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Abstract

Background: Predicting the drug response of the cancer diseases through the

cellular perturbation signatures under the action of specific compounds is very

important in personalized medicine. In the process of testing drug responses to

the cancer, traditional experimental methods have been greatly hampered by the

cost and sample size. At present, the public availability of large amounts of gene

expression data makes it a challenging task to use machine learning methods to

predict the drug sensitivity.

Results: In this study, we introduced the WRFEN-XGBoost cell viability

prediction algorithm based on LINCS-L1000 cell signatures. We integrated the

LINCS-L1000, CTRP and Achilles datasets and adopted a weighted fusion

algorithm based on random forest and elastic net for key gene selection. Then the

FEBPSO algorithm was introduced into XGBoost learning algorithm to predict

the cell viability induced by the drugs. The proposed method was compared with

some new methods, and it was found that our model achieved good results with

0.83 Pearson correlation. At the same time, we completed the drug sensitivity

validation on the NCI60 and CCLE datasets, which further demonstrated the

effectiveness of our method.

Conclusions: The results showed that our method was conducive to the

elucidation of disease mechanisms and the exploration of new therapies, which

greatly promoted the progress of clinical medicine.

Keywords: cell viability; drug sensitivity; perturbation signatures;

WRFEN-XGBoost algorithm
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Background

In recent years, the study of cell death process has always been the hot topics

in biology and medicine [1]. With the development of cell biology and molecular

biology, the mechanism of cell death has gradually been revealed. Programmed cell

death was induced by many factors, including external factors such as radiation,

drugs and viral infections, and internal factors such as tumors, autoimmunity and

degenerative diseases [2]. It has been reported that the cell viability mechanism

could be used to stimulate and inhibit the apoptosis of tumor cells through the

action of the compounds. Changes in the proportion of apoptosis and abnormal

behavior of cell proliferation are highly correlated with compound concentration and

perturbation time, which is one of the key factors for the formation and development

of tumor cells [3]. With the emergence of more canceromics data, it is still a challenge

to apply cell activity mechanisms to design the best intervention strategy for the

duration of the drug action, and to construct a cell signaling model to interpret

these data and make accurate predictions [4].

Cell perturbation signatures are closely related to the cell viability with the action

of the compounds. In the study of drug sensitivity and anticancer drug response

prediction, we can predict cell phenotypes from different high-coverage molecular

data since compounds control the expression and function of target proteins or

enzymes in the apoptotic pathway and induce abnormal cell apoptosis. Because

clinical collection of experimental data on patient and drug interactions are expen-

sive and impractical, it was expected that the preclinical prediction models based

on large-scale pharmacogenomics of cancer cell lines could be applied. In recent

years, the prediction model scheme designed by machine learning method from the

perspective of cell viability research has made breakthrough progress. Based on the

genomic background of each cell lines, Michael P. Menden. et al. trained a neural

network model to predict its IC50 distribution throughout the cell lines [5]. Due to

the high-dimensional and nonlinear nature of the omics data, Yongcui Wang et al.

proposed a Bayesian Neural Network (BNN) method based on the general approxi-

mation capability of feedforward neural networks to solve this problem. Compared

with the deep neural network, each model might be relatively weak, but the entire

mixed model could still perform well in data fitting and prediction [6].They found

that the sensitivity of cancer cells to drug molecules is driven by the characteristics
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of cells and drugs. Emdadi, A. and Eslahchi, C. proposed a DSPLMF method based

on a recommendation system. The gene expression profile, copy number variations

and single nucleotide mutation information were used to calculate the similarity

of the cell lines, and the chemical structure was used to calculate the similarity of

the drugs. And the possibility of cell lines being sensitive to drugs was calculated

through the logical matrix decomposition to discover the effective characteristics

of the cell lines and drugs [7]. Similarly, Xie et al. used a deep learning model to

predict the response and efficacy of different anticancer drugs to the breast cancer,

and proposed an unsupervised variational autoencoder model geneVAE and recti-

fied junction tree variational autoencoder (JTVAE). GeneVAE and JTVAE were

found to have strong robustness in drug response prediction of breast cancer cell

lines and whole cancer cell lines [8]. Su, Ran et al. used genetic information, chem-

ical characteristics and biological context with the ensemble optimization strategy,

and combined with the weighted model META-GDBP to predict drug response,

which found a high correlation between predicted drug response and observed drug

response [9]. Sharifi-Noghabi Hossein et al. proposed a deep neural network MOLI

algorithm, which took somatic mutation, copy number variation and gene expression

as input data and used a combination of multi-omics methods and clinical data to

predict drug response. Compared with the latest single-omics and early integrated

multi-omics methods, their proposed method had a significant improvement in pre-

diction performance [10]. Similarly, Szalai Bence et al. conducted a model prediction

analysis based on the correlation between the differentially expressed genes mea-

sured in the cell lines and the drug sensitivity under the action of the the drug at a

specific concentration, and found that the cell line response was correlated with the

drug concentration and time. However, the model achieved low accuracy and poor

fitting in the prediction process because it ignored the non-linear characteristics

between differentially expressed genes and the drug sensitivity [11].

In this study, we developed the WRFEN-XGBoost algorithm to predict the cell

viability under the drug induction using LINCS-L1000 perturbation signatures.

Firstly, we screened and matched the three data sets, including perturbation tran-

scriptomics signatures (LINCS-L1000), cancer treatment response portal (CTRP)

and cancer dependence map database (Achilles), and divided them into nine data

subsets. Secondly, we proposed a weighted fusion algorithm based on random forest



Lu et al. Page 4 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

and elastic nets to effectively extract non-linear features between differentially ex-

pressed genes and cell viability, and completed the selection of key genes. Then, we

used the XGBoost algorithm to predict the cell viability and analyzed the apoptosis

response under the action of drug toxicity and gene silencing. At the same time,

in order to avoid the problem of tedious parameter adjustment, we introduced the

FEBPSO algorithm into the XGBoost learning algorithm. Finally, in order to mea-

sure the feasibility of our method, we completed cross-dataset validation between

compounds and shRNAs at different perturbation times. In addition, we validated

the drug sensitivity inference on the two benchmark data sets of CCLE and NCI60.

Methods

Dataset collection

We used five datasets in this study, including the perturbation transcriptomics

signatures (LINCS-L1000), the Cancer Therapeutics Response Portal (CTRP),

the Cancer Dependence Map Database (Achilles), the Cancer Cell Line Ency-

clopedia (CCLE) and NCI-60 dataset. LINCS adopted L1000 technology to de-

tect the transcriptome expression data in human cancer cell lines under vari-

ous external stimulation. The expression of the whole genome was extrapolated

by detecting the expression levels of 978 genes [12],[13]. The differentially ex-

pressed signatures corresponding to level five in the LINCS project were cho-

sen as the training data set, and the data could be obtained from the website

https://www.ncbi.nlm.nih.gov/geo/. To analyze the cellular response of the can-

cer cell lines to specific therapeutic drugs, we used the Cancer Treatment Re-

sponse Portal (CTRP), which covered the link between compound sensitivity and

genetic or lineage characteristics in 70,000 cancer cell lines. We selected post-quality-

control cell viability values as a target for our modeling, which could be downloaded

from the website https://ocg.cancer.gov/programs/ctd2/data-portal [14]. The third

dataset, Cancer Dependence Map Database, could be obtained from the website

https://portals.Broadinstitute.org/achilles and we selected the log fold scores of

effects change before and after shRNA treatment for our model analysis [15].

To verify the effectiveness of our prediction model, we used the NCI-60

dataset and the Cancer Cell Line Encyclopedia (CCLE) as validation datasets

in the end, respectively. The NCI-60 dataset could be downloaded from website
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https://dtp.cancer.gov/discovery development/nci-60, and we set GI50 value as

the evaluation standard for drug sensitivity [16]. The last dataset was the CCLE

dataset, which consisted of the responses of more than 400 cell lines and 24 com-

pounds at eight concentration points, as well as the expression data of 18,926

genes for each cell line. The CCLE dataset could be downloaded from the website

https://portals.broadinstitute.org/ccle, and we used the active area of the drug as

the evaluation standard for drug sensitivity [17].

Dataset preprocessing

We first merged the two-stage perturbation screens LINCS-L1000-PhaseI and

LINCS-L1000-PhaseII, and obtained the genome-wide gene expression levels un-

der various perturbations in LINCS-L1000. To further analyze the cell viability of

different cell lines under the compound perturbation, we correlated it with the cell

viability data after drug treatment in CTRP. We matched the sample instances

based on the same cell line and the drug identification number provided by the

Broad Institute. We referred to (1) to match samples with similar concentrations.

For different experimental batches, we took the average value of the cell viability

which was measured in the same concentration.

doseDiff = |log10(Cdose)− log10(Ldose)| ≤ 0.2 (1)

where Cdose was the concentration value corresponding to the cancer treatment

drug in CTRP, and Ldose was the concentration value corresponding to the per-

turbation signatures in LINCS-L1000.

In the course of the research, in order to enable our training model to be tested

independently on other datasets to verify the effectiveness of the model, we at-

tempted to use similar phenotypic information to the cancer treatment response

portal CTRP for further research. We associated the merged two-stage LINCS-

L1000 perturbation screen data with the Achilles project, the cancer dependency

map database, to investigate the effect of single gene knockdown or knockout on

apoptosis or proliferation of cancer cells under the action of shRNA. Since the num-

ber of cell survival after drug treatment or shRNA treatment was proportional to

the evaluation indicators in the CTRP project or the Achilles project, for simplicity,
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we referred to the cell phenotypic information in the above two data sets as cell

viability. The specific process above was shown in Fig.1.

Model establishment

The research framework of this study is shown in Fig.2. In the first place, we com-

pleted the selection of differentially expressed genes and predictive analysis of cell

viability on the perturbation transcriptomics signatures LINCS-L1000 and the can-

cer treatment response portal CTRP dataset. To derive the model’s performance

across the datasets, we then performed independent screen tests on the cancer de-

pendency map database Achilles (only the test process of the CTRP-L1000 model

on the data set Achilles-L1000 is presented here, and vice versa). At the same time,

we conducted the model validation based on the active area value in the Cancer

Cell Line Encyclopedia CCLE dataset and the drug sensitivity index in the NCI-60

dataset.

Feature extraction based on random forest and elastic net

Random forest, as a typical representative of the Bagging method in ensemble

learning, can guarantee the improvement of the regression accuracy and search

for a large number of non-linear features [18]. It is considered as one of the most

successful algorithms to describe the correlation between key genes and cell pheno-

type studies [19]. In this study, the sample space is randomly divided into different

parts by bootstrapping method. For each node of the decision tree, several genes

are randomly selected from the M-dimensional differentially expressed gene space

OriDEGs = (g1, g2, g3, . . . , gM ) and then form the Z-dimensional gene subspace

SubGenes = (i1, i2, i3, . . . , iZ). Then we select the best split node and get the re-

sult of the sample by the weak decision tree. To obtain the final results, prediction

of each weak decision tree is averaged. After obtaining the prediction results, we

used the Pearson correlation coefficient to evaluate the performance of the random

forest to prepare for the feature-weighted fusion. We arranged each attribute in

descending order according to the importance of the genes. The non-contributing

genes were removed and the number of remaining genes were recorded after sorting.

Elastic network regression, as a combination of ridge regression and lasso regres-

sion, can not only reduce the prediction variance but also achieve the purpose of

coefficient shrinkage and variable selection [20]. Therefore, we use elastic net regres-
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sion to select the key genes. We used the Pearson correlation on the validation set

to select the appropriate parameter settings for the model. We evaluated the con-

tribution of each characteristic gene in the model and ranked them in descending

order of gene contribution.

In order to screen out effective differentially expressed genes (DEGs), we used

a weighted fusion algorithm of the random forest and elastic network (referred as

WRFEN) to select key genes.

W (DEGs)Rank =
eRFPearson ∗ (DEGs)RF

Rank + eENPearson ∗ (DEGs)EN
Rank

eRFPearson + eENPearson
(2)

where RFPearson and ENPearson are the Pearson correlation on the valida-

tion set using random forest and elastic network algorithms. (DEGs)RF
Rank and

(DEGs)EN
Rank are the feature importance order of the differentially expressed gene

DEGs and the number of genes selected in the random forest and elastic network

algorithm, respectively.

We ranked the key genes in the random forest and elastic network respectively,

and use (2) to perform weighted summation. Finally, we ranked the result and the

optimal number of genes in order of gene contribution. The algorithm flowchart

was shown in Supplementary Figure 1. More precisely, it was a feature selection

method based on the combination of random forest and elastic net. It calculated

the order of each gene in two methods and the performance of the two methods

in the prediction performance (Pearson correlation) was used as the weight. If the

prediction performance of the model was better, the more weight it occupied in

gene ranking and the higher the genes in the final ranking.

Cell viability prediction algorithm based on XGBoost and FEBPSO

XGBoost is one of the most competitive prediction algorithm in machine learning.

It improves the integration of the gradient boosting algorithm and has high per-

formance in solving both classification and regression problems [21]. We used the

XGBoost algorithm to predict cell viability and obtained a prediction score on the

leaf node of each decision tree based on the differential expression of genes in each

sample. Multiple weak estimators are constructed one by one through multiple it-

erations. The cell viability prediction result is defined as the sum of the prediction
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scores of all the trees as follows.

ˆcvi =

K∑

k=1

fk(samplei[DEGs]) (3)

where fk(samplei[DEGs]) represents the prediction score on the k-th decision tree

for the i-th sample on the selected differentially expressed gene set DEGs. K is the

number of decision trees. Then during the t-th iteration of the sample, the model’s

predicted value ˆcvi can be described as follows:

ˆcvi
(t) = ˆcvi

(t−1) + ft(samplei[DEGs]) (4)

In this study, in order to improve the prediction accuracy of cell viability and

reduce the prediction bias, we used the discrete binary particle swarm optimization

with flexible weights algorithm FEBPSO to adaptively adjust the parameters of XG-

Boost. As a typical representative of swarm intelligence algorithms, particle swarm

optimization can effectively solve nonlinear continuous optimization problems [22].

Meanwhile, it solves the problem of too long training time due to a large amount of

adjustment parameters [23]. In the prediction process of FEBPSO-XGBoost, we first

initialized the binary particle swarm, encoded each parameter as a binary number

and transformed the parameter optimization into a discrete combinatorial optimiza-

tion problem. During each iteration, the parameters were converted into decimal

numbers within the specified range in a group of six. At this time, we calculated

the Pearson correlation coefficient of each individual particle running in XGBoost

algorithm and evaluated the fitness of each individual particle. For each particle,

we compared the current fitness value with the individual’s historical best position

or global best position. If the current fitness value was higher, the historical best

position and global best position would be updated with the current position of the

particle. At the same time, the particle speed and position information would be

updated to enter the next iteration until the termination condition has been met.

Finally, the global optimal value and the best parameter settings would be output

at this time. The particle speed is updated as follows:

vk+1
i = wvki + c1r1(x

k
pbest,i − xki ) + c2r2(x

k
gbest − xki ) (5)
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where vki represents the velocity vector of particle i during the k-th iteration, xki

represents the position vector of particle i during the k-th iteration, c1 and c2 are

the acceleration constant, r1,r2 are the random number, w is the inertial weight,

xkpbest,i denotes the best position of the individual particle and xkgbest denotes the

best position of the global particle.

In order to overcome the shortcomings of premature convergence and falling into

local extremes of particle swarm optimization, we used the formula shown below to

update the weights [24].

w(k) = α1e
−ψ∗k

T + α2e
ψ∗k

T (6)

where α1 = w2e
ψ
−w1e

2ψ

1−e2ψ
, α2 = w1−w2e

ψ

1−e2ψ
, T denotes the maximum number of itera-

tions, k is the current number of iterations, w1,w2 are the minimum inertia weight

and maximum inertia weight greater than zero, respectively.

We used WRFEN for core gene selection and FEBPSO-XGBoost for predictive

analysis. Through this, we formed a complete prediction model and explained the

complete apoptotic levels observed in cell lines with specific drugs and concentra-

tions.

Results

Based on the latest transcriptomic perturbation screens in LINCS-L1000, we con-

ducted the study with the cell viability after the drug treatment in CTRP and

the effect change score before and after the treatment with shRNA in the Achilles

project, respectively. From the perspective of gene regulation, we examined the

relationship between key genes and drug response. At the same time, the FEBPSO-

XGBoost machine learning algorithm was used to predict the cell viability of differ-

ent cell lines with the treatment of various drugs or shRNA by using the expression

levels of characteristic genes under the action of different perturbation times and

different drug concentrations.

Analysis of feature selection

In the feature selection process, we firstly selected 40 trees for the establishment of

a random forest, and the results were ranked according to the variable contribution.

Secondly, the ratio of the lasso penalty term was set to 0.1, 0.2,0.5,0.7,0.95,1 and
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the coefficient penalty term was controlled to from 0.1 to 1.0 by step 0.1 in the

elastic net. The best combination of the parameters was decided on the validation

set. Then, we sorted the variables according to their contribution and deleted the

non-contributing genes. Finally, we calculated the selected characteristic genes ac-

cording to Formula (2), and obtained the final genes. The feature genes selected

on each subset (subset names were shown in Supplementary Table 1) was ranked

according to their contribution. We listed the number of feature genes selected and

the contribution ranking of the fifteen key genes in each subset in Supplementary

Table 1.

Taking the LINCS-L1000-CTRP-24h dataset as an example, we compared the

WRFEN with the existing traditional methods FTest [25], MI [26], RFFS [27] and

LRFS [28], and tested it on multiple predictors at the same time (Supplementary

Figure 2). The results showed that the results of the gene selection algorithm in

this paper were better than the existing single algorithms. It could also be observed

that the prediction performance of the model would be gradually stabilize as the

number of selected feature genes increases.

In order to further understand the biological functions performed by the selected

characteristic genes, we took the subsets of CTRP-L1000-24h and Achilles-L1000-

96h as examples to perform analysis on the extracted characteristic genes. We could

find that they were all closely related to the apoptotic process from Fig. 3 and

Supplementary Figure 3. The most significantly enriched pathways, r-has-1640170

and GO:0007346, were involved in the regulation of cell cycle and apoptosis, which

also confirmed that the differentially expressed genes selected in this study after

treatment with drugs or shRNA constituted the pathway of apoptosis.

Prediction and analysis of drug induced cell viability

We updated and adjusted the parameter combination of XGBoost with the binary

discrete particle swarm optimization with flexible weight. We set the number of

swarm particles to be 25, the dimension of the particles to be 48, the maximum

number of iterations in CTRP-L1000 and Achilles-L1000 series models to be 50 and

20 respectively, the acceleration constants to be 1.5, the maximum and minimum

values of inertia weight to be 0.8 and 0.4 respectively, the maximum and minimum

values of velocity to be 10 and -10 respectively and weight updating formula of
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parameter ψ to be 2.6. The correlation coefficient between the observed value and

the predicted value was used as the model evaluation index and the fitness function.

At the beginning of the particle swarm optimization algorithm, the population was

generated randomly. When the iteration reached a certain number, the optimal

solution or approximate optimal solution would be found with a high probability.

The experimental results of parameter optimization in XGBoost by using FEBPSO

algorithm were shown in Fig. 4.

From the above experimental results, it was obvious that the measurement of

cell viability in CTRP required a long perturbation time. With the increasement of

the perturbation time, the reliability of the forecast also continued to rise, and the

prediction results of the 24-hour perturbation time was more reliable. When the con-

centration factor was added in the prediction of the CTRP dataset, the prediction

accuracy of the model could be improved, which indicated that the cell viability

depended on the concentration of the drug to some extent. In the LINCS-L1000

perturbation screens and cancer dependency map database Achilles, the model pro-

duced by the 96-hours perturbation time had the most significant prediction effect.

It could be seen from the results that the disturbance time was not necessarily as

long as possible.

In the optimization process of the CTRP-L1000 series model, when the number of

iterations reached about 20 rounds, the prediction performance of the model gradu-

ally tended to be stable. In the process of Achilles-L1000 series model optimization,

when the number of iterations reached about 8 rounds, the prediction performance

of the model also gradually tended to be stable. After we used FEBPSO to adjust

the parameters of the XGBoost model, the optimal parameter combinations and

default values of each parameter were shown in Table 1 and Supplementary Table2

below. It could be seen that this experiment fully proves the effectiveness of the

parameter optimization algorithm proposed by this research. Compared with the

traditional default parameters, using the FEBPSO algorithm to optimize the pa-

rameters of the XGBoost model had significantly improved the accuracy of model

prediction.



Lu et al. Page 12 of 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

Independent dataset validation on CTRP-L1000 and Achilles-L1000

In order to verify the reliability of the model predictions, we used independent

datasets to verify the model’s prediction capabilities. We had implemented the in-

teractive test in the CTRP-L1000 series model and the Achilles-L1000 series model.

The Fig. 5 showed the experimental results. From the figure above, it could be found

that the 24-hour perturbation time was the best in the CTRP-L1000 data set. The

Pearson correlation of the model on this data set was 0.8321, which was better

than the 3-hour and 6-hour perturbation times. In the Achilles-L1000 dataset, the

96-hour perturbation time was considered to be the best. The performance of the

model on this data set is better than the perturbation time of 120 hours and 144

hours with 0.5893 Pearson correlation. Similarly, in terms of independent set valida-

tion, the CTRP-L1000-6h model, CTRP-L1000-24h model and Achilles-L1000-96h

model was superior to other models in CTRP-L1000-24h screen with 0.7416, 0.8321

and 0.7319 Pearson correlation, respectively. Therefore, we further confirmed that

the drug could achieve excellent predictive performance after a longer perturbation

time.

Model validation on the NCI60 dataset

In order to validate the model across the NCI60 dataset, we used the GI50 value

as the indicator of drug sensitivity evaluation and binarized the GI50 value (50%

growth inhibition). In the NCI60 dataset, when the efficacy was within the range of

50% growth inhibition concentration, it corresponded to the GI50 value in the drug

sensitivity evaluation index. When the efficacy was not effective within the 50%

growth inhibition concentration range, it was recorded as the highest concentration

value. In this study, we would define the drug concentration difference variable,

which portrayed the efficacy of the drugs and was calculated as shown in Formula

(7). In other words, when the value of the drug concentration difference was less than

zero, it meant that the drug was an effective drug, otherwise it was an ineffective

drug.

∆drug conc(dr, cl) = drug sens(dr, cl)− test max conc(dr, cl) (7)

where, ∆drug conc(dr, cl) was the difference in drug concentration when the cell

lines cl under the treatment of the specific drug dr. drug sens(dr, cl) was the drug
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sensitivity value GI50 for cl treated by dr. test max conc(dr, cl) was the maximum

tested drug concentration used in the treatment of cell line cl with the drug dr.

In this study, ROC curve and PR curve were used to measure the contribution

of the algorithm in evaluating the drug effectiveness. By observing the ROC curve

shown in Fig. 6(a), we could find that the prediction made by the Achilles-L1000-96h

model is the most accurate in the LINCS-L1000-NCI60-24h dataset. When using

this model for prediction, the AUC area under the ROC curve reached 0.80, the 95%

confidence interval ranged from 0.769 to 0.822, and the significance level was less

than 0.0001. The other two models also had good performance. Among them, the

AUC area under the ROC curve of the CTRP-L1000-24h model reached 0.76, and

the area under the ROC curve of the CTRP-L1000-6h model reached 0.74. In the

accuracy-recall evaluation curve shown in Fig. 6(b), the Achilles-L1000-96h model

still surpassed other models with the area under the curve AUC = 0.94. Through

the above analysis, we further confirmed that the Achilles-L1000-96h model was

effective during the prediction process of the LINCS-L1000-NCI60-24h data set,

and it could be further used for the effectiveness testing of other drugs.

Furthermore, we also matched and correlated the LINCS-L1000 perturbation

screens, CTRP data and NCI60 data according to the matching method described

above. The drug with the perturbation time of 24 hours was recorded as LINCS-

L1000-CTRP-NCI60-24h. In this experiment, we used CTRP-L1000-6h, CTRP-

L1000-24h and Achilles-L1000-96h models to predict the cell viability in three major

data sets, which had drugs and cell lines in common. We also binarized the drug

sensitivity data in NCI60.

Finally, we used the ROC curve and PR curve to discuss and analyze the exper-

imental results. As shown in Supplementary Figure 4, when we used the Achilles-

L1000-96h model, the CTRP-L1000-24h model and the CTRP-L1000-6h model to

predict the effectiveness of the drug, the area under the ROC curve achieved 0.78,

0.80 and 0.72, respectively, and the area under the PR curve achieved 0.98, 0.98 and

0.97, respectively. The above results indicated the superior prediction performance

of the Achilles-L1000-96h model and the CTRP-L1000-24h model.

While predicting the effectiveness of the drugs, we required that the predictors

used in this study could make effective predictions. In addition, whether the appro-

priate features could be selected during the feature selection stage directly affected
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the predictive performance of the predictors. To do this, we correlated the selected

feature genes with the effectiveness of the drug. We observed whether the differential

expression levels of selected characteristic genes have significantly different expres-

sion patterns under the action of effective or ineffective drugs. For this reason, we

mapped the differential expression levels of the first 15 differentially expressed genes

selected in the feature selection stage under the treatment of effective drugs and

ineffective drugs. Fig. 7(a) was the result of the LINCS-L1000-NCI60-24h dataset

and Fig. 7(b) was the result of the LINCS-L1000-CTRP-NCI60-24h dataset. By

comparison, in the effective drug group, we could find that the expression level

of differentially expressed genes had significantly up-regulated or down-regulated.

However, in the ineffective drug group, there was no significant change in the ex-

pression level of differentially expressed genes. Therefore, we further demonstrated

the validity of selected feature genes.

So far, we had completed inferring the effectiveness of the drug from the predicted

cell viability of each model. To further examine whether there was a significant

difference between the effective and ineffective drugs on the cell viability, we used a

non-parametric Mann Whitney test to analyze the cell viability prediction results,

as shown in Fig. 8. Different models were predicted on LINCS-L1000-NCI60-24h

screen and LINCS-L1000-CTRP-NCI60-24h screen respectively. The results found

that using the Achilles-L1000-96h model to discriminate between effective drugs

and ineffective drugs had a significant difference in the mean value, the significance

levels were P ≤ 0.0001 and P = 0.0004, respectively. In addition, similar results

were obtained in the use of CTRP-L1000-24h model for inferring drug effectiveness,

the significance levels were P ≤ 0.0001 and P = 0.0002, respectively.

Model validation on the CCLE dataset

Our model was also verified on CCLE, and we used the active area as the evaluation

criterion of drug sensitivity. In order to achieve binarization of drug sensitivity on

the CCLE data set, we first normalized the active area in CCLE to zero mean.

Meanwhile, we defined the active area with 0.8 variance above the mean as an ef-

fective drug, and the active area with 0.8 variance below the mean as an ineffective

drug. We then searched for common combination pairs of cell lines and drugs in the

LINCS-L1000 perturbation screen. Since there were only a small number of 24 drugs
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in the CCLE data set, we used the PubChem database to find synonymous drugs.

We marked the data after matching as LINCS-L1000-CCLE. Similarly, we screened

the drugs corresponding to the perturbation time of 24 hours, which were included

in LINCS-L1000-CCLE-24h. At the same time, we selected the drugs whose concen-

tration was greater than or equal to 10 micromoles. In addition, when multiple drug

perturbation signatures were presented, we choose the lowest cell viability value.

We used the ROC curve shown in Supplementary Figure 5(a) and the PR curve

shown in Supplementary Figure 5(b) to measure the results of the algorithm. By

observing the experimental results, we found that when we used the drug sensitivity

data in CCLE to evaluate the predicted cell viability values, the Achilles-L1000-96h

model also showed excellent performance in cross-dataset validation. When we used

Achilles-L1000-96h model to predict the effectiveness of the drug, the area under

the ROC curve achieved 0.84 and the area under the PR curve achieved 0.88. The

differential expression on effective and ineffective drugs was shown in Supplementary

Figure 6. We could see that the LINCS-L1000-CCLE-24h dataset still showed the

same gene expression pattern as the LINCS-L1000-NCI60-24h dataset. That was to

say, the differentially expressed genes in the effective drug group were significantly

up-regulated and down-regulated.

Discussion

In order to evaluate the effectiveness of the algorithm in this paper, we analyzed

and compared our algorithm with other existing methods including PCA-Lasso,

PCA-SVR, FTest-RF, MI-KNN, VAE [8] and DAE-NN [29]. The Principal Compo-

nents Analysis (PCA), Ftest and Mutual Information (MI) were used to extract the

features, and the Lasso, Support Vector Regression (SVR), Random Forest (RF)

and k-nearest neighbor (KNN) were used for the final prediction. VAE and DAE-

NN are proposed by the recent literature in drug response prediction. VAE used

the variational autoencoder to predict the response of different anti-cancer drugs.

DAE-NN used a deep autoencoder to extract the features and the neural network

was for the final prediction.

In the present paper, we used the Pearson correlation coefficient, coefficient of

determination (R2) and mean squared error of the predicted and actual values to

measure the prediction performance of the model. In the training process of VAE
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and DAE-NN algorithms, we used grid search to select the best training parameters

for the learning rate [0.001, 0.005, 0.01, 0.05, 0.1] and iteration period [30, 90,

150, 220, 300]. The detailed experimental results of these seven algorithms were

shown in Supplementary Tables 3-5. Taking the CTRP-L1000-24h(S1) dataset as an

example, the predicted results were shown in Table 2. Our algorithm outperformed

other algorithms with the maximum correlation coefficient 0.8321, the maximum

coefficient of determination 0.6922 and the minimum mean squared error 0.025.

Compared with PCA-Lasso, PCA-SVR, FTest-RF, MI-KNN,VAE and DAE-NN

algorithms, Pearson correlation coefficient of our method increased by 5.50%, 5.33%,

4.77%, 3.32%, 0.39%, 3.59% and R2 increased by 11.45%, 11.45%, 9.80%, 7.92%,

1.45% and 12.12%. In terms of the mean squared error, our method decreased from

3.85% to 21.88% comparing with the other six algorithms above. The experimental

results showed that the prediction performance of the proposed algorithm have

been further improved. For the CTRP-1000-3h, CTRP-L1000-6h, CTRP-L1000-

24h, Achilles-L1000-96h, Achilles-L1000-120h and Achilles-L1000-144h datasets ,

the evaluation results of other models were shown in Supplementary Tables 3-5.

In addition to reliably and effectively inferring cell viability through the pre-

dictive models, we also needed to correlate our results with the literature on cell

viability, as shown in Fig. 9. As a member of tumor necrosis factor receptor super-

family, high affinity nerve growth factor receptor p75NTR could induce apoptosis

and inhibit the growth of prostate epithelial cells. Azacitidine-mediated p75NTR

had anti-tumor effects on androgen-independent prostate cancer cells 22Rv1 and

PC3 [30]. After Bortezomib treatment, the cells with suppressed C/EBPbeta levels

showed delayed autophagy activation. The growth of the PC3 cells and xenografts

has been decreased with the C/EBbeta gene knockdown, which could make PC3

cells sensitive to Bortezomib [31]. Another study has tested the effects on three

related human glioma cell lines treated by the new epidermal growth factor recep-

tor (EGFR) tyrosine kinase Tyrphostin-AG-1478, and found that AG-1478 was the

relatively specific inhibitor of truncated EGFR. They had important medical sig-

nificance because the truncated EGFR occurred frequently in glioblastoma, breast,

lung and ovarian cancer [32].
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Conclusions

In this paper, we managed to predict the drug-induced cell viability from the differ-

ential gene expression data through the WRFEN-XGBoost algorithm. The study

of cell phenotype was firstly correlated with the drugs and shRNA perturbation

signatures. In addition, we have completed the selection of key genes based on

the WRFEN algorithm and proposed a novel FEBPSO-XGBoost machine learning

method to predict the cell viability. Through the connection between cell viabil-

ity and pharmacogenomics, the establishment of the prediction model trained from

perturbation transcriptomics signatures, cell phenotype and drug response data has

been completed. At the same time, the robustness and effectiveness of our proposed

modeling strategy in drug sensitivity analysis were verified on CCLE and NCI-

60 datasets. This study could provide help for the biomedical researchers in drug

screening and promote the analysis of anticancer drugs in pharmacogenomics.

However, in the clinical application of cancer cell lines and anticancer therapies,

it is urgent to identify the biomarkers that can distinguish between drug-sensitive

cell lines and drug-resistant cell lines. Firstly, besides gene expression, drug char-

acteristics can be integrated into the model to achieve better accuracy. Secondly,

a more appropriate supervised machine learning algorithm is hoped to be designed

to reveal the sensitivity between cancer cell lines and drug treatment. Finally, we

will continue to reveal new biomarkers that are sensitive and resistant to the can-

certherapies. It provides more opportunities for exploring the biological behavior

of cancer cell lines at the cellular level, and it is also the direction of our future

research.
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Figure 1 LINCS-L1000 and CTRP, Achilles data association diagram. The process of data

association consisted of two parts: perturbation signatures and cell phenotypic information. The

LINCS-L1000-PhaseI and LINCS-L1000-PhaseII were combined and renamed LINCS-L1000. The

compound perturbation signatures and shRNA perturbation signatures involved in LINCS-L1000

were respectively associated with CTRP and Achilles datasets according to relevant conditions,

which were named CTRP-L1000 and Achilles-L1000. The datasets were divided into

CTRP-L1000-3h, CTRP-L1000-6h, CTRP-L1000-24h, Achilles-L1000-96h, Achilles-L1000-120h

and Achilles-L1000-144h according to different perturbation time. CTRP-L1000-3h,

CTRP-L1000-6h, and CTRP-L1000-24h were divided into six subsets according to the

concentration factor was considered(S2) or not considered(S1).

Figure 2 Framework diagram of cell viability prediction.

Figure 3 Enrichment analysis of differentially expressed genes in the CTRP-L1000-24h dataset.

Figure 4 Iterative process of FEBPSO in XGBoost algorithm. a, CTRP-L1000 Optimization. b,

Achilles-L1000 Optimization.

Figure 5 Independent dataset validation. Using the Achilles-L1000 series model to predict cell

viability in CTRP-L1000 data and vice versa.

Figure 6 ROC curve and PR curve of the model evaluation on LINCS-L1000-NCI60-24h

dataset. a, The graph of Receiver Operating Characteristic. b, The graph of Precision-Recall.

Figure 7 Heat map of the first fifteen genes. a, LINCS-L1000-NCI60-24h. b,

LINCS-L1000-CTRP-NCI60-24h.

Figure 8 Box plot. comparison of the effective drug group and the ineffective drug group.

Figure 9 The predicted cell viability for different drugs and cell lines. (a-c) showed the cell

viability of the drugs Vorinostat, Bardoxolone-methyl and Tyrphostin-AG-1478 in different cell

lines. (d-f) showed the cell viability of the cell lines HUES3, MCF7, PC3 in different drugs.

Tables
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Table 1 XGBoost parameters and best parameter combinations (CTRP-L1000 Series Model).

Parameter Name L1000-CTRP-3h

(S1/S2)

L1000-CTRP-6h

(S1/S2)

L1000-CTRP-24h

(S1/S2)

learning rate 0.0225/0.0476 0.01/0.0225 0.01/0.035

gamma 0/0.0317 0.1587/0 0/0

max depth 6/3 5/5 6/5

min child weight 4/5 3/13 8/10

subsample 0.5757/0.7957 0.4343/0.5129 0.2457/0.6700

colsample bytree 0.1111/0.0794 0.4286/0.1270 0.4762/0.8095

lambda 0.01/1.1156 1.2103/0.3259 1.4946/0.7997

Iteration times 4174/1476 5841/3460 4968/4492

Table 2 Comparison of the algorithm in this paper with other algorithms (Taking the

CTRP-L1000-24h(S1) dataset as an example).

Methods Pearson Correlation R
2 Mean Squared Error

Our model 0.8321 0.6922 0.025

PCA-Lasso 0.7887 0.6211 0.031

PCA-SVR 0.7900 0.6211 0.031

FTest-RF 0.7942 0.6304 0.030

MI-KNN 0.8054 0.6414 0.030

VAE 0.8289 0.6823 0.026

DAE-NN 0.8033 0.6174 0.032
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Figures

Figure 1

LINCS-L1000 and CTRP, Achilles data association diagram. The process of data association consisted of
two parts: perturbation signatures and cell phenotypic information. The LINCS-L1000-Phasel and LINCS-
L1000-Phasell were combined and renamed LINCS-L1000. The compound perturbation signatures and
shRNA perturbation signatures involved M LINCS-L1000 were respectively associated with CTRP and
Achilles datasets according to relevant conditions, which were named CTRP-L1000 and Achilles-L1000.
The datasets were divided into CTRP-L1000-30 CTRP-L1000-60 CTRP-L1000-24h, Achilles-L1000-96h,
Achilles-L1000-120h and Achilles-L1000-144h according to different perturbation time. CTRP-L1000-3h,



CTRP-L1000-611, and CTRP-L1000-24h were divided into six subsets according to the concentration
factor was considered(52) or not considered(S1).

Figure 2

Framework diagram of cell viability prediction.



Figure 3

Enrichment analysis of di฀erentially expressed genes in the CTRP-L1000-24h dataset.

Figure 4

Iterative process of FEBPSO in XGBoost algorithm. a, CTRP-L1000 Optimization. b, Achilles-L1000
Optimization.



Figure 5

Independent dataset validation. Using the Achilles-L1000 series model to predict cell viability in CTRP-
L1000 data and vice versa.



Figure 6

ROC curve and PR curve of the model evaluation on LINCS-L1000-NCI60-24h dataset. a, The graph of
Receiver Operating Characteristic. b, The graph of Precision-Recall.

Figure 7



Heat map of the  rst  fteen genes. a, LINCS-L1000-NCI60-24h. b, LINCS-L1000-CTRP-NCI60-24h.

Figure 8

Box plot. comparison of the e฀ective drug group and the ine฀ective drug group.



Figure 9

The predicted cell viability for di฀erent drugs and cell lines. (a-c) showed the cell viability of the drugs
Vorinostat, Bardoxolone-methyl and Tyrphostin-AG-1478 in di฀erent cell lines. (d-f) showed the cell
viability of the cell lines HUES3, MCF7, PC3 in di฀erent drugs.
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