[1] Shang Y, Wang Y, Deng J, Liu X, Fang Y, Rao Q, et al. Comparative Transcriptome Analysis Reveals the Mechanism Related to Fluazinam Stress of Panonychus citri (Acarina: Tetranychidae). Insects. 2020;11.
[2] Yu SJ, Cong L, Liu HQ, Ran C. Genetic analysis and screening of detoxification-related genes in an amitraz-resistant strain of Panonychus citri. Bull Entomol Res. 2020;110:743-55.
[3] Zanardi OZ, Bordini GP, Franco AA, de Morais MR, Yamamoto PT. Development and reproduction of Panonychus citri (Prostigmata: Tetranychidae) on different species and varieties of citrus plants. Exp Appl Acarol. 2015;67:565-81.
[4] Dker S, Kazak C, Ay R. Resistance status and detoxification enzyme activity in ten populations of Panonychus citri (Acari: Tetranychidae) from Turkey. Crop Protection. 2021;141.
[5] Liao CY, Feng YC, Li G, Shen XM, Liu SH, Dou W, et al. Antioxidant Role of PcGSTd1 in Fenpropathrin Resistant Population of the Citrus Red Mite, Panonychus citri (McGregor). Front Physiol. 2018;9:314.
[6] Ochiai N, Mizuno M, Mimori N, Miyake T, Dekeyser M, Canlas LJ, et al. Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus. Exp Appl Acarol. 2007;43:181-97.
[7] Van Nieuwenhuyse P, Demaeght P, Dermauw W, Khalighi M, Stevens CV, Vanholme B, et al. On the mode of action of bifenazate: New evidence for a mitochondrial target site. Pesticide Biochemistry and Physiology. 2012;104:88-95.
[8] Elzen GW. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J Econ Entomol. 2001;94:55-9.
[9] Bao H, Liu S, Gu J, Wang X, Liang X, Liu Z. Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag Sci. 2009;65:170-4.
[10] Dong J, Wang K, Li Y, Wang S. Lethal and sublethal effects of cyantraniliprole on Helicoverpa assulta (Lepidoptera: Noctuidae). Pestic Biochem Physiol. 2017;136:58-63.
[11] Wang L, Zhang Y, Xie W, Wu Q, Wang S. Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol. 2016;132:102-7.
[12] Yamamoto A, Yoneda H, Hatano R, Asada M. Genetic Analysis of Hexythiazox Resistance in the Citrus Red Mite, Panonychus citri (MCGREGOR). Journal of Pesticide Science. 1995;20:513-9.
[13] Zhang P, Zhao YH, Wang QH, Mu W, Liu F. Lethal and sublethal effects of the chitin synthesis inhibitor chlorfluazuron on Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). Pestic Biochem Physiol. 2017;136:80-8.
[14] Rahmani S, Bandani AR. Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Crop Protection. 2013;54:168-75.
[15] Zhao Y, Zhang P, Zhai Y, Chen C, Wang Q, Han J, et al. Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae). Phytoparasitica. 2016;44:115-24.
[16] Papachristos DP, Milonas PG. Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biological Control. 2008;47:77-81.
[17] Wang R, Zheng H, Qu C, Wang Z, Kong Z, Luo C. Lethal and sublethal effects of a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Crop Protection. 2016;83:15-9.
[18] Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007;52:81-106.
[19] Hamedi N, Fathipour Y, Saber M. Sublethal effects of abamectin on the biological performance of the predatory mite, Phytoseius plumifer (Acari: Phytoseiidae). Exp Appl Acarol. 2011;53:29-40.
[20] Gong Y, Xu B, Zhang Y, Gao X, Wu Q. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response. Ecotoxicology. 2015;24:1141-51.
[21] Li YY, Fan X, Zhang GH, Liu YQ, Chen HQ, Liu H, et al. Sublethal effects of bifenazate on life history and population parameters of Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology. 2017;22.
[22] Bozhgani NSS, Ghobadi H, Riahi E. Sublethal effects of chlorfenapyr on the life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology. 2018;23.
[23] Sani B, Hamid G, Elham R. Sublethal effects of chlorfenapyr on the life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Systematic & Applied Acarology. 2018;23:1342-.
[24] Zhao Y, Wang Q, Ding J, Wang Y, Zhang Z, Liu F, et al. Sublethal effects of chlorfenapyr on the life table parameters, nutritional physiology and enzymatic properties of Bradysia odoriphaga (Diptera: Sciaridae). Pestic Biochem Physiol. 2018;148:93-102.
[25] Leeuwen TV, Pottelberge SV, Tirry L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Management Science. 2010;62:425-33.
[26] Allen RG, Balin AK. Oxidative influence on development and differentiation: an overview of a free radical theory of development. Free Radical Biology & Medicine. 1989;6:631-61.
[27] Bolter CJ, Chefurka W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Archives of Biochemistry & Biophysics. 1990;278:65-72.
[28] Liu Y, Wang C, Qi S, He J, Bai Y. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.). Environ Geochem Health. 2020.
[29] Pavlidi N, Khalighi M, Myridakis A, Dermauw W, Wybouw N, Tsakireli D, et al. A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochem Mol Biol. 2017;80:101-15.
[30] Wei P, Shi L, Shen G, Xu Z, Liu J, Pan Y, et al. Characteristics of carboxylesterase genes and their expression-level between acaricide-susceptible and resistant Tetranychus cinnabarinus (Boisduval). Pestic Biochem Physiol. 2016;131:87-95.
[31] Ku CC, Chiang FM, Hsin CY, Yao YE, Sun CN. Glutathione Transferase Isozymes Involved in Insecticide Resistance of Diamondback Moth Larvae. Pesticide Biochemistry and Physiology. 1994;50:191-7.
[32] A LP, A NP, A SK, B PS, C AJK. Isoenzymes of glutathione S-transferase from the mosquito Anopheles dirus species B: the purification, partial characterization and interaction with various insecticides. Insect Biochemistry and Molecular Biology. 2000;30:395-403.
[33] Zhang S, Wang X, Gu F, Gong C, Chen L, Zhang Y, et al. Sublethal Effects of Triflumezopyrim on Biological Traits and Detoxification Enzyme Activities in the Small Brown Planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Front Physiol. 2020;11:261.
[34] Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D. Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii. Pestic Biochem Physiol. 2020;170:104687.
[35] Goel A, Dani V, Dhawan DK. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem Biol Interact. 2005;156:131-40.
[36] Ozyurt H, Sogut S, Yildirim Z, Kart L, Iraz M, Armutcu F, et al. Inhibitory effect of caffeic acid phenethyl ester on bleomycine-induced lung fibrosis in rats. Clin Chim Acta. 2004;339:65-75.
[37] Guo Y, Zhang J, Yu R, Zhu KY, Guo Y, Ma E. Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria. Chemosphere. 2012;87:709-17.