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Abstract

We have modified the Potts Model Swendsen-Wang algorithm to insert some clusters constraints by
applying a modified agglomerative clustering approach (Kurita, 1991). We have called the induced
Potts Model, the Potts Clustering with Complete Shrinkage (PCCS), under the Python package pottscom-
pleteshrinkage deployed on PyPi Index under its current release. In this approach, we deal with the
increasing number of small clusters generated in a given partition by merging all small clusters of size
≤ h with their closest cluster in terms of minimal distance respectively, where h is an integer greater
or equal to 2. The algorithm uses a technique in which distances of all pairs of observations are stored.
Then the nearest cluster (with size ≥ h) is given by the cluster with the closest node in terms of minimal
distance to the cluster to be merged using complete linkage. This approach is truly effective as it helps
to control the clusters size, and we have found empirical evidence of Chi-Square and Gamma density
curves for the constrained cluster size distribution of PCCS, when applied to some datasets taken from
the multiple-output benchmark datasets available in the Mulan project website (Tsoumakas et al., 2020).
We add a last framework based on Frequency of frequency distribution (FoF) to find the conditional
bonds distribution given the clusters size constraints which results in an intractable distribution for
large datasets, but its computation framework is a land of rich mathematical developments.
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1. Introduction

The Python program Pottscompleteshrinkage is designed to constrain the size of each component in
the Potts Clustering model known as random partitioning.

1.1 On Clustering and the random Potts models:

Clustering is the method of categorising data into groups or clusters such that objects within a cluster
have a high degree of similarity to one another but are quite different from objects in other clusters. The
term cluster analysis itself encompasses a number of different algorithms and methods (Tree Clustering
[Lin et al. (2018), Liu et al. (2005), Freeman (2006), Ahmed et al. (2011), Lv et al. (2018b), Freeman (2007),
WANG et al. (2009), Buttrey & Whitaker (2015), Qiu & Li (2021), Jothi et al. (2015), Page (1974), Vathy-
Fogarassy et al. (2005), Miller & Rose (1994)], Block Clustering, k-Means Clustering Wilkin & Huang
(2007) and EM algorithms) for grouping objects of similar kind into respective categories, graph-based
clustering (Bai et al. (2017)), hierarchical clustering (Köhn & Hubert (2014)), model-based clustering
(Fraley & Raftery (1998), Fraley & Raftery (1999), Fraley & Raftery (2002)); Lloyd’s K-means clustering
and the progressive greedy K-means clustering (Wilkin & Huang (2007)).

All those clustering techniques and algorithms (Rodriguez et al., 2019) have been applied to a wide
variety of research problems (Mann & Kaur (2013), Tan et al. (2013), Fasulo (1999), Jacquez (2008),
Blashfield & Aldenderfer (1988), Jacquez (2008), Blashfield & Aldenderfer (1988)); with many books,
including (Anderberg (2014), Hartigan (1975), Hennig et al. (2015)) and software (De Hoon et al. (2004))
for applications purposes.

Among those techniques, two particular models on clustering are of interest: the Ising Model and the
Potts Model, which are both known as Restricted Boltzmann machines (RBMs) (Goel, 2020). The Ising
model is very famous as a model named after the physicist Ernst Ising: in 1925, Ernst who was a
Lenz student, chose the model as the focus of his PhD dissertation (Kobe (2000), Kobe (1997), Ising
(1925), Brush (1967), Ising et al. (2017)). It is a NP-complete (Cipra, 2000) mathematical model of ferro-
magnetism in statistical mechanics ( Singh (2020), Giacomin & Mahfouf (2021), Cipra (1987), Glauber
(1963), Pfeuty (1970), Brush (1967), Fredrickson & Andersen (1984), Stauffer et al. (1993), Kadowaki &
Nishimori (1998),Joya et al. (2002), Aiyer et al. (1990), Wen et al. (2009), McCoy & Wu (2014)):

H = −

(

∑
i<j

∆ijvivj + ∑
i

δivi

)

(1)

Where ∆ij is to quantify the link, bond or connection between node j and node i, vi ∈ {0, 1}, is the state
of unit i, {0, 1} a set of possible1 states for vi, δi represents a bias from unit i in the system (−δi is the
activation threshold for the unit i, an external field). H is the Hamiltonian of the model.

As explained with equation [1], the number of states possible to unit i is limited to two (2) for the Ising
Model: vi ∈ {0, 1}. The Potts Model is an extended version of this model, in which the number of
possible state for unit i is finite and equal to q. The Potts model is a probabilistic system model created
by particles which are data points, and a similarity measure controls their interactions. For a set of
data {xi}1:N , with xi ∈ Rd, i = 1, . . . , N, we denote Ξki = 1 if xi belongs to the k-th cluster, and set
our ∆ij in equation 1 to be ∆ij = ∆ij(i, j, Ξki). We can see the product vivj as a similarity measure, and
replace it by one more general notation vivj = s

(

xi, xj

)

. The temperature η is a critical parameter for the

1. It may be infinite for a General Boltzmann Machine.
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system (Baxter (1973)), and all external fields −δi in 1 are equal to zero. For each η, there is a probability
pη ({Ξki}) associated with each configuration of the system (Murua et al. (2008a)):

pη ({Ξki}) ∝ exp
{

−
1
η

H ({Ξki})

}

= exp

{

−
1

2η

n

∑
i=1

n

∑
j=1

∆ij(i, j, Ξki)s
(

xi, xj

)

}

The Potts model has the property to return less-likely configurations that assign different labels (clus-
ters) to observations that are similar (Ashkin & Teller (1943); Graner & Glazier (1992); Selke & Huse
(1983)). Its applications extend to Some of the popular unsupervised learning methods are clustering,
dimensionality reduction, image segmentation, association mining, anomaly detection and generative
models (Li & Lowengrub (2014), Blatt et al. (1997); Reichardt & Bornholdt (2004); Kullmann et al. (2000);
Grimmett (1994); Asikainen et al. (2003); Coniglio & Peruggi (1982); Georgii & Häggström (1996); For-
tuin & Kasteleyn (1972); Murua & Wicker (2014a); Machta et al. (1996); Sweeny (1983); Cardy & Ziff
(2003); Grimmett (2004); Tomita & Okabe (2001); Blatt et al. (1996b); Blatt et al. (1996a); Janke & Schakel
(2004); Duminil-Copin et al. (2017)). Each of these techniques has a different pattern recognition ob-
jective such as identifying latent grouping, identifying latent space, finding irregularities in the data,
density estimation or generating new samples from the data.

As the temperature affects the energy of the system, one difficulty often encountered is that small clus-
ters are dominant in the disordered phase of the Potts Model (Lima, 2018). To deal will it, we apply
a modified agglomerative clustering approach (Kurita, 1991) by merging all small clusters of size ≤ h

with their closest cluster in terms of minimal distance respectively, where h is an integer greater or
equal to 2. For the merging process, we have applied to the clusters a shrinkage clustering optimiza-
tion algorithm method completed linkage [6], inspired from available agglomerative clustering and
shrinkage methods.

1.2 Agglomerative Clustering and Shrinkage methods:

Once the clustering constraint has been fixed, we can rely on agglomarative methods to merge those
clusters that do not fit the given constraint, with others that satisfy it.

Agglomerative clustering is a set of methods that generate the partition hierarchically by a sequence of
merge operations (Fränti & Virmajoki (2006), Ackermann et al. (2014), Sasirekha & Baby (2013), Madhu-
latha (2012), Gower (1967), Wattanachon & Lursinsap (2004), Rani1 & Rohil (2013), Patel et al. (2015)).
At the onset, hierarchical agglomerative clustering treats given data as a singleton cluster, then merges
(or agglomerates) pairs of clusters until all clusters are merged into a single cluster containing all data
(Lukasová (1979), Müllner (2011)).

Hierarchical clustering algorithms can also be used for graphical data exploration (Seo & Shneiderman
(2003), Sprenger et al. (2000), Wu et al. (2010)). One of them known as Single-linkage (Ross, 1969), can
easily depict the hierarchical relationship of clusters based on a similarity measure. When error are
accumulated during the agglomeration process, Jin & Xiao (2013) has developed an adaptive hierarchi-
cal agglomerative clustering algorithm called Agglomerative Network Clustering Algorithm (ANCA)
from Newman Rapid Algorithm Based on Heap (NRABH) to eliminate the error in advance.

Shrinkage methods are useful when it is time to apply the appropriate merging criteria, i.e, to decide
whether two clusters are relevant to be merged together. The idea of shrinkage in clustering originates
from convex optimization view towards the task of clustering ((Pelckmans et al., 2005)). In terms of
clustering, related works are numerous: shrinkage clustering based on matrix factorization that simul-
taneously finds the optimal number of clusters while partitioning the data (Hu et al., 2018), James–Stein
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shrinkage in k-means clustering where the centroids of clusters toward the overall mean of all data is
shrunk using a James–Stein-type adjustment (Gao & Hitchcock, 2010). In the work of Pelckmans et al.
(2005), a shrinkage term is proposed resulting in sparseness amongst the differences between the cen-
troids. Clusters are obtained by solving a convex optimization problem with a fixed trade-off term
between clustering loss and the shrinkage term. A hierarchical clustering tree is then generated by
varying the trade-off value.

When it comes to practice, shrinkage techniques are also considered as a major part of regularization
methods, with applications in many statistics related fields such as regression, times series, machine
learning, multivariate inference and optimization methods: Tibshirani (1996), Irfan et al. (2013), Van Erp
et al. (2019), Similä & Tikka (2007), Gruber (2017), Steyerberg et al. (2001), Ahmed & Nicol (2012),
Ahmed (1997), QIAN & Su (2016), Sætrom & Omre (2011), Thompson (1968), Sundberg (2006), van
Houwelingen & Sauerbrei (2013), Ahmed (2014), Polson & Scott (2012), Zareamoghaddam et al. (2020),
Yüzbaşı et al. (2020), Agarwal (2002), Lian (2013), Zheng et al. (2014), Roozbeh & Arashi (2016), Xiong
& Joseph (2013), Tutz & Leitenstorfer (2006), Griffin et al. (2017), Korobilis (2013), Korobilis (2013), Jiang
& Owen (2003), Zou & Hastie (2003), Efron (1992), Fan et al. (1991).

In our case, we apply shrinkage methods with linkage based-algorithms [6].

1.3 On some software available for the Potts model:

Software are required to be more adequate both for learning and doing statistics in introductory courses.
At the most practical level, software should be used to encode model equations and methods (or, more
usefully, as mark-up languages for generating software). Those software have due requirements Biehler
(1997).

Among the software available for Potts Models, we have those developped in R language : bayesIm-

ageS for Bayesian Methods for Image Segmentation (Moores & Mengersen (2018), Moores et al. (2016)),
potts for Markov Chain Monte Carlo for Potts Models (Geyer & Johnson, 2010), PottsUtils for Utility
Functions of the Potts Models (Feng & Tierney (2014), Feng). This package [PottsUtils] introduces also
some variants of the Potts model: simple, compound and repulsive Potts models (Feng, 2008).

Pottslab is another one, developed by Storath & Weinmann (2014), and is used as a Matlab/Java tool-
box for the reconstruction of jump-sparse signals and images using the Potts model (also known as
"piecewise constant Mumford-Shah model" or "l0 gradient model"). Applications include denoising
of piecewise constant signals [where L1 Potts model is robust to noisy and moderately blurred data],
step detection [Szorkovszky et al. (2018), Nord et al. (2017)] and segmentation of multichannel image
(Breger et al., 2017).

Parts of Pottslab can be used without Matlab as pure Java plugins, such as Icy plugin - an interactive
image segmentation plugin based on Pottslab (Implemented by Vasileios Angelopoulos at the Biomed-
ical Imaging Group (BIG), EPFL in Switzerland) and ImageJ plugin - an ImageJ frontend for Pottslab
(written by Michael Kaul).

Some others software have been developped for the Cellular Potts model: CompuCell3D (Cickovski
et al. (2007), Swat et al.), CompuCell (Izaguirre et al., 2004) and the two dimensional Cellular Potts
Model Library called Tissue Simulation Toolkit based on the work of Graner and Glazier (Graner &
Glazier, 1992).

Our paper works & contributions: The following lines introduce the Potts Clustering in its detailed
description [2], describe most of its applications [3, 4], introduce some kernels [5], and shrinkage algo-
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rithms [6]. Our model is presented in section [6.1], and its code/package usage is explained in [8]. The
model needs the user to turn some key parameters [7], and experiments [9] are given to illustrate the
package usage. More developments are proposed on the conditional bonds distribution in [10]. Our
final words follow in section [11].

2. The Potts Clustering in its detailed description

The Potts Clustering is a random partition model for clustering with the prior distribution on partitions
ρn being the Potts Model.

Let D = {xi ∈ Rp, i = 1, ..., n} be our data, i.e, the observations form the vertices of a graph (as in the
super-paramagnetic clustering framework). Let us denote this data graph by (G(D), (G)), where (G),
the edge-set is composed of pairs of nearest neighbors, i.e:

(G) = {(x, y) ∈ D
2, kxy(σ) = kσ(x, y) > 0}

where kxy is said to be the similarities between the neighboring points x and y (kxy a Mercer kernel in
(x, y) given a bandwidth parameter σ). If x and y are neighboring points, we will write x ∼ y.

In Potts clustering, we assign labels i ∈ {1, ..., q} to each observation xi, i = 1, ..., n, so that observations
similar to each other are likely to be assigned the same label. Denoting zsi = 1 if xi has been assigned
to the sth label, and zero, otherwise, the model density is given by:

p({zsi}|σ, X, β, q) = Z−1 exp
{

− β ∑
xi∼xj

kσ(xi, xj)(1 − δ(xi, xj))
}

where β = 1
T is the inverse temperature parameter, δ(xi, xj) = ∑

q
s=1 zsizsj = 1 if xi and xj have the same

label assignment.

2.1 The Bernouilli bonds

Let’s introduce percolation (Duminil-Copin, 2016).

Definition 2.1 (Percolation configuration). A percolation configuration b = (bij : (xi, xj) ∈ (G)) is an
element of {0, 1}(G) . If bij = 1, the edge (xi, xj) is said to be frozen (open), otherwise (xi, xj) is said to
be not frozen (closed).

A percolation model is given by a family of probability measures on percolation configurations. Giv-
ing The Kastaleyn-Fortuin mapping, which establishes a connection between a particular percolation
model and a limit of the Potts model (Hu, 1987), Bernouilli bonds are introduced to match the percola-
tion configuration for the Potts clustering.

For an edge (xi, xj) ∈ (G), the bond bij becomes frozen with conditional probability (given δij ):

pij = p(bi j|δij) = δij

(

1 − exp{−βkij(σ)}
)

where δij = δ(xi, xj) and kij(σ) = kσ(xi, xj).

This is known as the Fortuin-Kasteleyn-Swendsen-Wang model (Sokal, 1997).

Maximal connected components (clusters) are obtained by finding all observations in a frozen path
(Murua & Quintana, 2017b),i.e, each cluster is then identified by those unique observations among a
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given frozen path. Isolated observations form a cluster of size equal to 1. This is a major drawback,
because in real applications (biomedical datasets (Hu et al., 2018), finance, computer science, engineer-
ing (Ganganath et al., 2014)), it is often essential to obtain clusters of sufficient sample size to make the
clustering result meaningful and interpretable for subsequent analysis.

Because the bonds probabilities are conditioned by the label assignment process, it is obvious that the
clustering is influenced by q, the number of labels. The larger q is, the more subsets (of data) of unique
label are generated at random.

There is a need to control even the mean size of all subsets (of data) of unique label, after initial label

assignment. We only care about the initial labelling because for further steps (in the case of Swenden-
Wang algorithm) [Borgs et al. (2012); Salas & Sokal (1997); Häggkvist et al. (2004); Häggström et al.
(2002); Johansson & Pistol (2011); Martinelli et al. (1990); Ding & Barbu (2015); Häggkvist et al. (2004)],
each connected subset is assigned the same color label uniformly at random and independently from
each other, given the bonds {bij}.

3. Notes on Standard Application: Random Partitions Models

It is well-known that a random measure in Bayesian non-parametrics induces a distribution over ran-
dom partitions. Many Random partition models do exist with multiple applications (Dahl et al. (2017);
Dahl (2008); Loschi & Cruz (2005); Betancourt et al. (2020); Di Benedetto et al. (2017); McCullagh (2011);
Zanella et al. (2015); Stam (1983)). Some random partitions are implied by the Dirichlet process (DP)
prior p (πn) (Blackwell et al. (1973); Ferguson (1973); Antoniak (1974); Müller & Quintana (2010)). The
most famous random partitions model, is the one of Müller & Quintana (2010), which introduced a
cohesion measure :

P (πn = {S1, . . . , SΞ}) = K
Ξ

∏
ξ=1

c
(

Sξ

)

(2)

where πn is a partition of the objects in a family of subsets S1, S2, . . . , SΞ of S0 = {1, 2, . . . , n} and c(S)
is a non-negative cohesion that is specified for each subset of S0, Ξ = |ρ| is the number of partitions.
Here, the normalizing constant K = ∑ρ∈P ΠΞ

ξ=1c
(

Sξ

)

, where P is the set of all possible partitions into
non-empty sets.

As a reminder : Cohesion is the measure of the strength of the functional relationship of the
elements in each subset that then controls the partition of subsets that can be roughly thought of
as a probability (Page et al. (2019); Müller et al. (2013)).

A popular choice is c(S) = m(|S| − 1)! where m is a precision parameter and |S| is the number of
elements in S. It follows that the resulting probability model for πn is

P (πn) =
mΞ−1 ∏

Ξ

ξ=1
(

nξ − 1
)

!

∏
n
i=1(m + i − 1)

where nξ =
∣

∣Sξ

∣

∣ is the number of elements in cluster j that is known as the Dirichlet process (DP)
random partition.
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Remark (Dahl et al. (2009))
The connection between product partition models and Dirichlet process mixture (DPM) models was first shown
by Quintana & Iglesias (2003). The proof is obvious. take the equation 2, and replace c(S) = m(|S| − 1)!, we
get :

P
(

πn =
{

S1, . . . , Sξ

})

= K
Ξ

∏
ξ=1

m(|Sξ | − 1)! = mΞ · K
Ξ

∏
ξ=1

(|Sξ | − 1)!

And it is easy to find the right K, that will make P (ρn = {S1, . . . , SΞ}) a probability:

K =
n

∏
i=1

(m + i − 1)

.

Among many related random partition models, we have :

1. Product partition models (PPM) [Hartigan (1990); Barry & Hartigan (1992); Dahl et al. (2009);
Loschi & Cruz (2005); Loschi & Cruz (2002); Quintana & Iglesias (2003)] is a special case. These
model assume that observations in different elements of a random partition of the data are inde-
pendent. So if the probability distribution for the random partitions is in a product form prior
to obtaining observations, it is also then in product form after obtaining the observations (Jordan
et al. (2007)).

Definition 3.1 (Product Partition Model). Together with independent sampling across clusters, a
PPM can be described as (Quintana & Iglesias (2003); Blackwell et al. (1973); Pitman (1996); Dahl
et al. (2009)):

P (y | πn) = {S1, . . . , SΞ}) ∝
Ξ

∏
ξ=1

c
(

Sξ

)

P (ys)

2. Product partition models with a covariate-dependent extension (PPMx) proposed by Müller et al.
(2011), Dunson & Park (2008), and Dahl(2008). This PPM version uses covariates approach, with
preditors dependent random probability measures. In this application, covariates are available
and are used to a priori inform the clustering. This leads to random clustering models indexed by
covariates, i.e., regression models with the outcome being a partition of the experimental units.
There are many PPMx variants : Fung (2012), Quintana (2010); Quintana et al. (2020); Blei & Fra-
zier (2011); Jo et al. (2015); Barcella et al. (2017); Ferreira et al. (2014); Page & Quintana (2018). One
standard application of the Potts Model, is in fact to build random clustering covariates model
with regression. The main example is the model of Murua & Quintana (2017b). We introduce
briefly the scope of their model: suppose we have a set of n data available, and that each individ-
ual i ∈ [n] in a given sample is associated with a p -dimensional vector yi of responses of interest
and a q-dimensional covariate vector xi. Suppose also that the interest lies in studying the rela-
tionship between yi and xi, and in particular, in predicting the response yn+1 associated with a
covariate vector xn+1 of a future individual. Let p (yi | xi, Φi) be a likelihood model stating the re-
lationship between the i th response and the associated covariate vector. The covariate dependent
random partition model with a hierarchical structure for these data is as follow:

y1, . . . , yn | ρn, Φ
∗
1 , . . . , Φ

∗
kn

ind
∼ p

(

yi | xi, Φ
∗
si

)

Φ
∗
1 , . . . , Φ

∗
kn

iid.
∼ p(Φ) and ρn ∼ p (ρn | xn)
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Here ρn is a partition of [n] into kn subsets. Also, s1, . . . , sn are cluster membership indicators such
that si = j if the i th individual belongs to the j th cluster. In addition Φi = Φ

∗
si

for all i ∈ [n].
Model (1) groups in cluster j those individuals having identical parameter value Φ∗

j . Individuals
within this cluster are conditionally iid given Φ∗

j . What make the model particular here is that
ρn ∼ p (ρn | xn) is a Potts Model. This implies the existence of auxiliary binary variables, the
so-called bonds b =

{

bij

}

, so that:

p (ρn | xn) = ∑
b⇒ρn

p (b | xn)

They then apply the Metropolis-Hastings (MH) algorithm to sample parameters from this poste-
rior, by choosing an efficient MH proposal distribution and they obtain consistent improvements
compared to the results found in the literature. The model simultaneously allows for explicit
estimation of the number of clusters, and for good responses predictions (Murua & Quintana
(2017b)).

4. Other variants of the Potts Model with their applications

The Potts model (Wu, 1982) uses the Swenden-Wang Monte Carlo algorithm to simulate random par-
titions with the data based on the ferromagnetic Potts model on a graph. In the Potts model there are
q possible states for each spin and the interaction energy between any pair of neighboring spins is −J
if the spins have the same value and is 0 otherwise. The 2-state Potts model is equivalent to the Ising
model (Duminil-Copin, 2017). In the Ising model, usually the spins are arranged in a square lattice
where they interact with other spins within a defined neighbourhood. However, the Potts model has
a much richer phase structure, which makes it an important testing ground for new theories and algo-
rithms in the study of critical phenomena. The scope of research for the q-state Potts Model extend to
its critical manifolds (Scullard & Jacobsen, 2016), its topological phases in the antiferromagnetic config-
uration (Zhao et al., 2018), its static critical behavior in high resolution (Caparica et al., 2015), fraction of
uninfected walkers in its one-dimensional model (O’Donoghue & Bray, 2002), its ferromagnetic states
with multisite interaction (Schreiber et al., 2018), its disordered states without a ferromagnetic phase
(Marinari et al. (1999), Carlucci (1999)), approximate theories of first-order phase transitions on its two-
dimensional model (Dasgupta & Pandit, 1987) [which has Critical exponents of domain walls (Dubail
et al., 2010), critical polynomials Jacobsen & Scullard (2013), entanglement entropy measurable using
wavelet analysis Tomita (2018)], periodic p-adic Gibbs Measures Ahmad et al. (2018), local scale in-
variance in ageing (Lorenz & Janke, 2007), Potts glass models (Yamaguchi, 2015), percolation models
on bowtie lattices (Ding et al., 2012), Roughness exponent in two-dimensional percolation, and clock
model (Redinz & Martins, 2001), interfacial adsorption in two-dimensional pure and random-bond
Potts models (Fytas et al., 2017), exact valence bond entanglement entropy and probability distribution
in the XXX Spin Chain (Jacobsen & Saleur, 2008), lung cancer pathological image analysis using a hid-
den Potts model (Li et al., 2017), the cellular Potts model (He et al. (2009), Durand & Guesnet (2016),
Albert & Schwarz (2014), Albert & Schwarz (2014), Voss-Böhme (2012), R. Noppe et al. (2015), Scianna &
Preziosi (2014), Harrison & Vasiev (2008)), the two (2)-Dimensional Wetting transition (Lopes & Mom-
bach, 2017), the random resistor network and its Potts-model formulation (Harris & Lubensky, 1987),
Directed Small-World Networks (Aquino et al., 2018), Hybrid Potts-Phase Field with Hydride Modeling
Capability in MBM (Hales & Tikare, 2014), adaptive Potts model for networks of neurons (Abdollah-
nia et al., 2012), Parallel family trees for its transfer matrices (Navarro et al., 2015), cortical network
(Naim et al., 2018), approximate ground states of the random-field Potts model from graph cuts (Ku-
mar et al., Kumar et al. (2018)), percolation model (Ding et al., 2010), Multiscale multifractal DCCA and
complexity behaviors of return intervals for Potts price model (Wang et al., 2018), solution of the sign
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problem in the Potts model at fixed fermion number (Alexandru et al., 2018), Swendsen–Wang multi-
cluster spin flip algorithm (Komura & Okabe, 2014), aperiodic modulations of the Potts model and
its first-order transitions (Branco & Girardi, 2012), semantic memory retrieval (Kropff & Treves, 2005),
Simulations of Grain Growth in Copper Interconnects (Radhakrishnan & Sarma, 2008), three-state Potts
model (Kolesik & Suzuki (1995), Ferraz & Lima (2017), Handrey Araujo Ferraz & Sousa Lima (2016),
Lv et al. (2018a)), metastability and nucleation in the 2D-Potts ferromagnet (de Berganza, 2009), Potts
glass reflection of the decoding threshold for qudit quantum error correcting codes (Jiang et al., 2016),
localization protection and symmetry breaking in one-dimensional Potts Chains (Friedman et al., 2017),
Ground-state entropy of the Potts antiferromagnet with next-nearest-neighbor spin-spin couplings on
strips of the square lattice (Chang & Shrock, 2000), Weighted fractional permutation entropy and frac-
tional sample entropy for nonlinear Potts financial dynamics (Xu & Wang, 2017), nonlinear complex-
ity behaviors of agent-based 3D Potts financial dynamics with random environments (Xing & Wang,
2018), Reconstruction of a real world social network using the Potts model and loopy belief propa-
gation (Bisconti et al., 2015), Finite-size behaviour of generalized susceptibilities in the whole phase
plane of the Potts model (Pan et al., 2018), Phase diagram of the triangular-lattice Potts antiferromagnet
(Jacobsen et al., 2017), chiral Potts model (Chair, 2014), scaling Potts model (Lencsés & Takács, 2014),
Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories (Rutke-
vich, 2017), Bayesian image segmentations by Potts prior and loopy belief propagation (Tanaka et al.,
2014), quantum Potts chain (Lajkó & Iglói, 2017), Density of states and Potts zeros (Kim & Creswick,
2001), Dynamic metastability in the two-dimensional Potts ferromagnet (Berganza et al., 2014), gener-
ative Hopfield-Potts models for protein families (Shimagaki & Weigt, 2019), and Bayesian Methods for
Image Segmentation using a hidden Potts model which can be viewed as a spatially-correlated gener-
alisation of the finite mixture model (Moores et al. (2020)).

5. Introduction to Kernels

A couple of kernels have been developped for clustering tasks for multiple applications (Zhang et al.
(2002), Langone et al. (2016), Girolami (2002), Graves & Pedrycz (2007), Camastra & Verri (2005)). In
machine learning, the kernel function is used on each data instance to translate the observations into a
higher-dimensional space where they can be separated.

1. Kernel in K-Means: The Kernel is implemented to minimize the following error :

E(X) =
1

2n

k

∑
i=1

∑
u∈πi

‖u − vi‖
2 (3)

where vi =
1

|πi |
∑u∈πi

u is mean of the Voronoi set πi.

2. Mercer Kernels [for the following, ui and uj are two points in the data domain space, σ a parame-
ter]:

(a) Simple :

K(p) (ui, uj

)

=

∥

∥ui − uj

∥

∥

2

2σ2

(b) Polynomial :
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K(p) (ui, uj

)

=
(

1 + ui · uj

)p , p ∈ N

(c) Gaussian version :

K(g) (ui, uj

)

= exp

(

−

∥

∥ui − uj

∥

∥

2

2σ2

)

, σ ∈ R

In the version 1.0.14 of the pottscompleteshrinkage package, only the simple Mercer is imple-
mented.

3. Non linear distance kernel :

∥

∥Φ (ui)− Φ
(

uj

)∥

∥

2

with Φ a non linear map function.

The list above of kernels does not contend to be complete. Moreover, in any task, the researcher is ask to
question the optimality, robustness, and quality of his choice (Chennuru Vankadara & Ghoshdastidar
(2019), Yan & Sarkar (2016), Wang et al. (2017)).

6. Shrinkage algorithms and the Potts Complete Shrinkage model

Let introduce a notation (Ackerman et al., 2010) : we considerate a k-clustering C = {C1, C2, . . . , Ck} of a
data set X, which is a partition of X into k non-empty disjoint subsets of X (so,∪iCi = X) . For x, y ∈ X
and clustering C of X, we write x ∼C y if x and y belong to the same cluster in C and x 6∼C y, otherwise.

Definition 6.1 (Ackerman et al. (2010)). A linkage is the distance between two clusters. It can be ex-
pressed as a function as follows:

ℓ : {(X1, X2, d) | d is a distance function over X1 ∪ X2} → R+ such that:

1. ℓ is representation independent: For all (X1, X2) and (X′
1, X′

2), if (X1, X2, d) ∼= (X′
1, X′

2, d′) (i.e.,
they are clustering-isomorphic), then ℓ (X1, X2, d) = ℓ (X′

1, X′
2, d′).

2. ℓ is monotonic: For all (X1, X2, d) if d′ is a distance function over X1 ∪X2 such that for all x ∼{X1,X2}

y, d(x, y) = d′(x, y) and for all x 6∼{X1,X2} y, d(x, y) ≤ d′(x, y) then ℓ (X1, X2, d′) ≥ ℓ (X1, X2, d).

3. Any pair of clusters can be made arbitrarily distant: For any pair of data sets (X1, d1) , (X2, d2),
and any r in the range of ℓ, there exists a distance function d that extends d1 and d2 such that
ℓ (X1, X2, d) > r.

The objects that we consider are pairs (X, d), where X is some finite domain set and d is a distance
function d over X. These are the inputs for clustering functions.

Definition 6.2 (Madhulatha (2012)). Shrinkage clustering is a size-constrained clustering algorithm

In the Potts Model, we were confronted to size constraint clustering problem, because many small
clusters arise from the Potts clustering Swenden-Wang method. To solve this issue, several Shrinkage

11



Clustering algorithms with base linkage methods are available. Suppose Cluster r is formed from
clusters p and q, with nr being the number of objects in cluster r; uri is the i-th object in cluster r. The
following notation describes the linkages used by the various methods:

1. Single linkage, also called nearest neighbor, uses the smallest distance between objects in the
two clusters (Ross (1985), Ackerman et al. (2010), Gower & Ross (1969), Massaro (2005), Mohbey
& Thakur (2013), Ross (1969), ).

d(r, s) = min
(

dist
(

uri, usj

))

, i ∈ (i, . . . , nr) , j ∈ (1, . . . , ns)

2. Complete linkage, also called farthest neighbor, uses the largest distance between objects in the
two clusters (Krznaric & Levcopoulos (1998), Dawyndt et al. (2005), Grosswendt & Roeglin (2017),
Glasbey (1987), Krznaric & Levcopoulos (1997)).

d(r, s) = max
(

dist
(

uri, usj

))

, i ∈ (1, . . . , nr) , j ∈ (1, . . . , ns)

In general, the time complexity of complete linkage for N data is at most O
(

N2 log N
)

(Day &
Edelsbrunner, 1984).

3. Average linkage uses the average distance between all pairs of objects in any two clusters (Guenoche
(1994), Jarman (2020), Xu et al. (2021), Emmendorfer & de Paula Canuto (2021), Emmendorfer &
de Paula Canuto (2021)).

d(r, s) =
1

nrns

nr

∑
i=1

ns

∑
j=1

dist
(

uri, usj

)

This method can be compared to the single linkage method (Seifoddini (1988), Seifoddini (1989)).

4. Centroid linkage uses the Euclidean distance between the centroids of the two clusters (Jarman
(2020), Fung (2001), Mythili & Madhiya (2014), Kellom & Raymond (2017), Dixit & Naskar (2019)).

d(r, s) = ‖ūr − ūs‖2 where :

ūr =
1
nr

nr

∑
i=1

uri

5. Median linkage: to overcome the disadvantage of centroid method the median of two groups are
clustered is called median linkage clustering. It uses the Euclidean distance between weighted
centroids of the two clusters (Andes (1998)).

d(r, s) = ‖ũr − ũs‖2

where ũr and ũs are weighted centroids for the clusters r and s. If cluster r was created by com-
bining clusters p and q, ũr is defined recursively as:

ũr =
1
2

(

ũp + ũq

)
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6. Ward’s linkage uses the incremental sum of squares, that is, the increase in the total within-cluster
sum of squares as a result of joining two clusters (Nielsen (2016), AZIZI et al. (2019), Miyamoto
et al. (2015), Szekely et al. (2005), Strauss & von Maltitz (2017), Murtagh (1983), Kimes et al. (2017),
Jain et al. (2004), Blashfield (1980), Xu & Wunsch (2008), Murtagh & Legendre (2014)).

The within-cluster sum of squares is defined as the sum of the squares of the distances between
all objects in the cluster and the centroid of the cluster. The sum of squares metric is equivalent to
the following distance metric d(r, s), which is the formula linkage uses.

d(r, s) =

√

2nrns

(nr + ns)
‖ūr − ūs‖2

• where ‖ · ‖2 is the Euclidean distance.

• ūr and ūs are the centroids of clusters r and s.

• nr and ns are the number of elements in clusters r and s

In some references, Ward’s linkage does not use the factor of 2 multiplying nrns. The linkage
function uses this factor so that the distance between two singleton clusters is the same as the
Euclidean distance. Ward’s linkage clustering often provides strong clustering results in practice
(Kimes et al. (2017)).

7. Weighted average linkage uses a recursive definition for the distance between two clusters. If
cluster r was created by combining clusters p and q, the distance between r and another cluster s
is defined as the average of the distance between p and s and the distance between q and s.

d(r, s) =
(d(p, s) + d(q, s))

2

Some shrinkage available software : In addition to the detection of hierarchical structure in com-
plex networks, SHRINK has been built by combining the advantages of density-based clustering and
modularity optimization methods, in order to identify hubs and outliers (Huang et al., 2010). There is
also SCAN which solves the same problem, and has been augmented with gSkeletonClu, also known
as graph-skeleton based clustering (Sun et al. (2010), Huang et al. (2012)), which in turn transforms a
network clustering problem into the task of finding core-connected components in its associated Core-
Connected Maximal Spanning Tree (CCMST).

6.1 On Potts Model with Complete Shrinkage Clustering

One of the difficulties encountered when sampling partitions with the Swenden-Wang algorithm Swend-
sen & Wang (1987) for the random bond Potts Models as done by Murua & Quintana (2017a), is the dis-
tribution of the temperature T of the Potts Model in its probabilistic form as a system of particles (data
points) and their interactions given by the similarity measure. The distribution of the system depends
on the temperature T. For each T there is a probability pT ({zkl}) associated with each configuration of
the system’s labels:

pT ({zki}) ∝ exp
{

−
1
T

H ({zki})

}

= exp

{

−
1

2T

n

∑
i=1

n

∑
j=1

(

1 − δij

)

s
(

xi, xj

)

}
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where δij = ∑ zklzkj between observations i and j equals one if they are assigned to the same cluster k,
and zero otherwise. s

(

xi, xj

)

is the similarity measure, and finally zki = 1 if observation i belongs to
cluster k. Then, as proposed by Murua & Quintana (2017a) ( by introducing a set of latent variables, the
bonds b), the bond bij = 1 is said to be frozen if bij = 1 and αij = δij = 1, that is, the points xi and xj

are neighbors and have the same label. Otherwise, the bond is not frozen. The bond bij becomes frozen
with probability pij = 1 − exp

{

−βκij(σ)
}

.

In our case, the similarities between pairs of covariate vectors are defined by κij = K
(

xi, xj

)

(K(·, ·) is a
Mercer Kernel). As usual, we have assumed that K is a function of the distances

∥

∥xi − xj

∥

∥ , of the form
κij = κij(σ) = K

(∥

∥xi − xj

∥

∥ /σ
)

, where σ > 0 is a bandwidth parameter.

As the temperature affects the energy of the system, one difficulty often encountered is that small
clusters are dominant in the disordered phase of the Potts Model (Lima, 2018). Particularly, we have
found in practice that the drawback of the bonds approach is the increasing number of small clusters
generated in a given partition. To deal will it, we apply a modified agglomerative clustering approach
(Kurita, 1991) by merging all small clusters of size ≤ h with their closest cluster in terms of minimal
distance respectively, where h is an integer greater or equal to 2. The algorithm uses a technique in
which distances of all pairs of observations are stored. Then the nearest cluster (with size ≥ h) is given
by the cluster with the closest node in terms of minimal distance to the cluster to be merged. We have
implemented a complete linkage merging process [6], and this is what we call under the clustering
model Potts Clustering with Complete Shrinkage (PCCS). In our case, the complete shrinkage process
is iterative as described in (Fränti & Virmajoki, 2006): iterative shrinking (IS) starts by assigning each
data vector to its own cluster. It then removes one cluster at a time until the desired constraint for each
cluster has been reached.

7. Turning some parameters

We are about to present some methods to choose some key parameters, as those methods will be im-
plemented in further releases of the software package (pottscompleteshrinkage) of the Potts Clustering

with Complete Shrinkage model.

7.1 The optimal number of Potts States

Most of the time, the number of Potts states is choosen empirically. As for example, Ekeberg et al. (2013)
has applied 21-state Potts models to significantly outperform existing approaches to direct-coupling anal-
ysis, when treating evolutionarily proteins structures. Gould & Tobochnik (2010) has proposed a Pro-
gram called PottsNumberofstates that uses the Wang-Landau Monte Carlo algorithm to estimate the
number of microstates Ω(E) for each value of E in the q-state 2D Potts model on a square lattice. Such
program can be used in practice. Our model is only dedicated to the finite-state Potts Model. However,
the number of states can be very large sometimes, and there are inspirational work in this direction
when it happens: The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the
Coulomb gas from Fröhlich & Spencer (1981), who dictates that the q-states Potts becomes the XY
model in large q state [4], Microcanonical Entropy of the Infinite-State Potts Model (Johansson & Pistol,
2011), Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q (Kim
& Creswick, 2001).

7.2 Choosing the bandwidth and the temperature

Most of the experiments with Potts Model use the simple Mercer Kernel or the Gaussian kernel Jij(σ) =

exp(− 1
2σ2 ‖xi − xj‖

2), which is the most popular kernel choice for the Potts or super-paramagnetic clus-
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tering model (Blatt et al., 1996a,c; Murua et al., 2008b). Although the scale parameter σ may be esti-
mated through a Bayesian stochastic procedure (Murua & Wicker, 2014b), we prefer to use its common
estimator which is given by the average distances σ̂2 = ∑i<j‖xi − xj‖

2/(n
2). Murua & Wicker (2014b)

show that the optimal scale is close to this simple estimator.

The temperature of the system is one of the critical parameter of the model (Kinzel & Domany, 1981).
Various works have tried to estimate the appropriate temperature: (Zhao & Fu, 2019). However, if β =
1/T is treated as unknown, for example in studies using the Bayesian methods (Green & Richardson
(2002); Smith & Smith (2006)), then the normalizing constant is necessary when drawing samples from
the conditional distribution of β by a Metropolis-Hastings algorithm. The package PottsUtils provide a
function getNC() to obtain the normalizing constant of a simple Potts model, using the Bayesian method
described similarly in (Green & Richardson (2002); Smith & Smith (2006)).

One of the main issues encountered with the Potts model is the choice of the inverse temperature
parameter β. This parameter controls the cluster sizes in the partitions. A value too low of β produces
too many small clusters, while a value too high produces very few and large clusters. For example,
in a shallow Gibbs network (ALAHASSA & Murua, 2021) which is going to be fitted for each cluster
of the partition, we would rather not have too small size clusters. Therefore, an optimal value of β is
preferred. In our experiments, for each dataset, we selected a value of β that produced large enough
clusters. In general, Murua & Wicker (2014b) gave a simple procedure to find a nearly optimal value
of β. In our case, we just chose a value slightly smaller than the value suggested so as to ensure large
cluster sizes.

7.3 Phase transitions

We are not interested in our case in the phase transition of the model; much more researches are avail-
able on those topics, that the lecturer shall read in the work of : Tan et al. (2020), Giataganas et al. (2021),
Ferrenberg & Swendsen (1988), Li et al. (2018), (Gandica & Chiacchiera, 2016), Gorbenko et al. (2018),
Gorbenko et al. (2018), Kaufman & Diep (2010), Katori (1988).

The partition function of the Potts Model: The partition function is intractable, but recent advanced
research has improved his computation with new algorithms (Hartmann, 2005).

8. Code layout, usage and Effective Python Implementation

The fully implemented architecture and Valid Python Code of the Potts Clustering with Complete
Shrinkage is available with comments on our github repository under GNU General Public license
v3.0. Please download the package on the public access link : https://github.com/kgalahassa/
pottscompleteshrinkage or write directly to alahassan@dms.umontreal.ca for more details.

The full descriptive code of the Potts Clustering with Complete Shrinkage (PCCS) requires at least 100
to 200 lines to present the complete algorithm; the reason why we prefer to (simply) distribute directly
the code through github.

8.1 Code Main layout: modules and methods

As presented in figure [1], the Github repository pottscompleteshrinkage contains many folders. The
main folder which is principal to build the package is the pottsshrinkage folder, containing the __init__.py

file, indicating the completeshrinkage.py main module. The other folders such as Build, dist, and
pottscompleteshrinkage.egg-info are built-in folders obtained from two main command lines of ex-
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ecution in an Anaconda Terminal: python setup.py install, and python setup.py sdist bdist_wheel.
The main module completeshrinkage.py contains all the methods called at usage.

Github repository pottscompleteshrinkage

Build

lib

dist

pottscompleteshrinkage.egg-info

pottsshrinkage

init .py

completeshrinkage.py

LICENSE

README.md

requirements.txt

setup.py

Figure 1: The Potts Complete Shrinkage Github Repository Structure

8.2 Code Usage

The package pottscompleteshrinkage is currently published on PyPi (The Python Package Index), in
its 1.0.14 version (new releases may be published in the future). There is a notebook available at :
https://github.com/kgalahassa/pottscompleteshrinkage-notebook to illustrate the us-
age of the package. There are three requirements before running the code : q ∈ N∗ (q must be a strictly
positive integer, q ≥ 10 is preferable), the temperature T and the bandwidth σ must also be strictly
positive real number (T, σ ∈ R

∗
+). This notebook is presented and commented in detailed here:

16

https://github.com/kgalahassa/pottscompleteshrinkage-notebook


1 import pandas as pd

2 import random

3 import numpy as np

4 from numpy import linalg as LA

5 from sklearn import datasets

6

7 # i m p o r t s o m e d a t a t o p l a y w i t h
8 iris = datasets.load_iris()

9 Train_PottsData_demo = iris.data[:, :3]

10

11

12 # I m p o r t t h e P o t t s C o m p l e t e S h r i n k a g e m o d u l e
13 import pottsshrinkage.completeshrinkage as PCS

14

15 # C h o o s e t h e number o f c o l o r s
16 q = 20

17

18

19 # Compute I n i t i a l P o t t s C l u s t e r s a s a f i r s t Random P a r t i t i o n
20 # ( w i t h P o t t s Mode l )
21 InitialPottsClusters = PCS.InitialPottsConfiguration(Train_PottsData_demo ,

22

23 q, Kernel="Mercer")

24

25 # C h o o s e y o u r t e m p e r a t u r e ( T ) l e v e l
26 T = 1000

27

28 # S e t t h e b a n d w i d t h o f t h e m o d e l
29 sigma = 1

30

31 # S e t t h e Number o f R a n d o m _ P a r t i t i o n s you want t o s i m u l a t e
32 Number_of_Random_Partitions = 3

33

34 # S e t y o u r i n i t i a l ( random ) P o t t s p a r t i t i o n a s c o m p u t e d a b o v e
35 Initial_Partition = InitialPottsClusters

36

37 # S e t t h e Minimum S i z e d e s i r e d f o r e a c h p a r t i t i o n g e n e r a t e d
38 MinClusterSize = 5

39

40 # Run y o u r P o t t s C o m p l e t e S h r i n k a g e Mode l t o s i m u l a t e t h e Randomly
41

42 # S h r u n k P o t t s P a r t i t i o n s . P a r t i t i o n s _ S e t s i s a d i c t i o n a r y t h a t
43

44 # c a n b e s a v e d w i t h p i c k l e p a c k a g e .
45

46 Partitions_Sets ,Spin_Configuration_Sets =

47

48 PCS.Potts_Random_Partition (Train_PottsData_demo , T, sigma,
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49

50 Number_of_Random_Partitions , MinClusterSize , Initial_Partition ,

51

52 Kernel="Mercer")

We are at step: 1

Clusters Size of Current Partition [11, 10, 13, 7, 6, 7, 8, 11, 10, 6, 8, 6, 8,

6, 10, 7, 10, 6]

Partition is: [[34, 9, 12, 1, 29, 3, 42, 13, 38, 8, 41], [39, 7, 23, 37, 4, 35,

47, 2, 6, 22], [40, 17, 0, 28, 27, 36, 31, 20, 46, 21, 19, 32, 16], [48, 10, 5,

18, 33, 14, 15], [49, 30, 25, 43, 11, 24], [89, 53, 80, 59, 64, 26, 104], [95,

61, 82, 71, 88, 79, 44, 116], [97, 75, 58, 54, 74, 65, 127, 91, 56, 51, 85],

[106, 98, 93, 57, 60, 99, 67, 81, 45, 144], [113, 94, 69, 90, 92, 62], [135,

130, 107, 122, 105, 118, 131, 117], [138, 70, 96, 66, 55, 84], [140, 112, 132,

108, 137, 128, 103, 134], [141, 77, 76, 86, 52, 50], [142, 101, 83, 114, 123,

119, 146, 72, 87, 68], [143, 124, 120, 129, 102, 125, 109], [147, 115, 110, 139,

145, 133, 111, 148, 136, 100], [149, 121, 126, 73, 63, 78]]

We are at step: 2

Clusters Size of Current Partition [7, 10, 9, 6, 7, 8, 10, 7, 11, 7, 9, 8, 8, 7,

11, 10, 8, 7]

Partition is: [[39, 7, 23, 36, 28, 27, 20], [40, 17, 0, 35, 37, 4, 42, 6, 2,

22], [45, 12, 1, 29, 3, 38, 8, 13, 41], [46, 21, 19, 32, 16, 44], [48, 10, 5,

18, 33, 14, 15], [49, 30, 9, 25, 43, 26, 11, 24], [89, 53, 69, 80, 59, 81, 60,

79, 34, 76], [95, 61, 94, 88, 93, 47, 58], [99, 67, 82, 71, 92, 62, 98, 57, 64,

31, 86], [121, 96, 66, 55, 90, 84, 106], [126, 73, 63, 78, 97, 75, 54, 74, 65],

[135, 130, 107, 122, 105, 118, 131, 117], [137, 116, 128, 103, 133, 111, 134,

149], [138, 70, 127, 91, 56, 51, 85], [142, 101, 83, 114, 113, 123, 119, 146,

72, 87, 68], [144, 124, 120, 139, 129, 102, 140, 112, 132, 108], [147, 115, 110,

145, 77, 141, 52, 50], [148, 136, 104, 100, 143, 125, 109]]

We are at step: 3

Clusters Size of Current Partition [10, 11, 8, 6, 12, 6, 8, 10, 7, 9, 6, 8, 7,

7, 11, 9, 6, 9]

Partition is: [[43, 26, 11, 24, 40, 17, 0, 37, 4, 44], [45, 12, 1, 30, 29, 3,

42, 13, 38, 8, 41], [46, 21, 19, 32, 36, 31, 20, 18], [48, 10, 16, 33, 14, 15],

[49, 28, 35, 39, 23, 34, 9, 25, 47, 2, 6, 22], [86, 65, 75, 58, 54, 74], [93,

57, 60, 80, 59, 79, 7, 52], [94, 89, 53, 69, 92, 62, 98, 81, 27, 50], [95, 61,

88, 82, 64, 5, 148], [99, 67, 96, 66, 55, 90, 84, 121, 106], [126, 73, 63, 78,

97, 71], [135, 130, 107, 122, 105, 118, 131, 117], [138, 70, 127, 91, 56, 51,

85], [140, 112, 132, 108, 139, 129, 102], [142, 101, 83, 114, 113, 123, 119,

146, 72, 87, 68], [144, 124, 120, 136, 104, 100, 143, 125, 109], [145, 115, 110,

141, 77, 76], [147, 111, 137, 128, 103, 116, 149, 133, 134]]

We are at step: 4

Clusters Size of Current Partition [10, 8, 11, 6, 6, 6, 11, 6, 6, 10, 7, 12, 8,

11, 9, 8, 15]

Partition is: [[39, 7, 23, 34, 9, 25, 43, 26, 11, 24], [40, 17, 0, 35, 36, 31,

28, 27], [45, 12, 1, 30, 29, 3, 42, 13, 38, 8, 41], [46, 21, 19, 32, 16, 44],

[47, 2, 6, 22, 37, 4], [48, 10, 5, 33, 14, 15], [89, 53, 69, 80, 59, 81, 60, 57,

93, 49, 133], [95, 61, 88, 71, 20, 125], [97, 75, 58, 54, 74, 65], [99, 67, 82,
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79, 64, 92, 62, 98, 18, 96], [121, 94, 90, 84, 66, 55, 106], [123, 72, 83, 146,

119, 87, 68, 149, 114, 142, 101, 113], [135, 107, 118, 131, 122, 105, 117, 130],

[138, 70, 126, 73, 63, 78, 127, 91, 56, 51, 85], [141, 77, 76, 86, 52, 50, 145,

115, 110], [144, 124, 120, 139, 129, 102, 143, 109], [147, 111, 137, 116, 128,

103, 134, 140, 112, 132, 108, 148, 136, 104, 100]]

The output returns the index of each data observation in each associate cluster, for each generated
partition. Partitions_Sets is a Python dictionary that can be saved with pickle python package.

Spin_Configuration_Sets returns the last spin configuration. In the print above, we can also read the
size of each cluster in each obtained partition. It is also easy to use the time package to time the process.

9. Experiments and Examples of Usage of the Package

We have performed experiments with ten (9) datasets taken from the multiple-output benchmark datasets
available in the Mulan project website (Tsoumakas et al., 2020). The datasets are shown in Table 1. We
set the parameters as follows: q = 20, T = 1000, and σ = 1.

Table 1: Summary of the ten (10) datasets taken from the Mulan project.

Number of Number of Response variable
Dataset Domain Instances features dimension (targets)

Andromeda Water 49 30 6
Slump Concrete 103 7 3
EDM Machining 154 16 2

ATP7D Forecast 296 211 6
ATP1D Forecast 337 411 6

Online sales Forecast 639 401 12
ENB Buildings 768 8 2

Water quality Biology 1 060 14 16
SCPF Forecast 1 137 23 3

With those data described above, we have generated a set of Potts partitions in a number b, with b =
50, 100, with a shrinkage constraint = 3 (a minimum of two (3) observations per cluster in each partition
is required). We focus attention on four (4) characteristics that can help to compare the performance of
the algorithm from one given dataset to one another:

• The number of data per cluster (NumbDC): this corresponds to the list of cluster size per partition;

• The Mean Number of data per cluster and per 10 individuals (MeanNumbC10): we take the mean
of the list of the number of data per cluster, and divide by 10 [shown in table 2].

• Number of cluster per partition (NumbCPar): this corresponds to a list of the number of clusters
per partition taken through all the partitions;

• The Mean Number of cluster per partition (MeanNumbCPar) [shown in table 2];

And finally a histogram to illustrate:
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• The number of data per cluster (NumbDC);

• The number of cluster per partition (NumbCPar);

As for example, some histograms have Chi-Square (p) density, with p = 2 degree of liberty; or Gamma(r, 1)
density, with r = 1. Those density curves are identified for andro number of data per cluster [b = 50,
shrinkage = 3] (figure 2) for Water Quality number of data per cluster [b = 50, shrinkage = 3](figure
18).

Table 2: Summary of clustering statistics for the Mulan Project Dataset.

b = 50 b = 100
Dataset MeanNumbC10 MeanNumbCPar MeanNumbC10 MeanNumbCPar

Andromeda 0.642 4.98 1.175 4.980
Slump 3.007 2.294 3.767 1.831
EDM 0.540 19.058 0.541 19.049

ATP7D* 7.317 2.705 10.049 1.970
ATP1D* 8.964 2.509 8.174 2.509

Online sales* 26.948 1.588 19.829 2.158
ENB 16.691 3.078 27.910 1.841

Water quality 0.536 132.49 0.535 132.702
SCPF 2.647 3.588 3.379 2.812

*We have selected the first six (6) components that explained 80% of the data before the partitioning

9.1 The plots and description graphics

We have noticed the temperature T and the bandwidth σ are very essential. For higher values of those
parameters (the temperature mainly), we get more clusters inside each partition. The configuration
(T −→ +∞ and σ −→ +∞) give more single clusters, with the simple Mercer Kernel, and the algorithm
takes much more times to apply the shrinkage constraint.

(a) b = 50 (b) b = 100

Figure 2: Andromeda, Number of data per cluster (NumbDC), shrinkage = 3
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(a) b = 50 (b) b = 100

Figure 3: Andromeda, Number of cluster per partition (NumbCPar), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 4: Atp1d, Number of data per cluster (NumbDC), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 5: Atp1d, Number of cluster per partition (NumbCPar), shrinkage = 3
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(a) b = 50 (b) b = 100

Figure 6: Atp7d, Number of data per cluster (NumbDC), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 7: Atp1d, Number of cluster per partition (NumbCPar), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 8: EDM, Number of data per cluster (NumbDC), shrinkage = 3
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(a) b = 50 (b) b = 100

Figure 9: EDM, Number of cluster per partition (NumbCPar), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 10: ENB, Number of data per cluster (NumbDC), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 11: ENB, Number of cluster per partition (NumbCPar), shrinkage = 3
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(a) b = 50 (b) b = 100

Figure 12: Online sales, Number of data per cluster (NumbDC), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 13: Online sales, Number of cluster per partition (NumbCPar), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 14: scpf, Number of data per cluster (NumbDC), shrinkage = 3
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(a) b = 50 (b) b = 100

Figure 15: scpf, Number of cluster per partition (NumbCPar), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 16: slump, Number of data per cluster (NumbDC), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 17: slump, Number of cluster per partition (NumbCPar), shrinkage = 3

25



(a) b = 50 (b) b = 100

Figure 18: Water Quality, Number of data per cluster (NumbDC), shrinkage = 3

(a) b = 50 (b) b = 100

Figure 19: Water Quality, Number of cluster per partition (NumbCPar), shrinkage = 3

26



10. Extended Research on the conditional bonds distribution given the components size
constraint

10.1 Frequency of frequencies distribution

The objective of the Potts clustering algorithm is to find R(1 ≤ R ≤ n) clusters, C = {C1, C2, ..., CR}.
Each clustering specifies a sequence of cluster sizes, namely, letting ch = |Ch| be the size of the h-
th cluster, then the sequence of cluster sizes is [c1, c2, ..., cR]. Let denote ui ∈ {1, ..., R}, the cluster
observation xi is assigned to, ch = ∑

n
i=1 δ(ui = h) the number of observations in cluster h, and mv =

∑
R
h=1 δ(ch = v) the number of clusters of size v, where here δ(x) = 1 if condition x is satisfied, and

δ(x) = 0 otherwise. Thus by definition (Zhou et al., 2017), we have:

R =
n

∑
i=1

mi and n =
n

∑
i=1

imi

For example, if n = 14, (u1, ..., u14) = (1, 2, 3, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7) as (c1, ..., c7) = (1, 1, 1, 1, 2, 4, 4),
we have {m1, m2, m4} = {4, 1, 2} and mi = 0 for i 6∈ {1, 2, 4}.

As a reminder, R is a random variable. We refer the count vector M = ({mv})v as the frequency
of frequencies (FoF) vector, the distribution of which is commonly referred to as the FoF distribution
(Good, 1953).

10.2 Objective

Our objective is to find the FoF distribution of clusters count vector given the bonds probabilities.
Knowing the graph G and its edges set E(G), with δij = 1 if i and j are connected, this is express as :

FoF({mv}|{δij}; E(G))

And then derive the conditional distribution of bonds given the constraint cluster size condition Sc =
{mv = 0, for v ≤ Sc}, where Sc is the minimum cluster size we want.

This is express as :

p(bij|{zsi},Sc)

Remark

As highlighted above, q influences the clustering. One may be interested in :

1. The FoF distribution W = ({ωv})v for the count vector of all subsets (of data) of unique label after the first
step of label assignment when q is given. This will provide a way to condition the label assignment process
with constraint subset size condition Sd = {ωv = 0, for v ≤ Sd}, where Sd is the minimum subset size
we want. Let {ẑsi} be the conditioned label assignment.

2. And then search for the conditional distribution of bonds given the constraint subset size condition Sd and
the constraint cluster size condition Sc. This is expressed as :
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p(bij|Sd,Sc) = p(bi j|{ẑsi},Sc)

3. Finally, one can insert a prior p(σ, T) as done by Murua & Wicker (2014a) and access the MAP for the
model [but not required].

10.3 Methodology and combinatorial approach to the count vector

We present a mathematical framework to compute the distribution of the count vector W = ({ωv})v.

10.3.1 THE FOF DISTRIBUTION FOR ALL SUBSETS (OF DATA) OF UNIQUE LABEL (AT INITIAL

LABELLING)

Initial labelling may have a great influence on the clustering process. To find the FoF distribution for
all subsets (of data) of unique label (at initial labelling) when q is given, the Potts Model can be related
to many-body quantum systems problem, and describe in terms of a probability distribution over the
quantum states (Tong (2012) and Tong (2006)).

Knowing the probability of a given labelling configuration {zsi} as p({zsi}|σ, X, β, q), one can infer
p({ωv}|σ, X, β, q). Each state configuration induces a sequence of subsets (of data) of unique label.
Let [L1, L2, ..., Le], and [l1, l2, ..., le] the sequence of subsets of data (of unique label) and their #-cardinal
respectively. zi ∈ {1, ..., e} represents the subset of observation i, such that :

p({zsi}|σ, X, β, q) = p({zi}|σ, X, β, q)

Let denote V the index set of {ωv} we have necessarily #V ≤ n.

p({ωv}|σ, X, β, q) = p(ω1, ω2, ..., ωv, ..., ωn, ∑
v

ωv = e|σ, X, β, q) (4)

= ∑
Hotw(ii ,i2,...,ie)=1

p(l1 = i1, l2 = i2, ..., le = ie|σ, X, β, q)

= ∑
Hotw(ii, i2, ..., ie) = 1

Hatw(z1, z2, ..., zn) = 1

p(z1, z2, ..., zn|σ, X, β, q))

with

Hotw
v =

{

(i1, i2, ..., ik, ..., ie) ∈ N∗, 1 ≤ ik ≤ n, and ∑ δ(ik = v) = ωv for all ωv ∈ (ω1, ω2, ..., ωv)
}

,

Hatw
v =

{

(z1, z2, ..., zk, ..., zn) ∈ N∗, 1 ≤ zk ≤ e and ∑ δ(zk = j) = ij, for all ij ∈ (ii, i2, ..., ie)
}

and

Hotw(ii, i2, ..., ie) =

{

1 if (ii, i2, ..., ie) ∈ Hotw
v

0 otherwise
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Hatw(z1, z2, ..., zk, ..., zn) =

{

1 if (z1, z2, ..., zk, ..., zn) ∈ Hatw
v

0 otherwise

Based on previous computation, it is easy to get the conditioned label assignment distribution including
the subset size constraint Sd :

p({zsi}|σ, X, β, q, Sd) = p({zi}|σ, X, β, q, Sd) (5)

=
p({zi}, Sd|σ, X, β, q)

p(Sd|σ, X, β, q)

=
p({zi}, Sd|σ, X, β, q)

p({ωv = 0, for v ≤ Sd}|σ, X, β, q)

The advantage of this conditioned distribution is that even if q is larger, subsets of significant size
(size larger than in Sd constraint) can be generated at first iteration. As we know how to compute
p({zi}|σ, X, β, q) [by coming back to p({zsi}|σ, X, β, q, Sd)] with the Hamiltonian quantity, it is easy to
deduce also p({zi}, Sd|σ, X, β, q). Because {zi} induced by {zsi} give a subsets sequence configuration,

it is simple to understand the combination :
{

{zi}, Sd

}

, which is equal to
{

{zsi}, {ωv = 0, for v ≤ Sd}
}

and evaluate the expression above. Of course, the condition
{

{zsi}, {ωv = 0, for v ≤ Sd}
}

can be fitted

by combinatorial search on computer if the dataset is not too large.

10.3.2 FOF DISTRIBUTION FOR THE POTTS CLUSTERS

The following calculations are based on section 10.1 notations. Given the symmetric matrix Mb of bonds
probabilities {pij}, one can infer a combinatorial approach to get the FoF distribution of clusters count
vector. For example, if n = 3 and Mb defined as follows :

Mb =





0 p12 p13
p12 0 p23
p13 p23 0





we can see that
p(u1 = 1, u2 = 1, u3 = 2) = p12(1 − p23)(1 − p13)

So clearly, for R clusters, the configuration (u1, ..., un) with ui ∈ {1, 2, ..., R} defines a set P f of disjoints
frozen paths configurations for which (respective) probabilities can be easily computed.

p({mv}|σ, X, β, q) = p(m1, m2, ..., mv, ..., mn, ∑
v

mv = R|σ, X, β, q) (6)

= ∑
Hotm(ii ,i2,...,iR)=1

p(n1 = i1, n2 = i2, ..., nR = iR|σ, X, β, q)

= ∑
Hotm(ii, i2, ..., iR) = 1

Hatm(u1, u2, ..., un) = 1

p(u1, u2, ..., un|σ, X, β, q))
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with

Hotm
v =

{

(i1, i2, ..., ik, ..., iR) ∈ N∗, 1 ≤ ik ≤ n, and ∑ δ(ik = v) = mv for all mv ∈ (m1, m2, ..., mv)
}

,

Hatm
v =

{

(u1, u2, ..., uk, ..., un) ∈ N∗, 1 ≤ uk ≤ R and ∑ δ(uk = j) = ij, for all ij ∈ (ii, i2, ..., iR)
}

and

Hotw(ii, i2, ..., ie) =

{

1 if (ii, i2, ..., ie) ∈ Hotw
v

0 otherwise

Hatw(z1, z2, ..., zk, ..., zn) =

{

1 if (z1, z2, ..., zk, ..., zn) ∈ Hatw
v

0 otherwise

Here, p(u1, u2, ..., un|σ, X, β, q)) is evaluated among the set P f of all disjoints frozen paths configurations
induced by (u1, ..., un) with ui ∈ {1, 2, ..., R}.

We can then simply update the bonds distribution :

p({bij}|σ, X, β, q, Sc) =
p({bij}, Sc|σ, X, β, q)

p(Sc|σ, X, β, q)
(7)

=
p({bij}, Sc|σ, X, β, q)

p({mv = 0, for v ≤ Sc}|σ, X, β, q)

Remark

1. The probability p({bij}|σ, X, β, q, Sc) is implicitly given by the matrix of bonds probabilities Mb, and its
exact expression can also be obtained analytically.

2. The matrix of bonds probabilities Mb is mainly influenced by the label assignment, because of δij in expres-

sion of pij (pij = p(bij|δij) = δij

(

1 − exp{−βkij(σ)}
)

). kij(σ) is always the same for any i and j.

From previous remark, we will describe in next section how to compute p({bij}, Sc|σ, X, β, q), to find a fully
explicit expression of p({bij}|σ, X, β, q, Sc), which is here the conditional bonds distribution.

10.4 The conditional bonds distribution (given the size constraint)

10.4.1 COMPUTATION METHOD

In previous bonds evaluation approach, we start with all pij evaluation and comparison to a given
threshold (let say 0.5 for example). In this approach, we automatically select the most probable {bij}
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configuration. For our context of conditional bonds, evaluation of all single pij is not useful to access the
right frozen state that fit the cluster size constraint for all bonds.

To access p({bij}, Sc|σ, X, β, q), the best method here is to build a list of all {bij} configurations (w.r.t
bij = 0 if xi and xj are not neighbors) that satisfy the cluster size constraint Sc = {mv = 0, for v ≤ Sc}
(by a combinatorial search), and choose the most highly probable configuration among those selected
given a label assignement.

1. There is a fast computation algorithm to find the list of all bonds {bij} configurations (w.r.t bij = 0
if xi and xj are not neighbors) that meet the cluster size constraint Sc. This list will be called the
Sc−list, and the list of all bonds {bij} configurations (w.r.t bij = 0 if xi and xj are not neighbors)
will be called the G−list (where notation G is set to signify : general or global).

2. The Sc−list should be built at the beginning, and the respective probability of each of its element
evaluate for each label assignment (as a reminder matrix Mb changes for each label assignment).

10.5 Fast-Algorithm to find Sc−list

1. For each {bij} configuration, we use the Hoshen-Kopelman (HK) algorithm (Li, 2011) to connect
frozen spin pairs into a path of frozen bonds. This step helps in finding all clusters given the
bonds configuration.

2. All frozen paths have many extended-version, and shrunk-version. The frozen path is said to be
extended if it is augmented with other vertices. When the path is reduced to less number of vertices
(contains fewer vertices), it is said to be shrunk. When the frozen path is simultaneously shrunk
and extended (i.e some old vertices are replaced with newer vertices), it is said to be mixed.

3. Let denote G−-List[i] the ith element from the G-list. To avoid searching for all frozen paths
for all {bij} configurations, here is an algorithm to go through the list and search for all {bij}
configurations that fit the clusters size condition:

Sc−algorithm

1 Starting at G−list[1], Go through G-list and find with HK algorithm the first configuration
G−list[ik] for which the small frozen path SPf [ik] has a length upper than in condition Sc;
add G−list[ik] to Sc−list.

2 In the next step, use SPf [ik] to make a selection of good candidates:

• Add to Sc−list all configurations that contain either a shrunk, extended or mixed version
of SPf [ik] that fit the cluster size condition Sc. Remove those one from G-list.

• Delete from G-list all configurations that contains either a shrunk or mixed version of
SPf [ik] that don’t fit the cluster size condition Sc.

3 Move to the next G−list[ik+1] that fit the condition, and repeat step [2] by using SPf [ik+1].

4 Repeat steps [1], [2] and [3] for any other element of G−list that fit the clusters size condition,
until done!
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10.6 Finding the most probable configuration among Sc−list given a label assignment

Here we describe a computation method to select the most probable configuration (in Sc−list) given a
label assignment.

1. Most importantly, given a label assignment, we need to delete from Sc−list all configurations
for which there exist any δij = 0, and

(

1 − exp{−βkij(σ)}
)

suggest bij = 1. In fact, we generate
in practice the bonds with

(

1 − exp{−βkij(σ)}
)

, and check for the state of δij to confirm that the
label assignment is the same.

Let call S̃c-list the adjusted Sc-list which includes this modification.

2. The Bonds matrix probabilities Mb = (pij) with pij = p(bij|δij) = δij

(

1 − exp{−βkij(σ)}
)

, can
be seen as a upper triangular matrix re-written as an element by element product of two upper
triangular matrix with diagonal elements set to zero :

Mb = P̃ ◦ δ̃

with P̃ = ( p̃ij), p̃ij = 1 − exp{−βkij(σ)}, and δ̃ = (δij). Only matrix δ̃ change after each label
assignment.

The upper triangular bonds matrix B = (bij) with diagonal elements set to zero can also be
introduced for a given configuration {bij} in S̃c-list.

The probability of a given configuration in S̃c-list is the product of all elements in upper right-
corner of the following triangular matrix (excluding diagonal elements):

[P̃ ◦ δ̃]B + [(1 − P̃) ◦ δ̃]1−B

for which each non-null element is computed as :

(

p̃ij · δij

)bij +
(

{1 − p̃ij} · δij

)1−bij

We have then :

p({bij}, {bij} ∈ S̃c − list|σ, X, β, q, Sc) = (8)

PRODi∈{1,...,n−1},j>i

(

[P̃ ◦ δ̃]B + [(1 − P̃) ◦ δ̃]1−B
)

p({mv = 0, for v ≤ Sc}|σ, X, β, q)

where PRODi∈{1,...,n−1},j>i describe the product of all elements in the upper right-corner of the
matrix.

3. The most probable configuration can then be selected based on this computation. This probability
in 8 is computationally intractable for large datasets but remains a contribution of this research,
as it can be used for further calculus, or mathematics developments.
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11. Conclusion and final notes

11.1 Notes on the Potts Models and the constrained bonds distribution.

The Potts model is frequently used as random partitions models where covariates may be included
[See 3]. Those models with covariates are called Product partition models with a covariate-dependent
extension (PPMx) mainly introduced by Müller et al. (2011). As for example, the Shallow Gibbs Model
(ALAHASSA & Murua, 2021) is based on a PPMx from Murua & Quintana (2017b) which has the form:

y1, . . . , yn | ρn, ψ∗
1 , . . . , ψ∗

kn

ind
∼ p

(

yi | xi, ψ∗
si

)

ψ∗
1 , . . . , ψ∗

kn

iid
∼ p(ψ) and ρn ∼ p (ρn | xn)

where p (yi | xi, ψi) is the likelihood model stating the relationship between the i th response and the
associated covariate vector xi. The Potts clusters in this model are simulated using the Swendsen-Wang
algorithm (Wang & Swendsen (1990), Barbu & Zhu (2003), Galanis et al. (2019)). One may be confronted
to the cluster size distribution during simulation, because the bonds based version of the Potts Model
[see 2.1] has the drawback to simulate small clusters that are not preferable in some circumstances, as for
example to run or apply some neural networks models locally on the clusters themselves (using cluster
adaptive training scheme as a specific example – Gales (2001)). One theoretical approach is to search
for the distribution of the components size in the Potts Model to simulate a conditional distribution:
a bonds distribution with constraints or restrictions on the clusters minimum size. This can be done
using the frequency of frequencies distribution [see 10.1], specifically the count vector M = ({mv})v

of the clusters also called the frequency of frequencies (FoF) vector, the distribution of which is also
commonly referred to as the FoF distribution in short appellation. Once you find the FoF distribution
of clusters count vector given the bonds probabilities, expressed as :

FoF({mv}|{δij}; E(G))

with the graph G and its edges set E(G) ( δij = 1 if observations i and j are connected), you may derive
the conditional distribution of bonds given the constraint cluster size condition Sc = {mv = 0, for v ≤
Sc}, where Sc is the minimum cluster size we expect. This requires that we explore all configurations
of Sc [see 10.4.1], for which we have proposed a fast algorithm. This may almost be intractable for our
usual computers (only for large datasets), even to find the most probable configuration among Sc−list
given a label assignment. We have just limited this research to simply present this conditional bonds
distribution we were looking for in [see 10.6]:

p({bij}, {bij} ∈ S̃c − list|σ, X, β, q, Sc) = (9)

PRODi∈{1,...,n−1},j>i

(

[P̃ ◦ δ̃]B + [(1 − P̃) ◦ δ̃]1−B
)

p({mv = 0, for v ≤ Sc}|σ, X, β, q)

where we are given a q-state, a bandwidth σ, X is set for our covariates, and β the inverse of the system
temperature, and the other parameters are reformulated quantities presented in section 10.

11.2 The Potts Model with Complete Shrinkage:

Another practical approach is to modify slightly the Swendsen-Wang algorithm to insert some clusters
constraints. This what we have achieved as a novel Potts Model, called the Potts Clustering with
Complete Shrinkage (PCCS) [see 6.1]. In this approach, to deal with the increasing number of small
clusters generated in a given partition, we have applied a modified agglomerative clustering approach
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(Kurita, 1991) by merging all small clusters of size ≤ h with their closest cluster in terms of minimal
distance respectively, where h is an integer greater or equal to 2. The algorithm uses a technique in
which distances of all pairs of observations are stored. Then the nearest cluster (with size ≥ h) is given
by the cluster with the closest node in terms of minimal distance to the cluster to be merged. This
approach is truly effective; it helps to control the clusters size, and we have found evidence of Chi-
Square and Gamma density curves [figure 2, figure 18] of the constrained cluster size distribution of
PCCS, when applied to some datasets taken from the multiple-output benchmark datasets available in
the Mulan project website (Tsoumakas et al., 2020) [see Table 1].

11.3 On further releases of the software package pottscompleteshrinkage

As we are still working on the package built-in methods to include more utilities, we expect to add
in further releases a possibility to choose other kernels [5], and some Python classes to estimate the
appropriate/optimal value for each parameter (mainly for the temperature T, the number of states q,
the bandwidth σ). Advanced releases and code snippets of the package will be published in Journal of
Statistical Software (JSS).

11.3.1 ON THE POSSIBILITY TO INCLUDE OTHER ALGORITHMS AT THE SHRINKAGE STEP:

It is also possible to develop many other clustering shrinkage-based model, which can involve various
types of linkage [6], as well as other types of models to build different constraints or algorithms/meth-
ods:

1. Minimum and Maximum Size, or Same Size constraints : those algorithms do exist, and can
be copied and remodelled for implementations in the Potts model as well. For example, one
can remodel the following algorithms: Same Size Contrained KMeans Heuristics, Minimum and
Maximum Size Constrained KMeans (Basu et al. (2008), Ng (2000), Bhattacharya et al. (2018),
Bradley et al. (2000), Tzortzis & Likas (2014), Malinen & Fränti (2014)).

2. Annealling Algorithms for the Potts Model: those methods focus on the energy of the system
to return the correspondent clusters (Tsuchiya et al. (2001), Wersing & Ritter (1999), Okada et al.
(2020), Monsivais-Alonso (2006), Rose et al. (1991), Baranwal & Salapaka (2017)).

3. Pitman-Yor Process can also be used to run partionning of data, as it can detect the right number of
components : Fan & Bouguila (2019), Chatzis (2013), Knowles & Ghahramani (2014), Qiang et al.
(2018). But, this method requires rigorous application as it is a probabilistic method that may
have some inconsistency in practice Miller & Harrison (2014). Not the least, when constraining
the number of components with a Pitman-Yor Process, Dirichelet Process are useful to constrain
each cluster size: Li et al. (2016), Vlachos et al. (2009), Klami & Jitta (2016), Jitta & Klami (2018).
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