1. Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).
2. Soloveichik, G. L. Flow Batteries: Current Status and Trends. Chem. Rev. 115, 11533–11558 (2015).
3. Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, (2016).
4. Yao, Y., Lei, J., Shi, Y., Ai, F. & Lu, Y. C. Assessment methods and performance metrics for redox flow batteries. Nature Energy (2021)
5. Yang, B., Jiang, H., Xie, J., Zhao, T. & Lu, Y. C. Diphenyl ditelluride as a low-potential and fast-kinetics anolyte for nonaqueous redox flow battery applications. Energy Storage Mater. 35, 761–771 (2021).
6. Wang, W. et al. Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970–986 (2013).
7. Parasuraman, A., Lim, T. M., Menictas, C. & Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 101, 27–40 (2013).
8. LIVE Vanadium Price. https://www.vanadiumprice.com/ (2020).
9. Zeng, Y. K., Zhao, T. S., An, L., Zhou, X. L. & Wei, L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 300, 438–443 (2015).
10. Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).
11. Lin, K. et al. Alkaline quinone flow battery. Science. 349, 1529–1532 (2015).
12. Gong, K. et al. All-Soluble All-Iron Aqueous Redox-Flow Battery. ACS Energy Lett. 1, 89–93 (2016).
13. Robb, B. H., Farrell, J. M. & Marshak, M. P. Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries. Joule 3, 2503–2512 (2019).
14. Ruan, W. et al. Designing Cr complexes for a neutral Fe-Cr redox flow battery. Chem. Commun. 56, 3171–3174 (2020).
15. Schlesener, C. J., Amatore, C. & Kochi, J. K. Kinetics and Mechanism of Aromatic Oxidative Substitutions via Electron Transfer. Application of Marcus Theory to Organic Processes in the Endergonic Region. J. Am. Chem. Soc 106, 3567–3577 (1984).
16. Johnson, D. A., Reid, M. A. & Electrochem, J. Chemical and Electrochemical Behavior of the Cr(III)/Cr(II) Half-Cell in the Iron-Chromium Redox Energy Storage System. J. Electrochem. Soc. 132, 1058–1062 (1985).
17. Adin, A., Sykes, A. G., Gates, H. S. & Kin, E. L. The Chromium(II)-catalysed Dissociation of Monochlorochromium(III). J. Chem. Soc. A 80, 1518–1521 (1966).
18. Zeng, Y. K., Zhao, T. S., Zhou, X. L., Zeng, L. & Wei, L. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries. Appl. Energy 182, 204–209 (2016).
19. Bhatt, V. Essentials of Coordination Chemistry. Academic Press vol. 0 (2016).
20. Bae, C.-H., Roberts, E. P. L. & Dryfe, R. A. W. Chromium redox couples for application to redox flow batteries. Electrochim. Acta 48, 279–287 (2002).
21. Bae, C., Roberts, E. P. L., Chakrabarti, M. H. & Saleem, M. All-chromium redox flow battery for renewable energy storage. Int. J. Green Energy 8, 248–264 (2011).
22. Waters, S. E., Robb, B. H., Marshak, M. P. & Marshak, M. P. Effect of Chelation on Iron-Chromium Redox Flow Batteries. ACS Energy Lett. 5, 1758–1762 (2020).
23. Yang, Y. et al. Quantitative measurement of cyanide released from Prussian Blue. Clin. Toxicol. 45, 776–781 (2007).
24. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science (80-. ). 350, 938–943 (2015).
25. Hume, D. N. & Kolthoff, I. M. The Oxidation Potential of the Chromocyanide—Chromicyanide Couple and the Polarography of the Chromium Cyanide Complexes. J. Am. Chem. Soc. 65, 1897–1901 (1943).
26. Nicholson, R. S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 37, 1351–1355 (1965).
27. Chiang, A. & Adamson, A. W. Photochemistry of Aqueous Cr(CN)6 3-. J. Phys. Chem. 72, 3827–3831 (1968).
28. Wakefield, D. K., Schaap, W. B. & Wakefield2, D. K. Cyanoaquochromium(III) Complexes. Separation and Identification of the Neutral and Cationic Cyanoaquo Complexes of Chromium(III) and Aquation Kinetics of the Monocyanopentaaquochromium(III) Ion1. Inorg. Chem. 8, 512–519 (1968).
29. Jeftić, L. & Feldberg, S. W. Chromium (II)-Catalyzed aquation of hexacyanochrornate (III) to pentacyanomonohydroxychromate(III). J. Phys. Chem. 75, 2381–2387 (1971).
30. C. D. Wu, D. A. Scherson,* E. J. Calvo, and E. B. Y. A Bismuth-Based Electrocatalyst for the Chromous-Chromic Couple in Acid Electrolytes. J. Electrochem. Soc. 133, 2109–2112 (1986).
31. Tseng, T.-M. et al. Carbon Felt Coated with Titanium Dioxide/Carbon Black Composite as Negative Electrode for Vanadium Redox Flow Battery. J. Electrochem. Soc. 161, A1132–A1138 (2014).
32. Zhou, X. L., Zeng, Y. K., Zhu, X. B., Wei, L. & Zhao, T. S. A high-performance dual-scale porous electrode for vanadium redox flow batteries. J. Power Sources 325, 329–336 (2016).
33. Jiang, H. R. et al. A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 24, 529–540 (2020).
34. Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. PNAS 105, 17250–17255 (2008).
35. Lord, R. L. & Baik, M. H. Why does cyanide pretend to be a weak field ligand in [Cr(CN)5]3-? Inorg. Chem. 47, 4413–4420 (2008).
36. Luo, J. et al. Unprecedented Capacity and Stability of Ammonium Ferrocyanide Catholyte in pH Neutral Aqueous Redox Flow Batteries. Joule 3, 149–163 (2019).
37. Nitopi, S. et al. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 119, 7610–7672 (2019).
38. Heintz, E. A. The synthesis of potassium hexacyanochromate (O). J. Inorg. Nucl. Chem. 21, 262–264 (1961).
39. John H. B., J. C. B. Inorganic Syntheses. McGraw-Hill Book Company, Inc. vol. 2 (1946).
40. MJ Frisch, GW Trucks, HB Schlegel, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. P. Gaussian 09, Revision A. 02. Gaussian. Inc., Wallingford CT (2016).
41. Lee, C., Yang, E. & Parr, R. G. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).