1 Ahn, J., Collis, W. & Jenny, S. The one billion dollar myth: Methods for sizing the massively undervalued esports revenue landscape. International Journal of Esports 1 (2020).
2 Hughes, M. D. & Bartlett, R. M. The use of performance indicators in performance analysis. Journal of Sports Sciences 20, 739-754, doi:10.1080/026404102320675602 (2002).
3 Robertson, S., Back, N. & Bartlett, J. D. Explaining match outcome in elite Australian Rules football using team performance indicators. Journal of Sports Sciences 34, 637-644, doi:10.1080/02640414.2015.1066026 (2016).
4 García, J., Ibáñez, S. J., Martinez De Santos, R., Leite, N. & Sampaio, J. Identifying Basketball Performance Indicators in Regular Season and Playoff Games. Journal of Human Kinetics 36, 161-168, doi:10.2478/hukin-2013-0016 (2013).
5 Leicht, A. S., Gomez, M. A. & Woods, C. T. Team Performance Indicators Explain Outcome during Women’s Basketball Matches at the Olympic Games. Sports 5, 96, doi:10.3390/sports5040096 (2017).
6 Gu, W., Saaty, T. L. & Whitaker, R. Expert System for Ice Hockey Game Prediction: Data Mining with Human Judgment. International Journal of Information Technology & Decision Making 15, 763-789, doi:10.1142/S0219622016400022 (2016).
7 Whitehead, S. et al. The use of technical-tactical and physical performance indicators to classify between levels of match-play in elite rugby league. Science and Medicine in Football, 1-7, doi:10.1080/24733938.2020.1814492 (2020).
8 Woods, C. T., Sinclair, W. & Robertson, S. Explaining match outcome and ladder position in the National Rugby League using team performance indicators. Journal of Science and Medicine in Sport 20, 1107-1111, doi:10.1016/j.jsams.2017.04.005 (2017).
9 Bennett, M., Bezodis, N. E., Shearer, D. A., Locke, D. & Kilduff, L. P. Descriptive conversion of performance indicators in rugby union. Journal of Science and Medicine in Sport 22, 330-334, doi:10.1016/j.jsams.2018.08.008 (2019).
10 Bennett, M., Bezodis, N. E., Shearer, D. A. & Kilduff, L. P. Predicting performance at the group-phase and knockout-phase of the 2015 Rugby World Cup. European Journal of Sport Science 21, 1-9, doi:10.1080/17461391.2020.1743764 (2020).
11 Bishop, L. & Barnes, A. Performance indicators that discriminate winning and losing in the knockout stages of the 2011 Rugby World Cup. International Journal of Performance Analysis in Sport 13, 149-159, doi:10.1080/24748668.2013.11868638 (2013).
12 Hughes, A., Barnes, A., Churchill, S. M. & Stone, J. A. Performance indicators that discriminate winning and losing in elite men’s and women’s Rugby Union. International Journal of Performance Analysis in Sport 17, 534-544, doi:10.1080/24748668.2017.1366759 (2017).
13 Mosey, T. J. & Mitchell, L. J. G. Key performance indicators in Australian sub-elite rugby union. Journal of Science and Medicine in Sport 23, 35-40, doi:10.1016/j.jsams.2019.08.014 (2020).
14 Vaz, L., Rooyen, M. V. & Sampaio, J. Rugby Game-Related Statistics that Discriminate Between Winning and Losing Teams in Irb and Super Twelve Close Games. J Sports Sci Med 9, 51-55 (2010).
15 Boot, W. R. et al. Transfer of skill engendered by complex task training under conditions of variable priority. Acta Psychologica 135, 349-357, doi:10.1016/j.actpsy.2010.09.005 (2010).
16 Voss, M. W. et al. Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks. NeuroImage 59, 138-148, doi:10.1016/j.neuroimage.2011.03.052 (2012).
17 Toth, A. J., Ramsbottom, N., Constantin, C., Milliet, A. & Campbell, M. J. The effect of expertise, training and neurostimulation on sensory-motor skill in esports. Computers in Human Behavior 121, 106782, doi:10.1016/j.chb.2021.106782 (2021).
18 Novak, A. R., Bennett, K. J. M., Pluss, M. A. & Fransen, J. Performance analysis in esports: modelling performance at the 2018 League of Legends World Championship. International Journal of Sports Science & Coaching 15, 809-817, doi:10.1177/1747954120932853 (2020).
19 Xia, B., Wang, H. & Zhou, R. What Contributes to Success in MOBA Games? An Empirical Study of Defense of the Ancients 2. Games and Culture 14, 498-522, doi:10.1177/1555412017710599 (2017).
20 Hindi, M. Almost 2 million concurrent Rocket League players achieved in first FTP weekend. (2020). at <https://rocketleague.tracker.network/rocket-league/articles/almost-2-million-concurrent-rocket-leauge-players-in-first-ftp-weekend>.
21 Moore, B. Rocket League surpasses CS: GO in all-time concurrent players. (2020). at <https://www.sportskeeda.com/esports/rocket-league-surpasses-cs-go-all-time-concurrent-players#:~:text=Rocket%20League%20has%20surpassed%20CS,concurrent%20player%20base%20of%201%2C321%2C924>.
22 Active Player. Rocket League Live Player Count and Statistics. (2021). at <https://activeplayer.io/rocket-league/>.
23 Active Player. CS: Go Live Player Count and Statistics (2021). at <https://activeplayer.io/counter-strike-global-offensive/>.
24 Esports Earnings. Top Games Awarding Prize Money. (2021). at <https://www.esportsearnings.com/players>.
25 Breiman, L. Random Forests. Machine Learning 45, 5-32, doi:10.1023/A:1010933404324 (2001).
26 Cutler, D. R. et al. Random Forests For Classification In Ecology. Ecology 88, 2783-2792, doi:10.1890/07-0539.1 (2007).
27 Díaz-Uriarte, R. & Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3, doi:10.1186/1471-2105-7-3 (2006).
28 Siroky, D. S. Navigating Random Forests and related advances in algorithmic modeling. Statistics Surveys 3, 147-163, doi:10.1214/07-SS033 (2009).
29 Ofoghi, B., Zeleznikow, J., MacMahon, C. & Raab, M. Data Mining in Elite Sports: A Review and a Framework. Measurement in Physical Education and Exercise Science 17, 171-186, doi:10.1080/1091367X.2013.805137 (2013).
30 Virge. The Best Mechanics to Learn at Your Rank. YouTube https://www.youtube.com/watch?v=4J7F5s-Mu9E (2020).
31 Campbell, M. J., Toth, A. J., Moran, A. P., Kowal, M. & Exton, C. eSports: A new window on neurocognitive expertise? in Progress in Brain Research Vol. 240 (eds Marcora, S & Sarkar, M) 161-174 (Elsevier, 2018).
32 Smithies, T. D. et al. The Effect of Sleep Restriction on Cognitive Performance in Elite Cognitive Performers: A Systematic Review. Sleep, doi:10.1093/sleep/zsab008 (2021).
33 Smithies, T. D. et al. Life After Esports: A Grand Field Challenge. Frontiers in Psychology 11, doi:10.3389/fpsyg.2020.00883 (2020).
34 Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 307, doi:10.1186/1471-2105-9-307 (2008).
35 Hooker, G. & Mentch, L. Please Stop Permuting Features: An Explanation and Alternatives. arXiv e-prints, arXiv:1905.03151 (2019).
36 Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J. & Wasserman, L. Distribution-Free Predictive Inference for Regression. Journal of the American Statistical Association 113, 1094-1111, doi:10.1080/01621459.2017.1307116 (2018).
37 Rocket Sledge. How to Stop Wasting Boost in Rocket League. YouTube https://www.youtube.com/watch?app=desktop&v=ykC-ozFSROg (2019).
38 SquishyMuffinz. HOW TO MANAGE YOUR BOOST LIKE A PRO PLAYER (TUTORIAL) | THE BEST TIPS FOR IMPROVING IN ROCKET LEAGUE. YouTube https://www.youtube.com/watch?app=desktop&v=eK3DLp-Yjwc (2020).
39 Evans, J. S., Murphy, M. A. rfUtilities. R Package version 2.1-3. (2018). at <https://cran.r-project.org/package=rfUtilities>.
40 Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18-22 (2002).
41 Archer, E. rfPermute: Estimate Permutation p-Values for Random Forest Importance Metrics. (2020). at <https://CRAN.R-project.org/package=rfPermute>.
42 Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25, doi:10.1186/1471-2105-8-25 (2007).