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Abstract

Background
Blood-based biomarkers for Alzheimer’s disease (AD) are highly needed in clinic practice. So far, the gold standards for AD diagnosis are brain
neuroimaging and beta-amyloid peptide, total tau and phosphorylated tau in cerebrospinal fluid (CSF), however, they are not attractive for large-
scale screening. Blood-based biomarkers will allow an initial large-scale screening of patients under suspicion that could later be tested for the
already established CSF biomarkers. To this regard, we and other research groups have already described that the plasma and platelet levels of
ADAM10 are higher or lower, respectively, in patients with AD, compared to those cognitively healthy.

Methods
This was a three-year longitudinal cohort study that included 219 community-dwelling older adults. Sociodemographic, clinical, lifestyle, depressive
symptoms (GDS) and cognitive data (Mini-Mental State Examination, MMSE; Clock Drawing test, CDT) were gathered. The measurement of
ADAM10 plasma levels was performed using a sandwich ELISA kit. Bivariate comparisons between groups were performed using Wilcoxon-Mann-
Whitney for continuous data and Pearson’s chi-square tests with Yates continuity correction, for categorical data. Longitudinal analyzes of changes
in the MMSE score were performed using Linear Mixed-Effects modeling.

Results
Baseline MMSE score and ADAM10 values were significantly associated with MMSE score values on the follow-up assessment. When analyzing
the interaction with time, having a normal MMSE at baseline and ADAM10 plasma levels presented a significant and independent negative
association with MMSE score values on the follow-up assessment. The analyses also showed that the effect of ADAM10 plasma levels on
decreasing MMSE score values on follow-up seems to be more pronounced in those with normal MMSE at baseline. Taken together, these results
provide the first direct evidence that changes in ADAM10 plasma levels are predictors of cognitive worsening in older adults.

Conclusions
Considering that ADAM10 increase in plasma is detected as soon as in mild cognitive impairment (MCI) patients, the results presented here may
support the complementary clinical use of this biomarker, in addition to the classical AD biomarkers. Moreover, this work can shed light on the study
of blood biomarkers for AD and contribute to the advancement of the area.

Background
Alzheimer’s disease (AD) is the most common type of dementia affecting older adults worldwide, and is considered an important public health
problem [1]. The amyloidogenic pathway of amyloid precursor protein (APP) cleavage results in the formation of β-amyloid (βA) peptide and its
extracellular accumulation and aggregation in the brain is one of the causes of AD; this is known as the amyloid hypothesis of AD [2]. On the other
hand, the non-amyloidogenic cleavage of APP, carried out by α and γ-secretases, avoids the βA formation.

The amyloidogenic and non-amyloidogenic cleavages of APP are the basis for detecting of the cerebrospinal fluid (CSF) βA marker which, together
with total tau (t-tau) and phosphorylated tau (p-tau), as well as neuroimaging analyses, are considered gold standards to identify the underlying
pathophysiology at the earliest stages of AD. However, they do not have the scalability needed for population screening [3, 4]. On the other hand,
blood-based AD biomarkers are advantageous over the CSF markers due to several aspects, including, but not restricted to, their non-invasive and
cost-effective screening tool characteristics [5].

As the damage to blood vessels is the initial insult in the blood-brain barrier (BBB) that leads to neuronal injury and Aβ accumulation in the AD brain
[6], the traffic of molecules from the central nervous system towards the periphery, and vice versa, is associated with neurodegeneration and allows
the blood-based AD biomarker evaluation [6–8]. Even in non-disease situations, the exchange of molecules and proteins between CSF and blood is
well reported, despite the limitation imposed by BBB [9]. In this regard, several blood-based AD biomarker candidates have been described, including
the α-secretase ADAM10 [10].

ADAM10 is the main α-secretase participating in the non-amyloidogenic cleavage of APP in neurons, thus having a potential protective function
against AD development [11]. As a membrane-bound protein, ADAM10 acts as a sheddase cleaving different substrates on the plasma membrane,
including APP in neurons; hence, avoiding the production, accumulation and aggregation of neurotoxic βA peptide [12, 13]. Platelet ADAM10 levels
were demonstrated to be decreased in AD patients, compared to the levels of cognitively healthy controls [14–18], whereas its plasma levels were
increased in MCI and AD [19]. These results are in line with most postmortem data that reveal an overall decrease of ADAM10 mRNA, protein,
and/or activity in central nervous tissue of AD patients compared to age-matched controls [20].
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Considering that plasma is even easier to collect compared to platelets, as obtaining it requires a single centrifugation step, in this study we
evaluated whether plasmatic ADAM10 would be a predictor of declined cognition in community-dwelling older adults after a 3-year period follow up.

Methods

Study design, participants and setting
This was a longitudinal cohort study that used data from older adults in two time-points (2015 and 2018). A convenience sample of 219 adults
aged 60 years or older were recruited from a community health center in São Carlos, São Paulo, Brazil. Only complete cases were analyzed. All
recruited subjects gave their written informed consent prior to their inclusion in this study. The study was conducted according to the guidelines
established in the Declaration of Helsinki and all procedures involving human subjects were approved by the Federal University of Sao Carlos’
Research Ethics Committee (Number: 36167914.9.0000.5504).

Study assessments and variables
The following sociodemographic, clinical, lifestyle and education level data were assessed from the participants who met the inclusion criteria: sex
(male, female), age (years), schooling (years), cigarette smoking (yes/no) and alcohol consumption (yes/no). Metabolic syndrome was defined
considering the presence of any three of the five following metabolic impairments: elevated waist circumference, elevated triglycerides, reduced
HDL-C, hypertension and elevated fasting glucose [21].

Depression and cognitive performance
Depression was assessed by the Geriatric Depression Scale (GDS), short version [21]. The Mini Mental State Examination [22] was used to evaluate
global cognitive performance. The clock-drawing test (CDT) was applied as a more specific screening for cognitive impairment [23]. As the Brazilian
population in general has a low education background, the scholarly cut-offs proposed by Brucki et al. [23] were adopted. Therefore, participants
with MMSE values < 20 for illiterates; <25 for 1–4 years of education; <26 for 5–8 years; <28 for 9–11 years and < 29 for more than 11 years of
formal education were considered as altered MMSE scores. Considering that mean rate of progression of cognitive impairment is approximately 2
to 4 points per year in the MMSE [25], we chose a 3-year follow-up period to assure enough time for cognitive deterioration.

ADAM10 measurements
In the morning after an overnight fast, venous blood was drawn in tubes containing sodium citrate (3.8%) and glucose (136 mM) and centrifuged at
2400 rpm for 10 minutes to obtain plasma. The plasma was stored at -80°C until use. The measurement of ADAM10 levels in the plasma was
performed using a sandwich ELISA kit (Cloud-Clone Corp., Houston, TX, USA) that contained adhered anti-human ADAM10 antibodies, which
reacted with the ADAM10 present in the samples. Secondary antibodies conjugated to the alkaline phosphatase enzyme, supplied by the kit, were
used to bind to the adhered proteins and, after adding substrate to the enzyme, the absorbance reading of the plates was performed on a plate
reader at 450 nm wavelength (Labtec LT4000). The minimum concentration detectable by the kit is 28 pg/mL, with a detection range between 78
and 5000 pg/mL and an intra-assay coefficient of variation below 10% and interassay below 12%.

Statistical analysis
Continuous data are presented as the mean (standard deviation) according to the Shapiro-Wilk test of normality. Categorical variables are presented
as counts and percentages. Comparisons between groups were performed using the Wilcoxon-Mann-Whitney test for continuous variables, and
Pearson's Chi-squared test with Yates' continuity correction for categorical variables.

As the primary study outcome (MMSE score) was ascertained through two clinical assessments, patients had varying scores of MMSE captured at
different times. Therefore, the longitudinal analyses of MMSE score changes over time were performed using Linear Mixed-Effects Modeling,
considering the MMSE score values on follow-up, and incorporating the existing variability of each individual in the models (random effect). The
model included age (years), sex (female, male), ADAM10 values, baseline MMSE score values, baseline grouping and the interactions of baseline
grouping and ADAM10 with the time of assessment, and of baseline grouping with ADAM10 as fixed effects.

Statistical significance was assessed at a two-sided p value < 0.05. All analyses were conducted using R version 3.5.3 (The R Foundation for
Statistical Computing, Vienna, Austria) in R-Studio 1.1.463 (RStudio Inc., Boston, USA).

Results
The characteristics of the participants are presented in Table 1. Only complete cases were analyzed. A total of 219 individuals were included in the
study. From the 151 (68.9%) participants who had normal MMSE scores at the baseline, 23 (33.8%) progressed to altered values in the follow-up.
Overall, individuals with altered MMSE were predominantly female (60.3%; p = 0.7) and had a mean age of 70 ± 7.81 years, as compared to those
with normal MMSE (p = 0.4). As expected, individuals with normal MMSE performed significantly better than individuals with altered MMSE both in
the baseline (p < 0.001), as well as in the follow-up evaluations (p < 0.001) (see Table 1).
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Table 1
Baseline and follow-up clinical and demographic parameters of the study population.

Variable Overall

(N = 219)

Normal

(n = 151)

Altered

(n = 68)

p

Age, years       0.4

Baseline 69.59 ± 7.07 69.22 ± 6.71 70.43 ± 7.81  

Follow-up 72.62 ± 7.11 72.30 ± 6.85 73.31 ± 7.67  

Female sex 127 (58.0) 86 (57.0) 41 (60.3) 0.7

Schooling       0.5

Illiterate 68 (31.1) 51 (33.8) 17 (25.0)  

1–4 years 117 (53.4) 78 (51.7) 39 (57.4)  

5–8 years 28 (12.8) 18 (11.9) 10 (14.7)  

9 + years 6 (2.7) 4 (2.6) 2 (2.9)  

Cigarette smoking, yes       0.3

Baseline 122 (55.7) 81 (53.6) 41 (60.3)  

Follow-up 119 (54.3) 79 (52.3) 40 (58.8)  

Alcohol consumption, yes        

Baseline 30 (13.7) 20 (13.2) 10 (14.7) 0.8

Follow-up 33 (15.1) 25 (16.6) 8 (11.8) 0.4

Metabolic Syndrome, yes        

Baseline 96 (43.8) 65 (43.0) 31 (45.6) 0.5

Follow-up 89 (40.6) 58 (38.4) 31 (45.6) 0.1

Depression, yes        

Baseline 59 (26.9) 37 (24.5) 22 (32.4) 0.2

Follow-up 61 (27.9) 41 (27.2) 20 (29.4) 0.7

Clock-Drawing test        

Baseline       0.1

Correct 19 (8.7) 17 (11.3) 2 (2.9)  

Minimal errors 39 (17.8) 27 (17.9) 12 (17.6)  

Major errors 161 (73.5) 107 (70.9) 54 (79.4)  

Follow-up       0.1

Correct 28 (12.8) 24 (15.9) 4 (5.9)  

Minimal errors 32 (14.6) 22 (14.6) 10 (14.7)  

Major errors 159 (72.6) 105 (69.5) 54 (79.4)  

MMSE       < 0.001

Baseline 22.21 ± 4.22 24.00 ± 3.12 18.22 ± 3.56  

Follow-up 21.68 ± 4.91 22.80 ± 4.20 19.18 ± 5.44  

ADAM10, pg/mL        

Baseline 1973.34 ± 1025.88 2021.36 ± 1069.04 1875.10 ± 931.55 0.4

Follow-up 2541.31 ± 2088.53 2494.11 ± 2058.67 2637.15 ± 2160.94 0.5

Continuous data are presented as mean ± standard deviation or median [interquartile range]. Categorical variables are presented as counts
(percentage); MMSE, Mini-Mental State Examination.
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Longitudinal analyses of changes in the MMSE scores over time were performed using the linear mixed-effects model considering the values of the
MMSE score in the follow-up and incorporating the existing variability in each individual on the models. Taking as a reference the model with a
random effect on the intercept, it was decided to adjust different models in relation to the response variable and the number of variables included in
the model. Table 2 shows that in the first model, having an altered MMSE and ADAM10 was significantly associated with MMSE score values in the
follow-up assessment (p < 0.001 and 0.03, respectively). The same occurred when introducing the variable age and sex in the model (Model 2).
However, Model 3 shows that when adjusting for baseline MMSE score values, having an altered MMSE and sex lost their significance. On the other
hand, it corrected intercept variability.

Table 2
Estimates of the fixed and random parts of the models with random effect on the intercept, using MMSE score values on follow-up as

the dependent variable.

  Model 1     Model 2     Model 3    

Fixed effects Estimate SE p Estimate SE p Estimate SE p

Intercept 24.09 0.38 < 0.001 37.73 2.33 < 0.001 10.19 1.73 < 0.001

Age, years - - - -0.20 0.03 < 0.001 -0.11 0.01 < 0.001

Male Sex - - - 0.94 0.46 0.04 0.18 0.25 0.4

Altered MMSE -5.04 0.54 < 0.001 -4.79 0.49 < 0.001 0.60 0.35 0.08

ADAM10, pg/mL -0.0002 0.0001 0.03 -0.0002 0.0001 0.02 -0.0002 0.00007 0.003

Baseline MMSE score - - - - - - 0.90 0.03 < 0.001

Random effects Variance SD Variance SD Variance SD

Individuals (Intercept) 9.38 3.06 7.21 2.69 0.0 0.0

Residuals 7.01 2.65 7.01 2.65 6.02 2.45

Bayesian Information Criterion 2175 2148 1871

SE, Standard error; SD, Standard deviation; MMSE, Mini-Mental State Examination.

 

The interaction of the baseline grouping and ADAM10 levels with time was also investigated - which in this case is the time of assessment
(Table 3). The interaction term between the grouping variable and time was statistically significant, that is, the effect of each baseline grouping on
the MMSE score values on follow-up varies with time. The same occurred with ADAM10. Looking at the estimates of having a normal MMSE and
the ADAM10 plasma levels, it can be observed that both have a significant and independent negative association with MMSE score values on the
follow-up assessment. The impact of age and sex is shown in both models 5 and 7.



Page 6/10

Table 3
Estimates of the fixed and random parts of the models with interactions and random effect on the intercept, using MMSE score values on follow-up

as the dependent variable.

  Model 4     Model 5     Model 6     Model 7    

Fixed
effects

Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Intercept 1.09 0.79 0.1 10.21 1.57 < 
0.001

0.57 1.00 0.5 10.01 1.72 < 
0.001

Age, years - - - -0.11 0.01 < 
0.001

- - - -0.11 0.01 < 
0.001

Male Sex - - - 0.18 0.24 0.4 - - - 0.18 0.24 0.3

Altered
MMSE:
Follow-up
assessment

1.02 0.44 0.02 1.03 0.42 0.01 - - - - - -

Normal
MMSE:
Follow-up
assessment

-0.88 0.45 0.05 -0.66 0.43 0.1 - - - - - -

ADAM10:
Follow-up
assessment

- - - - - - -0.0002 0.00007 0.003 -0.0002 0.00007 0.001

Altered
MMSE

- - - - - - 0.85 0.36 0.02 0.63 0.35 0.07

ADAM10,
pg/mL

-0.0001 0.00007 0.01 -0.0002 0.00007 0.005 - - - - - -

Baseline
MMSE
score

0.95 0.03 < 
0.001

0.90 0.03 < 
0.001

0.96 0.03 < 
0.001

0.90 0.03 < 
0.001

Random
effects

Variance SD Variance SD Variance SD Variance SD

Individuals
(Intercept)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Residuals 6.35 2.52 5.74 2.39 6.57 2.56 5.95 2.44

Bayesian
Information
Criterion

1893 1862 1901 1871

SE, Standard error; SD, Standard deviation; MMSE, Mini-Mental State Examination.

 

Finally, we investigated further if there was an interaction of the baseline grouping with ADAM10, adjusting it for the time of assessment. Table 4
shows that the interaction term between the baseline grouping and ADAM10 plasma levels was statistically significant, that is, the effect of
ADAM10 plasma levels on decreasing MMSE score values on follow-up varies with the baseline grouping, and it seems to be more pronounced in
those with normal MMSE at baseline.
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Table 4
Estimates of the fixed and random parts of the models with interaction of the baseline grouping with

ADAM10, and random effect on the intercept, using MMSE score values on follow-up as the dependent
variable.

  Model 8     Model 9    

Fixed effects Estimate SE p Estimate SE p

Intercept 1.87 0.82 0.02 11.06 1.59 < 0.001

Age, years - - - -0.11 0.01 < 0.001

Male Sex - - - 0.17 0.25 0.4

Altered MMSE: ADAM10 -0.00006 0.0001 0.5 -0.00008 0.0001 0.4

Normal MMSE: ADAM10 -0.0002 0.00008 0.005 -0.0002 0.00008 0.002

Baseline MMSE score 0.93 0.03 < 0.001 0.88 0.03 < 0.001

Follow-up assessment -0.46 0.26 0.08 -0.44 0.25 0.07

Random effects Variance SD Variance SD

Individuals (Intercept) 0.0 0.0 0.0 0.0

Residuals 6.64 2.58 6.0 2.45

Bayesian Information Criterion 1905 1875

SE, Standard error; SD, Standard deviation; MMSE, Mini-Mental State Examination.

Discussion
Biomarkers for AD are highly needed in clinic, especially those based on samples of easy collection, such as blood [5, 10]. Currently, validated AD
biomarkers are represented by neuroimage measures and quantification of the βA peptide, t-tau and p-tau derived from CSF, both requiring specific
equipment or invasive procedures, respectively. Attempts to validate the CSF biomarkers were also made in blood, hence supporting this tissue as a
useful source for AD biomarker investigations, although demanding high-performance analytical tools for their detection [24]. Nevertheless, the
interassay variability and inconsistency of βA measurements in plasma are main factors that impair the interpretation of results and represent
major obstacles to their clinical use [25].

In previous studies, we and others have shown that levels of membrane-bound ADAM10 are reduced in platelets of patients with AD compared to
cognitively healthy individuals [15, 16, 18] and that this reduction correlated with patients’ cognitive performance, as measured by the CDT [26] or
MMSE [14] scores. Moreover, levels and platelet ADAM10 activity were shown to be increased throughout cognitively healthy aging, pointing to the
possibility that ADAM10 might contribute to or is a prerequisite for cognitively healthy aging [27]. On the other hand, ADAM plasma levels were
found to be increased as early as in patients with mild cognitive impairment (MCI), as well as in AD, compared to healthy controls [19]. We
hypothesized that these higher plasmatic ADAM10 levels found in MCI and AD patients represent less active protein bound at the platelet’s
membrane exerting the sheddase activity. This could also be the case of neuronal ADAM10, where inactive forms can be cleaved from the
membrane and released in the CSF by other proteins.

In agreement with this hypothesis, ADAM10 itself can undergo shedding and be extracellularly released by other proteins from the ADAM family,
ADAM9 and 15 [28], which can be the source of the plasmatic detection of this protein. In addition, recent findings of our group have demonstrated
that in plasma and CSF samples of both healthy and AD patients, ADAM10 is unable to cleave a fluorogenic substrate, whereas in whole lysates of
platelets and SH-SY5Y neuroblastoma cells, the protein is active [19].

The requirement of a membrane-bound form for ADAM10 activity was further highly supported by findings of a study showing that only the active
form of this metalloproteinase is expressed at the surface of different cell types, including leukocytes derived from peripheral blood [29]. Moreover,
the negatively charged phospholipid phosphatidylserine (PS) translocation to the outer membrane leaflet is pivotal for ADAM10 to exert its
sheddase function [30].

In previous studies, we demonstrated that the levels of ADAM10 in platelets had sensitivity and specificity of 80 and 91% respectively, to identify AD
patients versus controls matched by sex and age. [14]. These experiments were performed in platelets, where we have shown that the protein is
active, as it is bound to the membrane. When considering plasmatic ADAM10, the protein achieved 72% sensitivity and 100% specificity, at the cut-
off > 1765 pg/mL, to correctly differentiate among healthy controls versus MCI and AD patients [19].
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Here, we used different models to investigate whether the plasmatic levels of ADAM10 would be efficient to predict cognitive declines in older adults
after a 3-year follow-up period. We showed that the increase in ADAM10 plasma levels influences the decrease of the MMSE score values in the
follow-up, and this seems to be more significant in those with normal MMSE at baseline, therefore proving that ADAM10 plasma levels can be a
predictor of cognitive decline.

Recently, a systematic review and meta-analysis found six blood-based AD candidate biomarkers from different proteomic studies that exhibited a
consistent pattern of regulation in three or more independent cohorts, namely alpha-2-macroglobulin (α2M), pancreatic polypeptide (PP),
apolipoprotein A-1 (ApoA-1), afamin, insulin growth factor binding protein-2 (IGFBP-2) and fibrinogen-γ-chain [8]. Most of these biomarkers are
related to systemic inflammatory responses rather than with AD pathophysiology itself. This can bring into question the fact that inflammation per
se is a response already found in several age-related diseases, common throughout aging.

It is important to highlight that MMSE is a screening tool for cognitive impairment that detects losses in the evolutionary follow-up of dementias
[22]. However, in some populations, individuals with lower educational levels perform worse than individuals from countries with high levels of
education, but still have no cognitive decline. Regarding this, MMSE cut-offs were validated for each population, including the Brazilian one [23, 31].
Hence, the results found here may not represent the general population and should be adapted for different specificities, such as the education
level.

Other limitations of this work include the evaluation of a single AD blood biomarker candidate, instead of a panel or a signature that would be more
representative of the longitudinal changes in cognition. Moreover, a lack of a complete battery including the application of a diverse set of
instruments does not allow a detailed cognitive evaluation of the participants. Yet, this is the first longitudinal study investigating the effects of
plasmatic ADAM10 level changes on cognition.

Conclusions
The results presented here provide the first direct evidence that changes in ADAM10 plasma levels can predict cognitive worsening in older adults,
supporting its complementary clinical use for the AD diagnosis, in addition to the classical CSF-based biomarkers. This work can shed light on the
study of blood-based AD biomarkers, open up new possibilities for investigations and contribute to the advancement of the field.
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