[1] S. M. Ludington-Hoe, M. W. Johnson, K. Morgan, T. Lewis, J. Gutman, P. D. Wilson, and M. S. Scher, “Neurophysiologic assessment of neonatal sleep organization: Preliminary results of a randomized, controlled trial of skin contact with preterm infants,” Pediatrics, vol. 117, no. 5, 2006.
[2] M. M, “Insomnia in the elderly,” J Clin Psychiatry, vol. 53, 1992.
[3] D. W. Roffwarg HP, Muzio JN, “Ontogenetic development of the human sleep-dream cycle,” Science (80-. )., vol. 152, no. 3722, p. 604‐619, 1966.
[4] J. P. Shaffery, “Sleep and Brain Development,” in Handbook of Behavioral Neuroscience, vol. 30, 2019, pp. 413–424.
[5] J. K. Bayer, H. Hiscock, A. Hampton, and M. Wake, “Sleep problems in young infants and maternal mental and physical health,” J. Paediatr. Child Health, vol. 43, no. 1–2, pp. 66–73, 2007.
[6] H. L. Ball, Reasons to bed-share: Why parents sleep with their infants, vol. 20, no. 4. 2002.
[7] Grigg-Damberger M, Gozal D, Marcus CL et al., “The visual scoring of sleep and arousal in infants and children,” J Clin Sleep Med, vol. 3, no. 2, p. 201‐240., 2007.
[8] Atallah L, Serteyn A, Meftah M et al., “Unobtrusive ECG monitoring in the NICU using a capacitive sensing array,” Physiol Meas, vol. 35, no. 5, pp. 895–913, 2014.
[9] A. Gruetzmann, S. Hansen, and J. Müller, “Novel dry electrodes for ECG monitoring,” Physiol. Meas., vol. 28, no. 11, pp. 1375–1390, 2007.
[10] A. Sadeh, P. Lavie, A. Scher, E. Tirosh, and R. Epstein, “Actigraphic home-monitoring sleep-disturbed and control infants and young children: A new method for pediatric assessment of sleep-wake patterns,” Pediatrics, vol. 87, no. 4, pp. 494–499, 1991.
[11] M. A. Lopez-Gordo, D. Sanchez Morillo, and F. Pelayo Valle, “Dry EEG electrodes,” Sensors, vol. 14, no. 7, pp. 12847–12870, 2014.
[12] G. Ruffini, S. Dunne, L. Fuentemilla, C. Grau, E. Farrés, J. Marco-Pallarés, P. C. P. Watts, and S. R. P. Silva, “First human trials of a dry electrophysiology sensor using a carbon nanotube array interface,” Sensors and Actuators, vol. 144, no. 2, pp. 275–279, 2008.
[13] Feng wang, “Development of a PVDF Piezopolymer Sensor for Unconstrained In-sleep Cardiorespiratory Monitoring,” J. Intell. Mater. Syst. Struct., pp. 1–7, 2003.
[14] S. C. Brink M, Müller CH, “Contact-free measurement of heart rate, respiration rate, and body movements during sleep,” Behav Res Methods, vol. 38, no. 3, pp. 511–521, 2006.
[15] R. Cardiac and M. Using, “Remote cardiac monitoring using radar,” Massachusetts Institute of Technology, 2009.
[16] M. Sekine and K. Maeno, “Non-contact heart rate detection using periodic variation in Doppler frequency,” IEEE Sensors Appl. Symp. Proc., pp. 318–322, 2011.
[17] S. Nukaya, M. Sugie, and Y. Kurihara, “A noninvasive heartbeat , respiration , and body movement monitoring system for neonates,” Artif Life Robot, vol. 19, pp. 414–419, 2014.
[18] J. Werth, L. Atallah, P. Andriessen, X. Long, E. Zwartkruis-Pelgrim, and R. M. Aarts, “Unobtrusive sleep state measurements in preterm infants – A review,” Sleep Med. Rev., vol. 32, pp. 109–122, 2017.
[19] L. J. Meltzer, H. E. Montgomery-Downs, S. P. Insana, and C. M. Walsh, “Use of actigraphy for assessment in pediatric sleep research,” Sleep Med. Rev., vol. 16, no. 5, pp. 463–475, 2012.
[20] X. Long, E. Van Der Sanden, J. Werth, and T. Tan, “Video-Based Actigraphy for Monitoring Wake and Sleep in Healthy Infants: A Laboratory Study,” sensors, pp. 1–10, 2019.
[21] G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Rev. Biomed. Eng., vol. 11, no. c, pp. 77–96, 2018.
[22] X. Lu, X. Duan, X. Mao, Y. Li, and X. Zhang, “Feature Extraction and Fusion Using Deep Convolutional Neural Networks for Face Detection,” Math. Probl. Eng., vol. 2017, 2017.
[23] A. Heinrich, X. Aubert, and G. De Haan, “Body movement analysis during sleep based on video motion estimation,” IEEE 15th Int. Conf. e-Health Networking, Appl. Serv. Heal. 2013, no. Healthcom, pp. 539–543, 2013.
[24] Y. Zhang, Y. Chen, L. Hu, X. Jiang, and J. Shen, “An effective deep learning approach for unobtrusive sleep stage detection using microphone sensor,” Proc. - Int. Conf. Tools with Artif. Intell. ICTAI, vol. 2017-Novem, pp. 37–44, 2018.
[25] M. Awais, C. Chen, X. Long, B. Yin, A. Nawaz, S. F. Abbasi, S. Akbarzadeh, L. Tao, C. Lu, L. Wang, R. M. Aarts, and W. Chen, “Novel Framework: Face Feature Selection Algorithm for Neonatal Facial and Related Attributes Recognition,” IEEE Access, vol. 8, pp. 59100–59113, 2020.
[26] M. M. Grigg-damberger, “The Visual Scoring of Sleep in Infants 0 to 2 Months of Age,” J. Clin. Sleep Med., vol. 12, no. 3, 2016.
[27] F. TiX580, “Expert Series Thermal Imagers,” Fluke Corp, 2016.
[28] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” Comput. Vis. Pattern Recognit., pp. 818–833, 2014.
[29] S. Rajaraman, S. K. Antani, M. Poostchi, K. Silamut, A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, “Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images,” PeerJ, pp. 1–17, 2018.
[30] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: An astounding baseline for recognition,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., pp. 512–519, 2014.
[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
[32] A. K. and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS’12 Proc. 25th Int. Conf. Neural Inf. Process. Syst, vol. 1, pp. 1097–1105, 2012.
[33] K. He and J. Sun, “Deep Residual Learning for Image Recognition,” Comput. Vis. Pattern Recognit., pp. 1–9, 2016.
[34] C. Szegedy, S. Reed, P. Sermanet, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” Comput. Vis. Pattern Recognit., pp. 1–12, 2014.
[35] C. Szegedy, V. Vanhoucke, and J. Shlens, “Rethinking the Inception Architecture for Computer Vision,” Comput. Vis. Found., 2014.
[36] H. Abdi and L. J. Williams, “Principal component analysis.,” Wiley Interdisplinary Rev. Comput. Stat., pp. 1–47, 2010.
[37] T. Evgeniou and M. Pontil, “Support Vector Machines : Theory and Applications,” Mach. Learn. Its Appl., 1999.
[38] Jun qin, “An SVM face recognition method based on Gabor-featured key points,” Int. Conf. Mach. Learn. Cybern. Guangzhou, China, vol. 8, pp. 5144–5149, 2005.
[39] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.
[40] L. Hulstaert, “Transfer Learning: Leverage Insights from Big Data,” 2018. [Online]. Available: https://www.datacamp.com/community/tutorials/transfer-learning. [Accessed: 17-Jun-2020].
[41] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., 2015.