[1] Wardlaw JM, Smith C, Dichgans M.Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol,2013;12(5):483-497.
[2] Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016.Lancet (London, England).2017;390(10100):1084-1150.
[3] Schmidt R, Seiler S, Loitfelder M. Longitudinal change of small-vessel disease-related brain abnormalities. J Cereb Blood Flow Metab.2016;36(1):26-39.
[4] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol.2010;9(7):689-701.
[5] Wong T, Klein R, Sharrett A, et al. Cerebral white matter lesions, retinopathy, and incident clinical stroke.JAMA.2002;288(1):67-74.
[6] Bokura H, Kobayashi S, Yamaguchi S, et al. Silent brain infarction and subcortical white matter lesions increase the risk of stroke and mortality: a prospective cohort study. J Stroke Cerebrovasc Dis.2006;15(2):57-63.
[7] Chen X, Jin Y, Chen J, et al. Relationship between White Matter Hyperintensities and Hematoma Volume in Patients with Intracerebral Hematoma. Aging Dis.2018;9(6):999-1009.
[8] Chen X, Chen X, Chen Y, et al. The Impact of Intracerebral Hemorrhage on the Progression of White Matter Hyperintensity. Front Hum Neurosci.2018;12:471.
[9] Buyck J, Dufouil C, Mazoyer B, et al. Cerebral white matter lesions are associated with the risk of stroke but not with other vascular events: the 3-City Dijon Study.Stroke.2009;40(7):2327-2331.
[10] Debette S, Beiser A, DeCarli C, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study.Stroke.2010;41(4):600-606.
[11] Folsom A, Yatsuya H, Mosley T, et al. Risk of intraparenchymal hemorrhage with magnetic resonance imaging-defined leukoaraiosis and brain infarcts. Ann Neurol.2012;71(4):552-559.
[12] Wardlaw J, Smith E, Biessels G, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol.2013;12(8):822-838.
[13] Huijts M, Duits A, van Oostenbrugge R, et al. Accumulation of MRI Markers of Cerebral Small Vessel Disease is Associated with Decreased Cognitive Function. A Study in First-Ever Lacunar Stroke and Hypertensive Patient. Front Aging Neurosci.2013;5:72.
[14] Staals J, Makin S, Doubal F, et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden.Neurology.2014;83(14):1228-1234.
[15] Klarenbeek P, van Oostenbrugge R, Rouhl R, et al. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease.Stroke.2013;44(11):2995-2999.
[16] Molad J, Kliper E, Korczyn A, et al. Only White Matter Hyperintensities Predicts Post-Stroke Cognitive Performances Among Cerebral Small Vessel Disease Markers: Results from the TABASCO Study. J Alzheimers Dis.2017;56(4):1293-1299.
[17] Huang L, Yao S.Carotid artery color Doppler ultrasonography and plasma levels of lipoprotein-associated phospholipase A2 and cystatin C in arteriosclerotic cerebral infarction. J Int Med Res.2019;47(9):4389-4396.
[18] Fazekas F, Chawluk J, Alavi A, et al.MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging.AJR Am J Roentgenol.1987;149(2):351-356.
[19] Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities.Neurology.1993;43(9):1683-1689.
[20] Greenberg S, Vernooij M, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol.2009;8(2):165-174.
[21] Zerna C, Yu A, Modi J, et al. Association of White Matter Hyperintensities With Short-Term Outcomes in Patients With Minor Cerebrovascular Events.Stroke.2018;49(4):919-923.
[22] Coutts S, Modi J, Patel S, et al. CT/CT angiography and MRI findings predict recurrent stroke after transient ischemic attack and minor stroke: results of the prospective CATCH study.Stroke.2012;43(4):1013-1017.
[23] Henninger N, Lin E, Haussen D, et al. Leukoaraiosis and sex predict the hyperacute ischemic core volume.Stroke.2013;44(1):61-67.
[24] Giralt-Steinhauer E, Medrano S, Soriano-Tárraga C, et al. Brainstem leukoaraiosis independently predicts poor outcome after ischemic stroke.Eur J Neurol.2018;25(8):1086-1092.
[25] Etherton M, Wu O, Rost N. Recent Advances in Leukoaraiosis: White Matter Structural Integrity and Functional Outcomes after Acute Ischemic Stroke. Curr Cardiol Rep.2016;18(12):123.
[26] Grefkes C, Fink G. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol.2014;13(2):206-216.
[27] Kliper E, Ben Assayag E, Tarrasch R, et al. Cognitive state following stroke: the predominant role of preexisting white matter lesions. PloS ONE.2014;9(8):e105461.
[28] Auriel E, Westover M, Bianchi M, et al. Estimating Total Cerebral Microinfarct Burden From Diffusion-Weighted Imaging.Stroke.2015;46(8):2129-2135.
[29] Nitkunan A, Lanfranconi S, Charlton R, et al. Brain atrophy and cerebral small vessel disease: a prospective follow-up study.Stroke.2011;42(1):133-138.