1. C. Cuspidi et al., High Normal Blood Pressure and Left Ventricular Hypertrophy Echocardiographic Findings From the PAMELA Population. Hypertension 73, 612-619 (2019).
2. B. J. Maron et al., Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92, 785-789 (1995).
3. G. G. Schiattarella, J. A. Hill, Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation 131, 1435-1447 (2015).
4. H. Ma et al., Lin28a Regulates Pathological Cardiac Hypertrophic Growth Through Pck2-Mediated Enhancement of Anabolic Synthesis. Circulation 139, 1725-1740 (2019).
5. P. K. Whelton et al., 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, e13-e115 (2018).
6. M. R. Mehra, P. A. Uber, G. S. Francis, Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol 41, 1606-1610 (2003).
7. J. C. Del Álamo et al., High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochim Biophys Acta 1863, 1717-1727 (2016).
8. N. M. Mordwinkin, P. W. Burridge, J. C. Wu, A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6, 22-30 (2013).
9. A. Sharma et al., Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nat Protoc 13, 3018-3041 (2018).
10. J. Li et al., Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol 29, 1843-1850 (2009).
11. P. Nie, F. Meng, J. Zhang, X. Wei, C. Shen, Astragaloside IV Exerts a Myocardial Protective Effect against Cardiac Hypertrophy in Rats, Partially via Activating the Nrf2/HO-1 Signaling Pathway. Oxid Med Cell Longev 2019, 4625912 (2019).
12. B. Li et al., Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes. Stem Cell Res Ther 8, 202 (2017).
13. U. Subramanian et al., Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiol Genomics 48, 477-490 (2016).
14. X. Dong et al., Downregulation of miR-21 is involved in direct actions of ursolic acid on the heart: implications for cardiac fibrosis and hypertrophy. Cardiovasc Ther 33, 161-167 (2015).
15. X. T. Wang et al., Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats. Biomed Pharmacother 97, 1461-1467 (2018).
16. Z. L. Yang et al., [Effect of ursolic acid on cardiomyopathy of mice with diabetes and its mechanism]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 34, 309-312 339 (2018).
17. J. C. Doxey, A. C. Lane, A. G. Roach, N. K. Virdee, Comparison of the alpha-adrenoceptor antagonist profiles of idazoxan (RX 781094), yohimbine, rauwolscine and corynanthine. Naunyn Schmiedebergs Arch Pharmacol 325, 136-144 (1984).
18. G. Goel, H. P. Makkar, G. Francis, K. Becker, Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26, 279-288 (2007).
19. X. L. Zhang, L. Wang, F. Li, K. Yu, M. K. Wang, Cytotoxic phorbol esters of Croton tiglium. J Nat Prod 76, 858-864 (2013).
20. M. Dewenter, A. von der Lieth, H. A. Katus, J. Backs, Calcium Signaling and Transcriptional Regulation in Cardiomyocytes. Circ Res 121, 1000-1020 (2017).
21. D. M. Bers, Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70, 23-49 (2008).
22. B. J. Wilkins, J. D. Molkentin, Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322, 1178-1191 (2004).
23. N. Vignier et al., Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res 105, 239-248 (2009).
24. C. N. Toepfer et al., Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci Transl Med 11, (2019).
25. P. Velusamy et al., Targeting the Nrf2/ARE Signalling Pathway to Mitigate Isoproterenol-Induced Cardiac Hypertrophy: Plausible Role of Hesperetin in Redox Homeostasis. Oxid Med Cell Longev 2020, 9568278 (2020).
26. S. Inouye et al., NRF2 and HSF1 coordinately regulate heme oxygenase-1 expression. Biochem Biophys Res Commun 506, 7-11 (2018).
27. R. Akagi, T. Kubo, Y. Hatori, T. Miyamoto, S. Inouye, Heme oxygenase-1 induction by heat shock in rat hepatoma cell line is regulated by the coordinated function of HSF1, NRF2 and BACH1. J Biochem 170, 501-510 (2021).
28. S. C. Lo, M. Hannink, PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J Biol Chem 281, 37893-37903 (2006).
29. K. L. Thu et al., Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex components is a key mechanism of NF-kappaB pathway activation in lung cancer. J Thorac Oncol 6, 1521-1529 (2011).
30. D. D. Zhang et al., Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem 280, 30091-30099 (2005).
31. S. B. Cullinan, J. D. Gordan, J. Jin, J. W. Harper, J. A. Diehl, The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24, 8477-8486 (2004).
32. K. Itoh et al., Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8, 379-391 (2003).
33. C. A. Silva-Islas, P. D. Maldonado, Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 134, 92-99 (2018).
34. K. Taguchi, H. Motohashi, M. Yamamoto, Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16, 123-140 (2011).
35. A. T. Dinkova-Kostova, R. V. Kostov, P. Canning, Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys 617, 84-93 (2017).
36. F. Hong, K. R. Sekhar, M. L. Freeman, D. C. Liebler, Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem 280, 31768-31775 (2005).
37. X. He, Q. Ma, Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2. J Pharmacol Exp Ther 332, 66-75 (2010).
38. T. Ohnuma et al., Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Toxicol Appl Pharmacol 244, 27-36 (2010).
39. K. R. Sekhar, G. Rachakonda, M. L. Freeman, Cysteine-based regulation of the CUL3 adaptor protein Keap1. Toxicol Appl Pharmacol 244, 21-26 (2010).
40. X. Wei, H. Yin, Covalent modification of DNA by α, β-unsaturated aldehydes derived from lipid peroxidation: Recent progress and challenges. Free Radic Res 49, 905-917 (2015).
41. I. Almazari et al., Guggulsterone induces heme oxygenase-1 expression through activation of Nrf2 in human mammary epithelial cells: PTEN as a putative target. Carcinogenesis 33, 368-376 (2012).
42. H. H. Lee et al., Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling. Arch Biochem Biophys 501, 142-150 (2010).
43. J. Xu et al., Propofol ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction via heme oxygenase-1/signal transducer and activator of transcription 3 signaling pathway in rats. Crit Care Med 42, e583-594 (2014).
44. C. M. Hu, Y. H. Chen, M. T. Chiang, L. Y. Chau, Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation 110, 309-316 (2004).
45. G. Wang et al., Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 121, 1912-1925 (2010).
46. Y. Wang et al., Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB. Am J Physiol Heart Circ Physiol 304, H567-578 (2013).
47. G. Floresta et al., Development of new HO-1 inhibitors by a thorough scaffold-hopping analysis. Bioorg Chem 81, 334-339 (2018).
48. D. Levy, R. J. Garrison, D. D. Savage, W. B. Kannel, W. P. Castelli, Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322, 1561-1566 (1990).
49. B. J. Maron et al., Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. Jama 281, 650-655 (1999).
50. E. M. Green et al., A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351, 617-621 (2016).
51. R. Spoladore, M. S. Maron, R. D'Amato, P. G. Camici, I. Olivotto, Pharmacological treatment options for hypertrophic cardiomyopathy: high time for evidence. Eur Heart J 33, 1724-1733 (2012).
52. P. Horvath et al., Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov 15, 751-769 (2016).
53. M. A. Cayo et al., A Drug Screen using Human iPSC-Derived Hepatocyte-like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia. Cell Stem Cell 20, 478-489.e475 (2017).
54. C. McDermott-Roe et al., Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes. JCI Insight 4, (2019).
55. L. Han et al., Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res 104, 258-269 (2014).
56. A. Khudiakov et al., Generation of iPSC line from patient with arrhythmogenic right ventricular cardiomyopathy carrying mutations in PKP2 gene. Stem Cell Res 24, 85-88 (2017).
57. J. Y. Wen et al., Maturation-Based Model of Arrhythmogenic Right Ventricular Dysplasia Using Patient-Specific Induced Pluripotent Stem Cells. Circ J 79, 1402-1408 (2015).
58. A. Sharma et al., High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 9, (2017).
59. M. Csöbönyeiová, Š. Polák, L. Danišovič, Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharmacol 94, 687-694 (2016).
60. T. Kondo et al., iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer's Disease. Cell Rep 21, 2304-2312 (2017).
61. M. A. Haque, I. Jantan, L. Arshad, S. N. A. Bukhari, Exploring the immunomodulatory and anticancer properties of zerumbone. Food Funct 8, 3410-3431 (2017).
62. A. Murakami et al., Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite. Carcinogenesis 23, 795-802 (2002).
63. W. S. Leung et al., Protective effect of zerumbone reduces lipopolysaccharide-induced acute lung injury via antioxidative enzymes and Nrf2/HO-1 pathway. Int Immunopharmacol 46, 194-200 (2017).
64. H. S. Rahman et al., Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. Biomed Res Int 2014, 920742 (2014).
65. J. W. Shin et al., Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev Res (Phila) 4, 860-870 (2011).
66. N. A. Zulazmi et al., Zerumbone Alleviates Neuropathic Pain through the Involvement of l-Arginine-Nitric Oxide-cGMP-K⁺ ATP Channel Pathways in Chronic Constriction Injury in Mice Model. Molecules 22, (2017).
67. T. F. Tzeng, S. S. Liou, Y. C. Tzeng, I. M. Liu, Zerumbone, a Phytochemical of Subtropical Ginger, Protects against Hyperglycemia-Induced Retinal Damage in Experimental Diabetic Rats. Nutrients 8, (2016).
68. K. Ohnishi, K. Irie, A. Murakami, In vitro covalent binding proteins of zerumbone, a chemopreventive food factor. Biosci Biotechnol Biochem 73, 1905-1907 (2009).
69. G. Li Volti, P. Murabito, Pharmacologic induction of heme oxygenase-1: it is time to take it seriously*. Crit Care Med 42, 1967-1968 (2014).
70. G. J. Zhao et al., Contributions of Nrf2 to Puerarin Prevention of Cardiac Hypertrophy and its Metabolic Enzymes Expression in Rats. J Pharmacol Exp Ther 366, 458-469 (2018).
71. C. Park et al., Protective Effect of Phloroglucinol on Oxidative Stress-Induced DNA Damage and Apoptosis through Activation of the Nrf2/HO-1 Signaling Pathway in HaCaT Human Keratinocytes. Mar Drugs 17, (2019).
72. M. Zhao et al., 5-aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway. Am J Physiol Cell Physiol 308, C665-672 (2015).
73. J. Tongers et al., Heme oxygenase-1 inhibition of MAP kinases, calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes. Cardiovasc Res 63, 545-552 (2004).
74. Z. Wang, S. O. Ka, Y. Lee, B. H. Park, E. J. Bae, Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice. Eur J Pharmacol 799, 201-210 (2017).
75. K. R. Brunt et al., Heme oxygenase-1 inhibits pro-oxidant induced hypertrophy in HL-1 cardiomyocytes. Exp Biol Med (Maywood) 234, 582-594 (2009).
76. A. Zhang, M. Wang, P. Zhuo, Unc-51 like autophagy activating kinase 1 accelerates angiotensin II-induced cardiac hypertrophy through promoting oxidative stress regulated by Nrf-2/HO-1 pathway. Biochem Biophys Res Commun 509, 32-39 (2019).
77. J. Huang et al., Harmine is an effective therapeutic small molecule for the treatment of cardiac hypertrophy. Acta Pharmacol Sin, (2021).
78. X. Lian et al., Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A109, E1848-1857 (2012).