1 Malatiali, S., Francis, I. & Barac-Nieto, M. Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp Diabetes Res 2008, 305403, doi:10.1155/2008/305403 (2008).
2 Aronov, P. A. et al. Colonic contribution to uremic solutes. J Am Soc Nephrol 22, 1769–1776, doi:10.1681/ASN.2010121220 (2011).
3 Kikuchi, M., Ueno, M., Itoh, Y., Suda, W. & Hattori, M. Uremic Toxin-Producing Gut Microbiota in Rats with Chronic Kidney Disease. Nephron 135, 51–60, doi:10.1159/000450619 (2017).
4 Schepers, E., Glorieux, G. & Vanholder, R. The gut: the forgotten organ in uremia? Blood Purif 29, 130–136, doi:10.1159/000245639 (2010).
5 Wong, J. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39, 230–237, doi:10.1159/000360010 (2014).
6 Mutsaers, H. A., Stribos, E. G., Glorieux, G., Vanholder, R. & Olinga, P. Chronic Kidney Disease and Fibrosis: The Role of Uremic Retention Solutes. Front Med (Lausanne) 2, 60, doi:10.3389/fmed.2015.00060 (2015).
7 Meijers, B. K. & Evenepoel, P. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transplant 26, 759–761, doi:10.1093/ndt/gfq818 (2011).
8 Tan, X. et al. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial Int, doi:10.1111/hdi.12483 (2016).
9 Hung, S. C., Kuo, K. L., Wu, C. C. & Tarng, D. C. Indoxyl Sulfate: A Novel Cardiovascular Risk Factor in Chronic Kidney Disease. J Am Heart Assoc 6, doi:10.1161/JAHA.116.005022 (2017).
10 Vaziri, N. D. et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 83, 308–315, doi:10.1038/ki.2012.345 (2013).
11 Vaziri, N. D. et al. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant 27, 2686–2693, doi:10.1093/ndt/gfr624 (2012).
12 Vaziri, N. D., Yuan, J. & Norris, K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 37, 1–6, doi:10.1159/000345969 (2013).
13 Yoshifuji, A. et al. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant 31, 401–412, doi:10.1093/ndt/gfv353 (2016).
14 Mafra, D. et al. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 11, doi:10.3390/nu11030496 (2019).
15 Koppe, L., Mafra, D. & Fouque, D. Probiotics and chronic kidney disease. Kidney Int 88, 958–966, doi:10.1038/ki.2015.255 (2015).
16 Moraes, C., Borges, N. A. & Mafra, D. Resistant starch for modulation of gut microbiota: Promising adjuvant therapy for chronic kidney disease patients? Eur J Nutr 55, 1813–1821, doi:10.1007/s00394-015-1138-0 (2016).
17 Kurosaki, E. & Ogasawara, H. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther 139, 51–59, doi:10.1016/j.pharmthera.2013.04.003 (2013).
18 Ohgaki, R. et al. Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 inhibitor Canagliflozin with SGLT1 and SGLT2. J Pharmacol Exp Ther 358, 94–102, doi:10.1124/jpet.116.232025 (2016).
19 Lekawanvijit, S. et al. Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate. PLoS One 7, e41281, doi:10.1371/journal.pone.0041281 (2012).
20 Yisireyili, M. et al. Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats. Life Sci 92, 1180–1185, doi:10.1016/j.lfs.2013.05.008 (2013).
21 Dou, L. et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 5, 1302–1308, doi:10.1111/j.1538-7836.2007.02540.x (2007).
22 Adijiang, A., Goto, S., Uramoto, S., Nishijima, F. & Niwa, T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant 23, 1892–1901, doi:10.1093/ndt/gfm861 (2008).
23 Polidori, D. et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care 36, 2154–2161, doi:10.2337/dc12-2391 (2013).
24 Mei, X. et al. Insulin Sensitivity-Enhancing Activity of Phlorizin Is Associated with Lipopolysaccharide Decrease and Gut Microbiota Changes in Obese and Type 2 Diabetes (db/db) Mice. J Agric Food Chem 64, 7502–7511, doi:10.1021/acs.jafc.6b03474 (2016).
25 Jiang, Q., Kainulainen, V., Stamatova, I., Korpela, R. & Meurman, J. H. Lactobacillus rhamnosus GG in Experimental Oral Biofilms Exposed to Different Carbohydrate Sources. Caries Res 52, 220–229, doi:10.1159/000479380 (2018).
26 Stingley, R. L., Liu, H., Mullis, L. B., Elkins, C. A. & Hart, M. E. Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) production and Lactobacillus species growth in a defined medium simulating vaginal secretions. J Microbiol Methods 106, 57–66, doi:10.1016/j.mimet.2014.08.002 (2014).
27 Christensen, E. G., Licht, T. R., Leser, T. D. & Bahl, M. I. Dietary xylo-oligosaccharide stimulates intestinal bifidobacteria and lactobacilli but has limited effect on intestinal integrity in rats. BMC Res Notes 7, 660, doi:10.1186/1756-0500-7-660 (2014).
28 Markowiak, P. & Slizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 9, doi:10.3390/nu9091021 (2017).
29 Azcarate-Peril, M. A. et al. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci U S A 114, E367-E375, doi:10.1073/pnas.1606722113 (2017).
30 Guida, B. et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis 24, 1043–1049, doi:10.1016/j.numecd.2014.04.007 (2014).
31 Nakabayashi, I. et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 26, 1094–1098, doi:10.1093/ndt/gfq624 (2011).
32 Rossi, M. et al. SYNbiotics Easing Renal failure by improving Gut microbiologY (SYNERGY): a protocol of placebo-controlled randomised cross-over trial. BMC Nephrol 15, 106, doi:10.1186/1471-2369-15-106 (2014).
33 Skye, S. M. & Hazen, S. L. Microbial Modulation of a Uremic Toxin. Cell Host Microbe 20, 691–692, doi:10.1016/j.chom.2016.11.005 (2016).
34 Gryp, T., Vanholder, R., Vaneechoutte, M. & Glorieux, G. p-Cresyl Sulfate. Toxins (Basel) 9, doi:10.3390/toxins9020052 (2017).
35 Lees, H. J., Swann, J. R., Wilson, I. D., Nicholson, J. K. & Holmes, E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res 12, 1527–1546, doi:10.1021/pr300900b (2013).
36 Sallee, M. et al. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel) 6, 934–949, doi:10.3390/toxins6030934 (2014).
37 Zhu, W. et al. Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 401, 3249–3261, doi:10.1007/s00216-011-5436-y (2011).
38 Motojima, M., Hosokawa, A., Yamato, H., Muraki, T. & Yoshioka, T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 63, 1671–1680, doi:10.1046/j.1523-1755.2003.00906.x (2003).
39 Owada, S. et al. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am J Nephrol 28, 446–454, doi:10.1159/000112823 (2008).
40 Aldigier, J. C., Kanjanbuch, T., Ma, L. J., Brown, N. J. & Fogo, A. B. Regression of existing glomerulosclerosis by inhibition of aldosterone. J Am Soc Nephrol 16, 3306–3314, doi:10.1681/ASN.2004090804 (2005).
41 Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17, 17–25, doi:10.1681/ASN.2005070757 (2006).
42 Heyman, S. N., Khamaisi, M., Rosen, S. & Rosenberger, C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28, 998–1006, doi:10.1159/000146075 (2008).
43 Ichii, O. et al. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand. PLoS One 9, e108448, doi:10.1371/journal.pone.0108448 (2014).
44 Lin, C. J., Wu, V., Wu, P. C. & Wu, C. J. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLoS One 10, e0132589, doi:10.1371/journal.pone.0132589 (2015).
45 Ramezani, A. et al. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis 67, 483–498, doi:10.1053/j.ajkd.2015.09.027 (2016).
46 Yang, K. et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol Lett 234, 110–119, doi:10.1016/j.toxlet.2015.01.021 (2015).
47 Ali, B. H. et al. Renal and myocardial histopathology and morphometry in rats with adenine - induced chronic renal failure: influence of gum acacia. Cell Physiol Biochem 34, 818–828, doi:10.1159/000363045 (2014).
48 Zhang, Y., Thai, K., Kepecs, D. M. & Gilbert, R. E. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease. PLoS One 11, e0144640, doi:10.1371/journal.pone.0144640 (2016).
49 Mishima, E. et al. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney disease mouse model. Am J Physiol Renal Physiol, ajprenal003142017, doi:10.1152/ajprenal.00314.2017 (2017).
50 Sawada, Y. et al. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochem Biophys Res Commun 493, 40–45, doi:10.1016/j.bbrc.2017.09.081 (2017).
51 Ito, S. et al. Metabolic effects of Tofogliflozin are efficiently enhanced with appropriate dietary carbohydrate ratio and are distinct from carbohydrate restriction. Physiol Rep 6, doi:10.14814/phy2.13642 (2018).
52 Kuriyama, C. et al. Analysis of the effect of canagliflozin on renal glucose reabsorption and progression of hyperglycemia in zucker diabetic Fatty rats. J Pharmacol Exp Ther 351, 423–431, doi:10.1124/jpet.114.217992 (2014).
53 Sugano, N. et al. T-type calcium channel blockade as a therapeutic strategy against renal injury in rats with subtotal nephrectomy. Kidney Int 73, 826–834, doi:10.1038/sj.ki.5002793 (2008).
54 Oguma, T. et al. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents. J Pharmacol Exp Ther 354, 279–289, doi:10.1124/jpet.115.225508 (2015).
55 Kikuchi, K. et al. Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878, 2997–3002, doi:10.1016/j.jchromb.2010.09.006 (2010).
56 Kelly, D. J., Zhang, Y., Gow, R. & Gilbert, R. E. Tranilast attenuates structural and functional aspects of renal injury in the remnant kidney model. J Am Soc Nephrol 15, 2619–2629, doi:10.1097/01.ASN.0000139066.77892.04 (2004).
57 Wu, L. L. et al. Transforming growth factor beta 1 and renal injury following subtotal nephrectomy in the rat: role of the renin-angiotensin system. Kidney Int 51, 1553–1567 (1997).