1. Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and Nicotinic Acetylcholine Receptor Agonists: Current Scenario in Alzheimer’s Disease Therapy. J. Pharm. Pharmacol., 2018, 70, 985–993.
2. 2021 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. J. Alzheimers Assoc., 2021, 17, 327–406.
3. Alzheimer’s & Dementia Help | INDIA // (accessed May 28, 2021).
4. Cao, J.; Hou, J.; Ping, J.; Cai, D. Advances in Developing Novel Therapeutic Strategies for Alzheimer’s Disease. Mol. Neurodegener., 2018, 13, 64.
5. Shukla, R.; Singh, T.R. High-Throughput Screening of Natural Compounds and Inhibition of a Major Therapeutic Target HsGSK-3β for Alzheimer’s Disease Using Computational Approaches. J. Genet. Eng. Biotechnol., 2021, 19, 61.
6. Shukla, R.; Munjal, N.S.; Singh, T.R. Identification of Novel Small Molecules against GSK3β for Alzheimer’s Disease Using Chemoinformatics Approach. J. Mol. Graph. Model., 2019, 91, 91–104.
7. Shukla, R.; Singh, T.R. Virtual Screening, Pharmacokinetics, Molecular Dynamics and Binding Free Energy Analysis for Small Natural Molecules against Cyclin-Dependent Kinase 5 for Alzheimer’s Disease. J. Biomol. Struct. Dyn., 2020, 38, 248–262.
8. Shukla, R.; Singh, T.R. Identification of Small Molecules against Cyclin Dependent Kinase-5 Using Chemoinformatics Approach for Alzheimer’s Disease and Other Tauopathies. J. Biomol. Struct. Dyn., 2020, 0, 1–13.
9. Weller, J.; Budson, A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000Research, 2018, 7.
10. Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. JAD, 2017, 57, 1041–1048.
11. Newcomer, J.W.; Farber, N.B.; Olney, J.W. NMDA Receptor Function, Memory, and Brain Aging. Dialogues Clin. Neurosci., 2000, 2, 219–232.
12. Blanke, M.L.; VanDongen, A.M.J. Activation Mechanisms of the NMDA Receptor. In Biology of the NMDA Receptor; Van Dongen, A.M., Ed.; Frontiers in Neuroscience; CRC Press/Taylor & Francis: Boca Raton (FL), 2009.
13. Abbott, J.J.; Howlett, D.R.; Francis, P.T.; Williams, R.J. Abeta(1–42) Modulation of Akt Phosphorylation via Alpha7 NAChR and NMDA Receptors. Neurobiol. Aging, 2008, 29, 992–1001.
14. Danysz, W.; Parsons, C.G. Alzheimer’s Disease, β-Amyloid, Glutamate, NMDA Receptors and Memantine–Searching for the Connections. Br. J. Pharmacol., 2012, 167, 324–352.
15. Zhang, Y.; Li, P.; Feng, J.; Wu, M. Dysfunction of NMDA Receptors in Alzheimer’s Disease. Neurol. Sci., 2016, 37, 1039–1047.
16. Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci., 2019, 13.
17. Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and Novel Therapeutic Molecules and Targets in Alzheimer’s Disease. J. Formos. Med. Assoc., 2016, 115, 3–10.
18. Folch, J.; Petrov, D.; Ettcheto, M.; Abad, S.; Sánchez-López, E.; García, M.L.; Olloquequi, J.; Beas-Zarate, C.; Auladell, C.; Camins, A. Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment. Neural Plast., 2016, 2016, 8501693.
19. Jewett, B.E.; Thapa, B. Physiology, NMDA Receptor. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2021.
20. Armstrong, N.; Gouaux, E. Mechanisms for Activation and Antagonism of an AMPA-Sensitive Glutamate Receptor: Crystal Structures of the GluR2 Ligand Binding Core. Neuron, 2000, 28, 165–181.
21. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera–a Visualization System for Exploratory Research and Analysis. J. Comput. Chem., 2004, 25, 1605–1612.
22. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins, 2010, 78, 1950–1958.
23. Sterling, T.; Irwin, J.J. ZINC 15 – Ligand Discovery for Everyone. J. Chem. Inf. Model., 2015, 55, 2324–2337.
24. R, S.; H, S.; T, T. Structural and energetic understanding of novel natural inhibitors of Mycobacterium tuberculosis malate synthase https://pubmed.ncbi.nlm.nih.gov/30206985/ (accessed Jul 21, 2020).
25. Shukla, R.; Shukla, H.; Tripathi, T. Structure-Based Discovery of Phenyl-Diketo Acids Derivatives as Mycobacterium Tuberculosis Malate Synthase Inhibitors. J. Biomol. Struct. Dyn., 2021, 39, 2945–2958.
26. Li, H.; Leung, K.; Wong, M. Idock: A Multithreaded Virtual Screening Tool for Flexible Ligand Docking. In 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB); 2012; pp. 77–84.
27. Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem., 2010, 31, 455–461.
28. Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem., 2015, 58, 4066–4072.
29. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem., 2009, 30, 2785–2791.
30. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX, 2015, 1–2, 19–25.