Animals
Wild-type and VGAT-tdTomato mice from C57BL/6 backgrounds [18] were used in this study. All procedures for the care and treatment of animals were performed according to the Japanese Act on the Welfare and Management of Animals and the Guidelines for Proper Conduct of Animal Experiments issued by the Science Council of Japan. The experimental protocol was approved by the Institutional Committee of Gunma University (No. 18–019; 19–028). All efforts were made to minimize suffering and reduce the number of animals used.
Viral Vectors
We used BBB-penetrating AAV-PHP.B [19], except for Figure 1, which used AAV-PHP.eB [20]. The expression plasmid pAAV, comprising a polyadenylation signal sequence and woodchuck hepatitis virus post-transcriptional regulatory element (WPRE), was designed to express GFP under the control of a mouse genomic region upstream of the mouse Gad2 gene encoding glutamic acid decarboxylase (GAD) 65 (see Fig. 1A for detail) or the mouse Dlx gene enhancer (previously referred to as I56i [21] or mI56i [22]) combined with a minimal promoter (mDlx enhancer, hereafter) [16]. The mGAD65 promoter and mDlx enhancer were inserted into the pAAV plasmid upstream of the GFP gene at restriction enzyme sites for XhoI and AgeI. pAAV-PHP.B and pAAV-PHP.eB were constructed from the pAAV2/9 plasmid [19], which was provided by Dr. James M. Wilson at the University of Pennsylvania. Recombinant single-stranded AAV-PHP.B/PHP.eB vectors were produced by co-transfection into HEK293T cells (HCL4517; Thermo Fisher Scientific; Waltham, MA, USA) with three plasmids: the expression plasmid, pHelper (Stratagene, La Jolla, CA, USA), and a packaging plasmid (pAAV-PHP.B or pAAV-PHP.eB) as previously described [13, 23]. Briefly, HEK293T cells, which were cultured in Dulbecco’s modified Eagle’s medium (D-MEM; D5796-500Ml, Sigma-Aldrich, St Louis, MO, USA) supplemented with 8% fetal bovine serum (Sigma-Aldrich), were transfected with three plasmids: pAAV/[mDlx enhancer or mGAD65]-EGFP-WPRE-SV40 or pAAV/mDlx enhancer-tdTomato-WPRE-SV40, pHelper (Stratagene, La Jolla, CA, USA), and pAAV-PHP.B/PHP.eB using polyethylenimine. Viral particles were harvested from the culture medium 6 days after transfection and concentrated by precipitation with 8% polyethylene glycol 8000 (Sigma-Aldrich) and 500 mM sodium chloride. The precipitated AAV–PHP.B/PHP.eB particles were resuspended in D-PBS and purified with iodixanol (OptiPrep; Axis-Shield Diagnostics, Dundee, Scotland) continuous gradient centrifugation. The viral solution was further concentrated in D-PBS using Vivaspin 20 (100,000 MWCO PES, Sartorius, Gottingen, Germany). The genomic titers of the viral vector were determined by real-time quantitative PCR using THUNDERBIRD SYBR qPCR Mix (Toyobo, Osaka, Japan) using the 5’- CTGTTGGGCACTGACAATTC-3’ and 5’-GAAGGGACGTAGCAGAAGGA-3’ primers, which targeted the WPRE sequence. The expression plasmid was used as the standard.
Intravenous injection
Eight-to fourteen-week-old mice were used in this study. After inducing deep anesthesia via intraperitoneal injection of ketamine (100 mg/kg BW) and xylazine (10 mg/kg BW), 100 μL of AAV-PHP.B (5.0 × 1013 vg/mL) or AAV-PHP.eB (3.0 × 1013 vg/mL) was injected into the orbital sinus using a 0.5 ml syringe with a 30-gauge needle (08277; Nipro, Osaka, Japan) for 30 to 40 seconds. For supplementary figure 2, equal titers (5.0 × 1012 vg) of AAV-PHP.B-expressing tdTomato under the control of the mDlx enhancer and AAV-PHP.B expressing GFP under the control of the mGAD65 promoter were mixed in advance and injected as described above.
Direct cerebellar injection
The AAV-PHP.B was injected directly into the cerebellar tissue. After inducing deep anesthesia, the mice were placed in a stereotactic frame. The skin covering the occipital bone was cut, and a burr hole was made 7 mm caudal to the bregma. The tip of a Hamilton syringe (33 gauge) with an attached micropump (UltraMicroPump II; World Precision Instrument (WPI) Sarasota, FL, USA) was inserted 1.8 mm below the pia mater of the cerebellar vermis. Ten microliters of viral solution (1 × 1013 vg/mL) was injected at a rate of 400 nL/min using a microprocessor-based controller (Micro4; WPI).
Immunohistochemistry
Depending on the antibodies used, we employed different immunohistochemistry protocols (see Supplementary Table for details). Three weeks after the injection of AAV-PHP.B vectors, the mice were deeply anesthetized and perfused intracardially with 4% paraformaldehyde phosphate buffer (pH 7.4). Their brains were removed and immersed in 4% paraformaldehyde in 0.1 M phosphate buffer at 4 °C. Floating (50 μm thick) and cryostat (20 μm thick) brain sections were prepared using a vibratome (VT1000S, Leica, Wetzlar, Germany) and cryostat (CM3050S, Leica), respectively. The slices were permeabilized, blocked with an appropriate blocking solution, and treated with blocking solution containing the following antibodies: mouse monoclonal anti-CaMKII (1:100; 05–532; Merck, Germany), rat monoclonal anti-GFP (1:1000; 04404–84; Nacalai, Kyoto, Japan), rabbit polyclonal anti-GABA (1:1000; A2052; Sigma-Aldrich), goat polyclonal anti-PV (1:200; PV-Go-Af460; Frontier Institute, Hokkaido, Japan), rat monoclonal anti-SST (1:100; MAB354; Merck, Germany), goat polyclonal anti-ankyrin G (P-20) (1:50, SC-31778, Santa Cruz Biotechnology, Dallas, TX, USA), mouse monoclonal anti-calbindin D-28 k (1:500; Swant, Bellinzona, Switzerland), or mouse monoclonal anti-mGluR2 (1:1000; ab15672; Abcam, Cambridge, UK). After rinsing several times with PBS or PBS containing Triton X-100 at room temperature (24–26 °C), the slices were incubated with the relevant secondary antibodies (Thermo Fisher Scientific) (see Supplementary Table). They were mounted on glass slides after rinsing several times with PBS or PBS containing Triton X-100 at room temperature (24–26 °C). For mounting medium, we used Prolong Gold/Diamond Antifade Reagent (Thermo Fisher Scientific) and CC/Mountant antifade reagent (Diagnostic BioSystems, Pleasanton, CA, USA) for floating and cryostat sections, respectively.
Retinal slice
Mice treated with AAV-PHP.B were anesthetized and fixed as described above. Their eyes were removed and frozen in Tissue-Tek O.C.T. compound (Sakura Finetek Japan, Tokyo, Japan). The 16-μm-thick retinal slices were prepared using a cryostat (CM3050S, Leica) and mounted on glass slides with Prolong Diamond Antifade Reagent (Thermo Fisher Scientific).
Confocal microscopy
Most of the fluorescent images of the brain and retinal sections were acquired using a laser-scanning confocal microscope (LSM 800, Carl Zeiss, Oberkochen, Germany) with 20× or 40× objectives, and z-stack images of different focal planes were generated. The acquired images were combined using ImageJ software with the MosaicJ plugin [24].
Screening of the promoter candidates
Sagittal brain slices (50 μm thickness) were obtained from mice treated with AAV-PHP.eB expressing GFP by the mGAD65 promoter candidate (3k, 2k, or delE1). The slices were immunolabeled for CaMKII, a marker of excitatory neurons. Fluorescent images were obtained using a confocal microscope with a 20× magnification. We determined the ratio of cells double-positive for GFP and CaMKII (excitatory neurons) to the total number of GFP-expressing cells.
Relative GFP intensity in the whole brain
Bright-field and native GFP fluorescence images of the whole brain were acquired using a fluorescence stereoscopic microscope (VB-700; Keyence, Osaka, Japan). To measure the GFP fluorescence intensity of the forebrain and hindbrain, the margin of the corresponding part of the brain was traced on the bright-field image, except for the olfactory bulb, superior and inferior colliculi, and brainstem. GFP fluorescence intensity within the enclosed area was measured using the ImageJ software (Fiji). Autofluorescence of the brain was measured in six non-injected VGAT-tdTomato mice, and the average value was subtracted from the GFP fluorescence values of all the samples. Finally, data were normalized to the mean value (100) from the forebrains of VGAT-tdTomato mice that received AAV-PHP.B expressing GFP under the control of mDlx enhancer.
Specificities and efficiencies of the mGAD65 promoter and mDlx enhancer
To determine the specificity and efficiency of the mGAD65 promoter and mDlx enhancer, GFP and tdTomato fluorescent images were obtained from sagittal brain slices (50 μm thickness) using a fluorescent microscope (BZ-X700; Keyence) with a 20× objective. The number of GFP (+) and/or tdTomato (+) cells was counted manually.
Proportion of interneuron subtypes in cortical GABAergic interneurons
To measure the ratio of PV (+) or SST (+) cells to transduced GABAergic interneurons in the cerebral cortex, wild-type mice were intravenously infused with AAV-PHP.B expressing GFP under control of the mGAD65 promoter. Three weeks after the viral injection, sagittal brain slices (50 μm thickness) were immunolabeled for PV and SST. Fluorescent images were obtained using a confocal microscope with a 40× magnification. We assessed the ratio of PV (+) or SST (+) cells to GFP (+) cells and the proportion of GFP (+) cells in PV (+) or SST (+) cells.
Confocal Ca2+ imaging in cortical GABAergic interneurons with G-CaMP
For the direct injections of AAV-PHP.B expressing G-CaMP7.09 under the control of the mGAD65 promoter, the mice were kept under stable anesthesia with isoflurane (0.5%) until the end of surgery. The anesthetized mice were fixed on a stereotactic frame (SRS-5-HT; Narishige, Tokyo, Japan) with a stereotaxic micromanipulator (SMM-100; Narishige). Their scalps were cut and holes through the occipital bone were made at the stereotaxic coordinate of AP +1.0 mm and ML ±1.0 mm. The tip of a Hamilton syringe (10 μL, 33 gauge; 701SN 33/2"/PT3), with an attached microinjector (IMS-20, Narishige), was stereotactically inserted into the cerebral cortex at a depth of 0.6 – 0.8 mm from the cranial bone surface. Five microliters of the viral solution (2 × 1013 vg/mL) was injected at a rate of 83.3 nl/min.
Confocal Ca2+ imaging of the acute cortical brain slices was performed as described previously [25] with some modifications. G-CaMP7.09 (G-CaMP) is a recently developed gene-encoded Ca2+ indicator that increases its fluorescence (similar wavelength range to GFP) when intracellular Ca2+ concentration is elevated [26]. AAV-injected adult VGAT-tdTomato mice were utilized 3 weeks after the injections to ensure a stable GCaMP expression. Coronal brain slices (200–300 µm in thickness) of the mouse motor cortex were prepared using a vibroslicer (VT1200S; Leica, Germany) and maintained in an ACSF containing 125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, and 20 mM D-glucose and bubbled with 95% O2 and 5% CO2 at room temperature (24–26 °C) for more than 1 h before the imaging. To examine Ca2+ signals from GABAergic interneurons, we selected G-CaMP (+) and tdTomato (+) double-positive cells for imaging. The imaging areas were restricted to the M1-M2 regions (mostly layers – IIIII) of the motor cortex. Confocal fluorescence images of G-CaMP signals were acquired every 0.1 s (100 ms exposure time, 512 × 512 pixels, no binning) with a 40× water immersion objective (LUMPLFLN 40XW, Olympus, Tokyo, Japan), a water-cooled CCD camera (iXon3 DU-897E-CS0-#BV-500, Andor, Belfast, Northern Ireland), and a high-speed spinning-disk confocal unit (CSU-X1, Yokogawa Electric, Tokyo, Japan) attached to an upright microscope (BX51WI, Olympus, Tokyo, Japan). A 488-nm light beam from a diode laser module (Stradus 488–50, VORTRAN, USA) for G-CaMP imaging and a 561-nm laser (LDSYS-561GH-SP43, Solution Systems, Japan) for tdTomato imaging were used for excitation, and the emitted fluorescence was collected through a band-pass filter (500–550 nm for G-CaMP and 580–660 nm for tdTomato). During the recordings, cortical slices were perfused with ACSF bath solution at room temperature (24–26 °C).
To stimulate GABAergic interneurons, 10 µM glutamate (Glu) dissolved in ACSF bath solution or high K+ solution (total 12.5 mM KCl in the ACSF bath solution) was applied extracellularly via a gravity-fed bath-application device. Image processing and analysis were performed with Andor iQ2 (Andor), NIH imageJ, Igor Pro8 (WaveMetrics), and custom-written programs by NH. Image drift (translation drift) was sometimes observed. In such cases, the drifted images were corrected using ImageJ plugins (template matching and slice alignment using the OpenCV library) provided by Q. Tseng (https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin#downloads). Fluorescence at time t (Ft) in each pixel was background-subtracted, and the Ca2+-dependent relative change in fluorescence was calculated using the following formula: ΔF/Fbase, where Fbase is the basal fluorescence intensity averaged during pre-stimulus frames (i.e., ~ 100 frames before stimulation) and ΔF = Ft - Fbase. The background fluorescence was obtained from a region lacking a cell structure in the same frame. The mean values of ΔF/Fbase in each region of interest (ROI) were calculated for each frame. ROIs were placed on the tdTomato-positive and G-CaMP-positive cellular structures (usually soma-like structures). To quantify Glu- or high K-induced Ca2+ signals in the G-CaMP positive cells, the peak amplitude of ΔF/Fbase was measured within a time window of ~100 s after the bath application onset because the drug took tens of seconds to reach the recorded cells (Fig. 7E and F).
Statistical analysis
GraphPad PRISM version 7 (GraphPad Software, San Diego, CA, USA) was used for the statistical analysis and production of graphic images, except the Ca2+ imaging data.
Statistical methods are shown in the text and/or in each figure legend. The data are expressed as mean ± standard error of the mean.