[1] Del'Haye, P., et al., Optical frequency comb generation from a monolithic microresonator, *Nature***450,** 1214-1217 (2007).

[2] Pasquazi, A., et al., Micro-Combs: A Novel Generation of Optical Sources, *Physics Reports ***729, **1–81 (2018).

[3] Gaeta, A.L., Lipson, M., Kippenberg, T.J., Photonic-chip-based frequency combs, *Nature Photonics***13**, 158-169 (2019).

[4] Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. *Science ***332**, 555–559 (2011).

[5] Hänsch, T.W. Nobel Lecture: Passion for Precision, *Reviews of Modern Physics***78**, 1297 (2006).

[6] Hall, J.L. Nobel Lecture: Defining and measuring optical frequencies, *Reviews of Modern Physics***78**, 1279 (2006).

[7] Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. *Opt. Commun.***91**, 401-407 (1992).

[8] Leo, F. et al., Temporal cavity-solitons in one-dimensional Kerr media as bits in an all-optical buffer, *Nat. Photonics ***4**, 471–476 (2010).

[9] Herr, T. et al., Temporal solitons in optical microresonators. *Nat. Photonics *8, 145–152 (2013).

[10] Xue, X. et al., Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. *Nat. Photonics ***9**, 594–600 (2015).

[11] Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B., Soliton crystals in Kerr resonators. *Nat. Photonics ***11**, 671–676 (2017).

[12] Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J., Microresonator soliton dual-comb spectroscopy. *Science ***354**, 600–603 (2016).

[13] Yu, M. et al., Silicon-chip-based mid-infrared dual-comb spectroscopy. *Nat. Commun. ***9**, 1869 (2018).

[14] Liang, W. et al., High spectral purity Kerr frequency comb radio frequency photonic oscillator. *Nat. Commun. ***6**, 7957 (2015).

[15] Spencer, D. T. et al. An Optical-Frequency Synthesizer Using Integrated Photonics, *Nature ***557**, 81-85 (2018).

[16] Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. *Science ***359**, 887-891 (2018).

[17] Suh, M.-S. & Vahala, K. J. Soliton microcomb range measurement. *Science ***359**, 884-887 (2018).

[18] Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. *Nature ***546**, 622–626 (2017).

[19] Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. *Science ***351**, 1176-1180 (2016).

[20] Brasch, V. et al., Photonic chip–based optical frequency comb using soliton Cherenkov radiation. *Science ***351**, 357–360 (2016).

[21] Del'Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. *Nat. Photonics ***10**, 516-520 (2016).

[22] Marin-Palomo, P. et al., Microresonator-based solitons for massively parallel coherent optical communications, *Nature ***546**, 274–279 (2017).

[23] Pfeifle, J. et al., Optimally Coherent Kerr Combs Generated with Crystalline Whispering Gallery Mode Resonators for Ultrahigh Capacity Fiber Communications, *Phys. Rev. Lett. ***114**, 093902 (2015).

[24] *Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 *(Cisco, September 2017); https://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-networking-index-vni/complete-white-paper-c11-481360.html

[25] Winzer, P.J., Neilson, D.T., & Chraplyvy, A.R., Fiber-optic transmission and networking: the previous 20 and the next 20 years, *Opt. Express*, **26**, 24190 (2018).

[26] Winzer, P.J. & Neilson, D.T., From scaling disparities to integrated parallelism: A decathlon for a decade, *J. Lightwave Technol.*, **35**, 1099–1115 (2017).

[27] Hu, H. et al., Single-source chip-based frequency comb enabling extreme parallel data transmission, *Nat. Photon.*, **12**, 469–473 (2018).

[28] Ataie, V. et al. Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer, *J. Light. Technol. ***33**, 694–699 (2015).

[29] Hillerkuss, D. et al. 26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing, *Nat. Photon. ***5**, 364–371 (2011).

[30] Fülöp, A., et al., V., High-order coherent communications using modelocked dark-pulse Kerr combs from microresonators, *Nat. Commun.*, **9**, 1598 (2018).

[31] Moss, D.J., R Morandotti, Gaeta, A.L, Lipson, M., New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics, *Nat. Photon.*, **7**, (8), 597 (2013).

[32] Lugiato, L. A., Prati, F. & Brambilla, M. Nonlinear Optical Systems, (Cambridge University Press, 2015).

[33] Wang, W., et al.., Robust soliton crystals in a thermally controlled microresonator, *Opt. Lett.*, **43**, 2002 (2018).

[34] Bao, C., et al., Direct soliton generation in microresonators, *Opt. Lett*, **42**, 2519 (2017).

[35] K. Schuh, et al., Single Carrier 1.2 Tbit/s Transmission over 300 km with PM-64 QAM at 100 GBaud, *Proc. Optical Fiber Communications (OFC)*, Th5B.5, San Diego, CA (2017).

[36] Alvarado, A., et al., Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems, *J. Lightwave Technol.***34**, 707 (2016).

[37] Torres-Company, V., et al.., Laser Frequency Combs for Coherent Optical Communications, *J. Lightwave Technol.* doi: 10.1109/JLT.2019.2894170 (2019).

[38] J. Wu, X. Xu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “RF Photonics: An Optical Microcombs’ Perspective,” IEEE Journal of Selected Topics in Quantum Electronics, **24**, no. 4, pp. 1-20. 2018.

[39] X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb-based photonic RF signal processing,” IEEE Photonics Technology Letters, **31**, no. 23, pp. 1854-1857. 2019.

[40] X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source [Invited],” Photonics Research, **6**, no. 5, pp. B30-B36, May 1. 2018.

[41] X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, and A. M. Weiner, “Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control,” Journal of Lightwave Technology, **36**, no. 12, pp. 2312-2321, Jun. 2018.

[42] X. Xu, J. Wu, T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced RF and microwave functions based on an integrated optical frequency comb source,” Optics Express, **26**, no. 3, pp. 2569-2583, Feb 5. 2018.

[43] X. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced Adaptive Photonic RF Filters with 80 Taps based on an integrated optical micro-comb,” Journal of Lightwave Technology, **37**, no. 4, pp. 1288-1295, 2019.

[45] X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics, **2**, no. 9, Sep. 2017.

[46] M.Tan, X. Xu, B. Corcoran, J.Wu, A. Boes, T. G. Nguyen, S.T. Chu, B.E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr microcomb,” J. of Lightwave Technology, **37**, no. 24, p 6097, 2019.

[47] M. Tan, *et al.,* “RF and microwave fractional differentiator based on photonics”, *IEEE Transactions on Circuits and Systems**: Express Briefs*, Vol. 67, Issue: 11, pp.2767-2771 (2020). DOI:10.1109/TCSII.2020.2965158.

[48] X. Xu, J. Wu, M. Tan, T. G. Nguyen, S. Chu, B. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Micro-comb based photonic local oscillator for broadband microwave frequency conversion,” Journal of Lightwave Technology, **38**, no. 2, pp. 332-338. 2020.

[49] X. Xu, et al., “Photonic RF phase-encoded signal generation with a microcomb source”, Journal of Lightwave Technology, vol. 38, no. 7, pp. 1722-1727, 2020. DOI: 10.1109/JLT.2019.2958564

[50] X. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “High performance RF filters via bandwidth scaling with Kerr micro-combs,” APL Photonics, vol. **4**, no. 2, pp. 026102. 2019.

[51] X. Xu, J. Wu, T. G. Nguyen, S. Chu, B. Little, A. Mitchell, R. Morandotti, and D. J. Moss, “Broadband RF Channelizer based on an Integrated Optical Frequency Kerr Comb Source,” Journal of Lightwave Technology, vol. **36**, no. 19, pp. 7, 2018.

[52] X.Xu, J.Wu, T.G. Nguyen, S.T. Chu, B.E. Little, R.Morandotti, A.Mitchell, and D. J. Moss, “Continuously tunable orthogonally polarized optical RF single sideband generator and equalizer based on an integrated microring resonator”, IOP Journal of Optics, vol. **20** no.11, p115701, 2018.

[53] X.Xu, J.Wu, T.G.Nguyen, S.T.Chu, B.E.Little, R.Morandotti, A.Mitchell, and D.J. Moss, “Orthogonally polarized optical RF single sideband generator and equalizer based on an integrated micro-ring resonator”, Journal of Lightwave Technology Vol. **36**, No. 20, 4808-4818 (2018).

[54] Obrzud, E., Lecomte, S. & Herr, T., Temporal solitons in microresonators driven by optical pulses, *Nat. Photon.*, **11**, 600 (2017).

[55] Papp, S.B., et al., Microresonator frequency comb optical clock, *Optica***1**, 10 (2014).

[56] Bao, H., et al., Laser Cavity Soliton Micro-Combs, *Nat. Photon.*, **13**, 384–389 (2019).

[57] Puttnam, B., et al., 2.15 Pb/s Transmission Using a 22 Core Homogeneous Single-Mode Multi-Core Fiber and Wideband Optical Comb, *Proc. European Conference on Optical Communications (ECOC)*, PDP 3.1, Valencia (2015)

[58] Little, B.E. et al., Very high-order microring resonator filters for WDM applications, IEEE Photonics Technology Letters __16__ 2263 (2004).

[59] B. Corcoran, et al., “Ultra-dense optical data transmission over standard fiber with a single chip source”, Nature Communications, vol. 11, Article:2568, 2020. DOI:10.1038/s41467-020-16265-x.

[60] X. Xu, et al., “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, Laser and Photonics Reviews, vol. 14, no. 8, 2000070, 2020. DOI:10.1002/lpor.202000070.

[61] X. Xu, et al., “11 TOPs photonic convolutional accelerator for optical neural networks”, Nature, vol.589 (7840) 44-51 (2021). DOI: 10.1038/s41586-020-03063-0.

[62] X Xu et al., “11 TeraFLOPs per second photonic convolutional accelerator for deep learning optical neural networks”, arXiv preprint arXiv:2011.07393 (2020).

[63] D. Moss, “11 Tera-FLOP/s photonic convolutional accelerator and deep learning optical neural networks”,

Research Square (2021). DOI: https://doi.org/10.21203/rs.3.rs-493347/v1.

[64] D.Moss, “11.0 Tera-FLOP/second photonic convolutional accelerator for deep learning optical neural networks”, TechRxiv. Preprint (2020). https://doi.org/10.36227/techrxiv.13238423.v1.

[65] Moss, David. “11 Tera-flop/s Photonic Convolutional Accelerator for Optical Neural Networks.” OSF Preprints, 23 Feb. (2021). DOI: 10.31219/osf.io/vqt4s.

[66] Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Optical Micro-combs”, Journal of Semiconductors, Vol. 42, No. 4, 041302 (2021). (ISSN 1674-4926). DOI:10.1088/1674-4926/42/4/041302.

[67] H. Bao, L.Olivieri, M.Rowley, S.T. Chu, B.E. Little, R.Morandotti, D.J. Moss, J.S.T. Gongora, M.Peccianti and A. Pasquazi, “Laser Cavity Solitons and Turing Patterns in Microresonator Filtered Lasers: properties and perspectives”, Paper No. LA203-5, Paper No. 11672-5, SPIE LASE, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2576645

[68] Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Advanced microwave signal generation and processing with soliton crystal microcombs”, or “Photonic convolutional accelerator and neural network in the Tera-OPs regime based on Kerr microcombs”, Paper No. 11689-38, PW21O-OE201-67, Integrated Optics: Devices, Materials, and Technologies XXV, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI: 10.1117/12.2584017

[69] Mengxi Tan, Bill Corcoran, Xingyuan Xu, Andrew Boes, Jiayang Wu, Thach Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Optical data transmission at 40 Terabits/s with a Kerr soliton crystal microcomb”, Paper No.11713-8, PW21O-OE803-23, Next-Generation Optical Communication: Components, Sub-Systems, and Systems X, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584014

[70] Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “RF and microwave photonic, fractional differentiation, integration, and Hilbert transforms based on Kerr micro-combs”, Paper No. 11713-16, PW21O-OE803-24, Next-Generation Optical Communication: Components, Sub-Systems, and Systems X, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584018

[71] Mengxi Tan, X. Xu, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Broadband photonic RF channelizer with 90 channels based on a soliton crystal microcomb”, or “Photonic microwave and RF channelizers based on Kerr micro-combs”, Paper No. 11685-22, PW21O-OE106-49, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XIV, SPIE Photonics West, San Francisco CA March 6-11 (2021). DOI:10.1117/12.2584015

[72] X. Xu, M. Tan, J. Wu, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, B. Corcoran, D. Hicks, and D. J. Moss, “Photonic perceptron based on a Kerr microcomb for scalable high speed optical neural networks”, IEEE Topical Meeting on Microwave Photonics (MPW), pp. 220-224, Matsue, Japan, November 24-26, 2020. Electronic ISBN:978-4-88552-331-1. DOI: 10.23919/MWP48676.2020.9314409

[73] Mengxi Tan, Bill Corcoran, Xingyuan Xu, Andrew Boes, Jiayang Wu, Thach Nguyen, S.T. Chu, B. E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Ultra-high bandwidth optical data transmission with a microcomb”, IEEE Topical Meeting on Microwave Photonics (MPW), pp. 78-82. Virtual Conf., Matsue, Japan, November 24-26, 2020. Electronic ISBN:978-4-88552-331-1. DOI: 10.23919/MWP48676.2020.9314476

[74] M. Tan, X. Xu, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “RF and microwave high bandwidth signal processing based on Kerr Micro-combs”, Advances in Physics X, VOL. 6, NO. 1, 1838946 (2020). DOI:10.1080/23746149.2020.1838946.

[75] M Tan, X Xu, J Wu, DJ Moss, “High bandwidth temporal RF photonic signal processing with Kerr micro-combs: integration, fractional differentiation and Hilbert transforms”, arXiv preprint arXiv:2103.03674 (2021).

[76] D. Moss, “Temporal RF photonic signal processing with Kerr micro-combs: Hilbert transforms, integration and fractional differentiation”, OSF Preprints, 18 Feb. (2021). DOI: 10.31219/osf.io/hx9gb.

[77] D. Moss, “RF and microwave photonic high bandwidth signal processing based on Kerr micro-comb sources”, TechRxiv. Preprint (2020). DOI:10.36227/techrxiv.12665609.v3.

[78] D. Moss, “RF and microwave photonic signal processing with Kerr micro-combs”, Research Square (2021). DOI: 10.21203/rs.3.rs-473364/v1.

[79] M.Tan, X. Xu, J. Wu, D.J. Moss, “RF Photonic Signal Processing with Kerr Micro-Combs: Integration, Fractional Differentiation and Hilbert Transforms”, Preprints (2020). 2020090597. doi:10.20944/preprints202009.0597.v1.

[80] Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Micro-combs and Integrated Micro-ring Resonators”, JOSarXiv.202010.0002.

[81] Mengxi Tan, Xingyuan Xu, David Moss “Tunable Broadband RF Photonic Fractional Hilbert Transformer Based on a Soliton Crystal Microcomb”, Preprints, DOI: 10.20944/preprints202104.0162.v1

[82] Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Orthogonally polarized Photonic Radio Frequency single sideband generation with integrated micro-ring resonators”, Journal of Semiconductors vol. 42, No.4, 041305 (2021). DOI: 10.1088/1674-4926/42/4/041305.

[83] Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Photonic Radio Frequency Channelizers based on Kerr Optical Micro-combs”, Journal of Semiconductors 42 (4), 041302 (2021). (ISSN 1674-4926). DOI:10.1088/1674-4926/42/4/041302.

[84] Mengxi Tan, Xingyuan Xu, David Moss “Tunable Broadband RF Photonic Fractional Hilbert Transformer Based on a Soliton Crystal Microcomb”, Preprints, DOI: 10.20944/preprints202104.0162.v1

[85] Mengxi Tan, X. Xu, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and David J. Moss, “Orthogonally polarized Photonic Radio Frequency single sideband generation with integrated micro-ring resonators”, Journal of Semiconductors 42 (4), 041305 (2021). DOI: 10.1088/1674-4926/42/4/041305.

[86] L. Razzari, D. Duchesne, M. Ferrera, et al., “CMOS-compatible integrated optical hyper-parametric oscillator,” Nature Photonics, vol. 4, no. 1, pp. 41-45 (2010).

[87] M. Ferrera, L. Razzari, D. Duchesne, et al., “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photonics, vol. 2, no. 12, pp. 737-740 (2008).

[88] A. Pasquazi, et al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip”, Nature Photonics, vol. 5, no. 10, pp. 618-623 (2011). DOI: 10.1038/nphoton.2011.199.

[89] D. Duchesne, M. Peccianti, M. R. E. Lamont, et al., “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Optics Express, vol. 18, no, 2, pp. 923-930 (2010).

[90] M. Ferrera, et al., “On-chip CMOS-compatible all-optical integrator”, Nature Communications, vol. 1, Article 29 (2010).

[91] H. Bao et al., “Turing patterns in a fibre laser with a nested micro-resonator: robust and controllable micro-comb generation”, Physical Review Research, vol. 2, pp. 023395 (2020).

[92] L. D. Lauro, J. Li, D. J. Moss, R. Morandotti, S. T. Chu, M. Peccianti, and A. Pasquazi, “Parametric control of thermal self-pulsation in micro-cavities,” Opt. Lett. vol. 42, no. 17, pp. 3407-3410, Aug. 2017.

[93] H. Bao et al., “Type-II micro-comb generation in a filter-driven four wave mixing laser,” Photonics Research, vol. 6, no. 5, pp. B67-B73 (2018).

[94] A. Pasquazi, et al., “All-optical wavelength conversion in an integrated ring resonator,” Optics Express, vol. 18, no. 4, pp. 3858-3863 (2010).

[95] A. Pasquazi, Y. Park, J. Azana, et al., “Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide,” Optics Express, vol. 18, no. 8, pp. 7634-7641 (2010).

[96] M. Peccianti, M. Ferrera, L. Razzari, et al., “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Optics Express, vol. 18, no. 8, pp. 7625-7633 (2010).

[97] D. Duchesne, M. Ferrera, L. Razzari, et al., “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Optics Express, vol. 17, no. 3, pp. 1865-1870 (2009).

[98] M. Peccianti, et al., “Demonstration of an ultrafast nonlinear microcavity modelocked laser”, Nature Communications, vol. 3, pp. 765 (2012).

[99] M. Kues, et al., “Passively modelocked laser with an ultra-narrow spectral width”, Nature Photonics, vol. 11, no. 3, pp. 159 (2017). DOI:10.1038/nphoton.2016.271

[100] A. Pasquazi, L. Caspani, M. Peccianti, et al., “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Optics Express, vol. 21, no. 11, pp. 13333-13341 (2013).

[101] A. Pasquazi, M. Peccianti, B. E. Little, et al., “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Optics Express, vol. 20, no. 24, pp. 27355-27362 (2012).

[102] C. Reimer, L. Caspani, M. Clerici, et al., “Integrated frequency comb source of heralded single photons,” Optics Express, vol. 22, no. 6, pp. 6535-6546 (2014).

[103] C. Reimer, et al., “Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip”, Nature Communications, vol. 6, Article 8236 (2015). DOI: 10.1038/ncomms9236

[104] L. Caspani, C. Reimer, M. Kues, et al., “Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs,” Nanophotonics, vol. 5, no. 2, pp. 351-362 (2016).

[105] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science, vol. 351, no. 6278, pp. 1176-1180 (2016).

[106] P. Roztocki, M. Kues, C. Reimer, B. Wetzel, S. Sciara, Y. Zhang, A. Cino, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Practical system for the generation of pulsed quantum frequency combs,” Optics Express, vol. 25, no. 16, pp. 18940-18949 (2017).

[107] Y. Zhang, et al., “Induced photon correlations through superposition of two four-wave mixing processes in integrated cavities”, Laser and Photonics Reviews, vol. 14, no. 7, 2000128 (2020). DOI: 10.1002/lpor.202000128

[108] M. Kues, C. Reimer, A. Weiner, J. Lukens, W. Munro, D. J. Moss, and R. Morandotti, “Quantum Optical Micro-combs”, Nature Photonics, vol. 13, no.3, pp. 170-179 (2019).

[109] C. Reimer, et al.,“High-dimensional one-way quantum processing implemented on d-level cluster states”, Nature Physics, vol. 15, no.2, pp. 148–153 (2019).

[110] T.Ido, H.Sano, D.J.Moss, S.Tanaka, and A.Takai, "Strained InGaAs/InAlAs MQW electroabsorption modulators with large bandwidth and low driving voltage", Photonics Technology Letters, Vol. 6, 1207 (1994). DOI: 10.1109/68.329640.

[111] H. Arianfard et al., “Three waveguide coupled sagnac loop reflectors for advanced spectral engineering,” J. Lightwave Technol., doi: 10.1109/JLT.2021.3066256.

[112] J. Wu et al., “Nested configuration of silicon microring resonator with multiple coupling regimes,” IEEE Photon. Technol. Lett., vol. 25, no. 6, pp. 580-583, Mar. 2013.

[113] J. Wu, T. Moein, X. Xu, and D. J. Moss, “Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires,” APL Photonics, vol. 3, 046102 (2018). DOI:/10.1063/1.5025833Apr. 2018.

[114] J Wu, T Moein, X Xu, DJ Moss, “Silicon photonic filters based on cascaded Sagnac loop resonators”, arXiv preprint arXiv:1805.05405a (2018).

[115] J. Wu, T. Moein, X. Xu, G. H. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics, vol. 2, 056103 (2017).

[116] H. Arianfard, J. Wu, S. Juodkazis, and D. J. Moss, “Advanced Multi-Functional Integrated Photonic Filters Based on Coupled Sagnac Loop Reflectors”, Journal of Lightwave Technology, Vol. 39, No.5, pp.1400-1408 (2021). DOI: 10.1109/JLT.2020.3037559.

[117] David J. Moss, “Optimization of Optical Filters based on Integrated Coupled Sagnac Loop Reflectors”, Research Square (2021). DOI: https://doi.org/10.21203/rs.3.rs-478204/v1

[118] H. Arianfard, J. Wu, S. Juodkazis, D. J. Moss, “Spectral Shaping Based on Integrated Coupled Sagnac Loop Reflectors Formed by a Self-Coupled Wire Waveguide”, submitted, IEEE Photonics Technology Letters, vol. 33 (2021).

[119] J. Wu et al., “Graphene oxide waveguide and micro-ring resonator polarizers,” Laser Photonics Rev., vol. 13, no. 9, pp. 1900056, Aug. 2019.

[120] Y. Zhang et al., “Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films,” J. Lightwave Technol., doi: 10.1109/JLT.2021.3069733.

[121] Y. Qu et al., “Analysis of four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films,” J. Lightwave Technol., vol. 39, no. 9, pp. 2902-2910, May. 2021.

[122] Y. Qu et al., “Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films,” Adv. Opt. Mater., vol. 8, no. 20, pp. 2001048, Oct. 2020.

[123] J. Wu et al., “2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics,” Small, vol. 16, no. 16, pp. 1906563, Mar. 2020.

[124] Moss, David; Wu, Jiayang; xu, xingyuan; Yang, Yunyi; jia, linnan; Zhang, Yuning; et al. (2020): Enhanced optical four-wave-mixing in integrated ring resonators with graphene oxide films. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.11859429.v1.

[125] Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Zhang, Y.; Xu, X.; Chu, S.T.; Little, B.E.; Morandotti, R.; Jia, B.; Moss, D.J. Enhancing Third Order Nonlinear Optics in Integrated Ring Resonators with 2D Material Films. Preprints 2020, 2020030107

[126] Wu, J.; Yang, Y.; Qu, Y.; Jia, L.; Zhang, Y.; Xu, X.; Chu, S.T.; Little, B.E.; Morandotti, R.; Jia, B.; Moss, D.J. Enhancing Third Order Nonlinear Optics in Integrated Ring Resonators with 2D Material Films. Preprints 2020, 2020030107

[127] J Wu et al., “Enhanced four-wave-mixing with 2D layered graphene oxide films integrated with CMOS compatible micro-ring resonators”, arXiv preprint, arXiv:2002.04158 (2020).

[128] Y. Zhang et al., “Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films,” ACS Appl. Mater. Interfaces, vol. 12, no. 29, pp. 33094-33103, Jun. (2020).

[129] Y Zhang et al., “Enhanced nonlinear optical figure-of-merit at 1550nm for silicon nanowires integrated with graphene oxide layered films”, arXiv preprint arXiv:2004.08043 (2020).

[130] D. Moss et al., “Transforming silicon into a high performing integrated nonlinear photonics platform by integration with 2D graphene oxide films”, TechRxiv. Preprint. (2020). https://doi.org/10.36227/techrxiv.12061809.v1.

[131] D. Moss, “Elevating silicon into a high performance nonlinear optical platform through the integration of 2D graphene oxide thin films”, Research Square (2021). DOI: https://doi.org/10.21203/rs.3.rs-511259/v1.

[132] Moss, D.; Wu, J.; Jia, B.; Yang, Y.; Qu, Y.; Jia, L.; Zhang, Y. “Improved Nonlinear Optics in Silicon-on-insulator Nanowires Integrated with 2D Graphene Oxide Films”, Preprints (2020), 2020040033.

[133] Y. Yang et al., “Invited article: enhanced four-wave mixing in waveguides integrated with graphene oxide,” APL Photonics, vol. 3, no. 12, pp. 120803, Oct. 2018.

[134] TD Vo et al., “Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals”, Journal of Lightwave Technology, vol. 29, no. 12, 1790-1796 (2011).