[1] Gupta, S. K., Shukla, D. K., Kaustubh Ravindra, D., Effect of nanoalumina in epoxy adhesive on lap shear strength and fracture toughness of aluminium joints. J Adhes. 97,117–139 (2021).
[2] Alfano, M. et al. Fracture toughness of structural adhesives for the automotive industry. Procedia. Struct. Integr. 5, 561–565 (2018).
[3] Hu, D. et al. Study on Toughness Improvement of a Rosin-Sourced Epoxy Matrix Composite for Green Aerospace Application. J. Compos. Sci. 4,168 (2020).
[4] Bain, E. D. et al. Failure processes governing high-rate impact resistance of epoxy resins filled with core–shell rubber nanoparticles. J. Mater. Sci. 51, 2347–2370 (2016).
[5] Ha, S. R, Rhee, K. Y., Kim, H. C., Kim, J. T. Fracture performance of clay/epoxy nanocomposites with clay surface-modified using 3-aminopropyltriethoxysilane. Colloids Surfaces A Physicochem. Eng. Asp. 313. 112–115 (2008).
[6] Johnsen, B. B., Kinloch, A. J., Mohammed, R. D., Taylor, A. C., Sprenger, S. Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer, 48, 530–41 (2007).
[7] Zhang, X., Xu, W., Xia, X., Zhang, Z., Yu, R. Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide. Mater. Lett. 60, 3319–3323 (2006).
[8] Chen, J., Kinloch, A.J., Sprenger, S., Taylor, A. C. The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer. 54, 4276–4289 (2013).
[9] Tsang, W. L., Taylor, A. C. Fracture and toughening mechanisms of silica-and core–shell rubber-toughened epoxy at ambient and low temperature. J. Mater. Sci. 54:13938–13958 (2019).
[10] Dittanet, P., Pearson, R. A. Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer, 53,1890–1905 (2012).
[11] Bakar, M., Białkowska, A., Kuřitka, I., Hanuliková, B., Masař, M. Synergistic effects of thermoplastic and nanoclay on the performance properties and morphology of epoxy resin. Polym. Compos. 39, E2540–E2551 (2018).
[12] Wang, J. et al. Synergistically effects of copolymer and core-shell particles for toughening epoxy. Polymer 140, 39–46 (2018).
[13] Liang, Y. L., Pearson, R. A. The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs). Polymer 51, 4880–4890 (2010).
[14] Li, T., He, S., Stein, A., Francis, L. F., Bates, F. S. Synergistic toughening of epoxy modified by graphene and block copolymer micelles. Macromolecules 49, 9507–9520 (2016).
[15] Ricciardi, M. R. et al. Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin. Compos. Part. B. Eng. 139:259–267 (2018).
[16] Hsieh, T. H. et al.The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45, 1193–1210 (2010).
[17] Imtiaz, S. et al. A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites. Chinese J. Polym. Sci. 36:445–461 (2018).
[18] Gómez-del, Río. T., Salazar, A., Pearson, R. A., Rodríguez, J. Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes. Compos. Part. B Eng. 87:343–349 (2016).
[19] Schuster, M. B., Opelt, C. V., Becker, D., Coelho, L. A. F. Role and sinergy of block copolymer and carbon nanoparticles on toughness in epoxy matrix. Polym. Compos. 39, E2262–E2273 (2018).
[20] Song, H., Chung, H., Nam, K. Response surface modeling with Box-Behnken design for strontium removal from soil by calcium-based solution. Environ. Pollut. 274, 116577 (2021).
[21] Dorraji, M. S. S., Rasoulifard, M. H., Khodabandeloo, M. H., Rastgouy-Houjaghan, M., Zarajabad, H. K. Microwave absorption properties of polyaniline-Fe3O4/ZnO-polyester nanocomposite: preparation and optimization. Appl. Surf. Sci. 366, 210–218 (2016).
[22] Gharieh, A., Khoee. S., Mahdavian, A. R. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv. Colloid. Interface Sci. 269,152–186 (2019).
[23] Bouvier‐Fontes, L., Pirri, R., Asua, J. M,. Leiza, J. R. Cross‐linking emulsion copolymerization of butyl acrylate with diallyl maleate. J. Polym. Sci. Part A Polym. Chem. 43, 4684–4694 (2005).
[24] Jensen, R. E.et al. Characterization of epoxy–surfactant interactions. J. Polym. Sci. Part B Polym. Phys. 36, 2781–2792 (1998).
[25] Gharieh, A., Mahdavian, A. R., Salehi-Mobarakeh, H. Preparation of core-shell impact modifier particles for PVC with nanometric shell thickness through seeded emulsion polymerization. Iran. Polym. J. 23, 27–35 (2014).
[26] van Herk. A. M. Chemistry and technology of emulsion polymerisation 58-59 (John Wiley & Sons; 2013).
[27] Gojny, F. H., Wichmann., M. H. G., Köpke, U., Fiedler, B., Schulte, K. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363–2371 (2004).
[28] Giannakopoulos, G., Masania, K., Taylor, A. C. Toughening of epoxy using core–shell particles. J. Mater. Sci. 46, 327–338 (2011).
[29] Mirmohseni, A., Gharieh, A., Khorasani, M. Silica encapsulation by miniemulsion polymerization: A novel approach of efficient chemical functionalization on silica nanoparticles. Polymer 98, 182–189 (2016).
[30] Ren, X. et al. Critical rubber layer thickness of core-shell particles with a rigid core and a soft shell for toughening of epoxy resins without loss of elastic modulus and strength. Compos. Sci. Technol. 153, 253–260 (2017).
[31] Pothnis, J. R., Kalyanasundaram, D., Gururaja, S. Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multi-scale composites. Compos. Part A Appl. Sci. Manuf. 140, 106155 (2021)
[32] Bajpai, A., Wetzel, B., Klingler, A., Friedrich, K. Mechanical properties and fracture behavior of high‐performance epoxy nanocomposites modified with block polymer and core–shell rubber particles. J. Appl. Polym, Sci. 137, 48471 (2020).
[33] Esmaeili, A., Sbarufatti, C., Jiménez-Suárez, A., Ureña, A., Hamouda, A. M. S. A comparative study of the incorporation effect of SWCNT-OH and DWCNT with varied microstructural defects on tensile and impact strengths of epoxy based nanocomposite. J. Polym. Res. 27, 1–10 (2020).
[34] Quan, D., Ivankovic, A. Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66, 16–28 (2015).
[35] Rafiee, M., Nitzsche, F., Labrosse, M. R. Effect of functionalization of carbon nanotubes on vibration and damping characteristics of epoxy nanocomposites. Polym. Test 69, 385–95 (2018).
[36] Tang, L. C. et al. Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Compos. Part A Appl. Sci. Manuf. 45, 95–101 (2013).
[37] Xu, C. et al. Enhanced toughness and thermal conductivity for epoxy resin with a core–shell structured polyacrylic modifier and modified boron nitride. RSC Adv. 9, 8654–8663 (2019).
[38] Jaafar, C. N. A., Zainol, I., Ishak, N. S., Ilyas, R. A., Sapuan, S. M. Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications. J. Mater. Res. Technol.12, 1026–1038 (2021).