expression is
downregulated in patients with lymph node metastasis in oesophageal cancer [42]. There is no definitive
report on OA and KBD in these predicted targeted microRNAs. The gene symbol corresponding to
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hsa_circRNA_0020014 is dual-specificity phosphatase 5 (DUSP–5), studies have shown that in in DUSP5-
overexpressing mice, the severity of arthritis, as shown by clinical arthritis scores and tissue inflammation
and cartilage damage was attenuated [43]. Pramanik noted that mutations in dusp–5 and snrk–1 have
been found in tissues of patients with vascular disorder [44]. Wickramasekera NT and his team have
drawn conclusions in a study showing that DUSP–5 appears to regulate the signalling of pressure-
dependent myogenic cerebral arterial constriction, it is essential for maintaining the blood supply to the
brain [45].

Conclusion
We used high-throughput information analysis to explore the potential biological function of circRNAs in
human primary OA and endemic OA (KBD) in China for the first time. In compliance with WHO
requirements for minimally invasive biomarkers with clinical significance we enlarged the sample size
and extracted RNA from peripheral blood for further validation of previous research results. From this, we
can draw the following conclusion: hsa_circ_0020014_CBC1 can be detected from peripheral blood at a
relatively low cost, fast, and minimally invasive. Therefore, hsa_circ_0020014_CBC1 can be used as a
biomarker for differential diagnosis between OA and KBD.
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Tables
Table 1: Primers used in our research:

gene Sequences (from 5’ to 3’)
hsa_circ_0020014_CBC1 F CGTGTGAATGTGAAGAAAAGCAG
  R CGAGGAACTCGCACTTGGAT
hsa_circ_0032131_CBC1 F TACCTGGCTCCATGAAGATGC
  R CCTCCTTGCACATTCCGAAG
hsa_circ_0134111_CBC1 F CAGGAGAACAGCAACAGAATGG
  R CTGCTTCCTTCTTGGCCTTC
hsa_circ_0057421_CBC1 F AAAATTCGGACCTGTTGGACC
  R TCTTTCACCTCTGTTACCTCG
hsa_circ_0094742_CBC1 F GAGGAATCAGCCTGCTGAATATAG
  R TCATTATTGATCTGCTTTAGAACCC

 

Table 2: The top 10 most significant differentially expressed circRNAs selected according to p-value and fold change:
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circRNA Regulation Chromosome geneSymbol P-value FC(abs)
hsa_circ_0139061_CBC1 up chr9 PTPRD 0.20 6.99
hsa_circ_0139055_CBC1 up chr9 PTPRD 0.27 6.04
hsa_circ_0139074_CBC1 up chr9 PTPRD 0.36 5.89
hsa_circ_0060652_CBC1 up chr20 PREX1 0.28 5.73
hsa_circ_0073466_CBC1 up chr5 ERAP2 0.32 5.72
hsa_circ_0114299_CBC1 up chr1 TTLL7 0.29 5.60
hsa_circ_0139723_CBC1 up Chr X - 0.34 5.49
hsa_circ_0101493_CBC1 up chr14 NOVA1 0.36 5.43
hsa_circ_0139080_CBC1 up chr9 PTPRD 0.36 5.36
hsa_circ_0139062_CBC1 up chr9 PTPRD 0.38 5.32
hsa_circ_0005180_CBC1 down chr1 FMN2 0.33 6.50
hsa_circ_0017822_CBC1 down chr10 FRMD4A 0.31 5.97
hsa-circRNA6227_CBC1 down chr5 CDH6 0.24 5.78
hsa_circ_0093155_CBC1 down chr10 FRMD4A 0.29 5.62
hsa_circ_0055265_CBC1 down chr2 ACTG2 0.36 5.61
hsa_circ_0026352_CBC1 down chr12 NR4A1 0.25 5.60
hsa-circRNA1779-4_CBC1 down chr12 NR4A1 0.25 5.37
hsa_circ_0026351_CBC1 down chr12 NR4A1 0.28 5.01
hsa_circ_0093151_CBC1 down chr10 FRMD4A 0.29 4.74
hsa-circRNA3424-4_CBC1 down chr17 IGF2BP1 0.44 4.72

 

Table 3: Top 10 most likely miRNA targets of hsa_circRNA_0020014 predicted and selected based on tot energy.

MicroRNA ID Score Tot energy
hsa-miR-4763-3p 165 -32.88
hsa-miR-4268 170 -31.98
hsa-miR-6893-3p 172 -31.92
hsa-miR-6769b-5p 166 -31.05
hsa-miR-6882-3p 164 -30.66
hsa-miR-6743-5p 166 -30.51
hsa-miR-5088-5p 168 -30.21
hsa-miR-4758-5p 164 -29.91
hsa-miR-3972 168 -29.44
hsa-miR-6076 169 -28.73

Figures
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Figure 1

Identification of differentially expressed circRNAs in KBD and OA patients. Fig.1A. The cluster graph of
the top 20 circRNAs Cluster diagram directly reflect the similarity between groups, each column
represents a sample, each line represents a circRNA, with red indicating a relatively high level of
expression and the green part denoting a relatively low level of expression. The color bar in the upper left
corner represents a comparison table with numbers and colors, the top sample tree represents the
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clustering relationships of similarity between samples. Fig.1B. The scatter plot expresses the changes in
circRNA expression, the horizontal ordinate represents the average expression value of OA samples, the
vertical axis represents the average expression value of KBD samples. Both abscissa and ordinate use
the value transformed by log2. The up-regulated genes labeled red, down-regulated genes labeled green
and non-significantly different genes labeled black. Fig.1C. The volcano plot intuitively reflects the
number, significance and reliability of differentially expressed genes. The horizontal ordinate is - log10 (p-
values) and the vertical axis is log2 (fold change). The closer each point in the graph is to the upper left
corner and the upper right corner, the more significant the difference is.

Figure 2

Classification of differentially expressed genes according to genome origin.
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Figure 3

The consistency of qRT-PCR and chip analysis of 5 differentially expressed circRNA molecules. From left
to right represent Hsa_circ_0020014_CBC1, hsa_circ_0032131_CBC1, hsa_circ_0057421_CBC1,
hsa_circ_0094742_CBC1, hsa_circ_0134111_CBC1.
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Figure 4

Functional annotations for the parental genes of circRNAs in the OA and KBD groups, (GO.p_value.top,
the top10 from all terms in the three categories of BP, CC, and MF).
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Figure 5

Functional annotations for the parental genes of circRNAs in the OA and KBD groups, and KEGG analysis
of the pathways of the differential circRNA parental genes from four different biological pathway
databases (the Kyoto Encyclopedia of Genes and Genomes, BioCyc, PANTHER and Reactome). The figure
shows only the top 10 enrichment KEGG pathways. The enrichment factor is the ratio of the number of
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genes in the GO entry to the total number of genes in the GO entry. The larger the enrichment factors the
greater the enrichment.

Figure 6

Disease annotations for the parental genes of circRNAs. Analysis of the disease pathways of the
differential circRNA parental genes from three different disease pathways databases
(NHGRI_GWAS_Catalog, OMIM, KEGG_DISEASE).
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Figure 7

CircRNA-miRNA regulation network constructed and visualized by Target Scan and miRanda. Network
diagram shows the interaction based on the predicted target genes of hsa_circRNA_0020014 targeting
miRNAs.
Table 3: Top 10 most likely miRNA targets of hsa_circRNA_0020014 predicted and selected
based on tot energy.
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Figure 8

ROC curve of hsa_circ_0020014_CBC1, hsa_circ_0032131_CBC1 in peripheral blood of KBD patients and
OA patients (two ROC graphs will be combined into one picture later).


