[1] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track. Nat Nanotechnol 8, 152 (2013).
[2] N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899 (2013).
[3] I. Dzyaloshinsky, A Thermodynamic Theory of Weak Ferromagnetism of Antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958).
[4] T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 120, 91 (1960).
[5] M. Uchida, Y. Onose, Y. Matsui, and Y. Tokura, Real-space observation of helical spin order. Science 311, 359 (2006).
[6] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blugel, and R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190 (2007).
[7] W. Jiang, G. Chen, K. Liu, J. Zang, S. G. E. te Velthuis, and A. Hoffmann, Skyrmions in magnetic multilayers. Phys. Rep. 704, 1 (2017).
[8] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Current-induced skyrmion dynamics in constricted geometries. Nat Nanotechnol 8, 742 (2013).
[9] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat Nanotechnol 8, 839 (2013).
[10] X. C. Zhang, M. Ezawa, and Y. Zhou, Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).
[11] K. M. Song, J.-S. Jeong, B. Pan, X. Zhang, J. Xia, S. Cha, T.-E. Park, K. Kim, S. Finizio, J. Raabe, J. Chang, Y. Zhou, W. Zhao, W. Kang, H. Ju, and S. Woo, Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148 (2020).
[12] S. Parkin and S.-H. Yang, Memory on the racetrack. Nat. Nano. 10, 195 (2015).
[13] E. C. Burks, D. A. Gilbert, P. D. Murray, C. Flores, T. E. Felter, S. Charnvanichborikarn, S. O. Kucheyev, J. D. Colvin, G. Yin, and K. Liu, 3D Nanomagnetism in Low Density Interconnected Nanowire Networks. Nano Lett. 21, 716−722 (2021).
[14] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions. Science 341, 636 (2013).
[15] W. J. Jiang, P. Upadhyaya, W. Zhang, G. Q. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Blowing magnetic skyrmion bubbles. Science 349, 283 (2015).
[16] D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, Realization of Ground State Artificial Skyrmion Lattices at Room Temperature. Nat. Commun. 6, 8462 (2015).
[17] S. Woo, K. Litzius, B. Kruger, M. Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M. A. Mawass, P. Fischer, M. Klaui, and G. S. Beach, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501 (2016).
[18] F. Buttner, I. Lemesh, M. Schneider, B. Pfau, C. M. Gunther, P. Hessing, J. Geilhufe, L. Caretta, D. Engel, B. Kruger, J. Viefhaus, S. Eisebitt, and G. S. D. Beach, Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. Nat. Nanotechnol. 12, 1040 (2017).
[19] P. J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von Bergmann, and R. Wiesendanger, Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol. 12, 123 (2017).
[20] C. Ma, X. C. Zhang, J. Xia, M. Ezawa, W. J. Jiang, T. Ono, S. N. Piramanayagam, A. Morisako, Y. Zhou, and X. X. Liu, Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. Nano Lett. 19, 353 (2019).
[21] D. Bhattacharya, S. A. Razavi, H. Wu, B. Dai, K. L. Wang, and J. Atulasimha, Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy. Nat. Electron. 3, 539 (2020).
[22] G. Berruto, I. Madan, Y. Murooka, G. M. Vanacore, E. Pomarico, J. Rajeswari, R. Lamb, P. Huang, A. J. Kruchkov, Y. Togawa, T. LaGrange, D. McGrouther, H. M. Ronnow, and F. Carbone, Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscope. Phys. Rev. Lett. 120 (2018).
[23] Z. D. Wang, M. H. Guo, H. A. Zhou, L. Zhao, T. Xu, R. Tomasello, H. Bai, Y. Q. Dong, S. G. Je, W. L. Chao, H. S. Han, S. Lee, K. S. Lee, Y. Y. Yao, W. Han, C. Song, H. Q. Wu, M. Carpentieri, G. Finocchio, M. Y. Im, S. Z. Lin, and W. J. Jiang, Thermal generation, manipulation and thermoelectric detection of skyrmions. Nat. Electron. 3, 672 (2020).
[24] G. J. Mankey, M. T. Kief, F. Huang, and R. F. Willis, Hydrogen Chemisorption on Ferromagnetic Thin-Film Surfaces. J. Vac. Sci. Technol. 11, 2034 (1993).
[25] B. Hjorvarsson, J. A. Dura, P. Isberg, T. Watanabe, T. J. Udovic, G. Andersson, and C. F. Majkrzak, Reversible tuning of the magnetic exchange coupling in Fe/V (001) superlattices using hydrogen. Phys. Rev. Lett. 79, 901 (1997).
[26] D. Sander, W. Pan, S. Ouazi, J. Kirschner, W. Meyer, M. Krause, S. Muller, L. Hammer, and K. Heinz, Reversible H-induced switching of the magnetic easy axis in Ni/Cu(001) thin films. Phys. Rev. Lett. 93, 247203 (2004).
[27] P. J. Hsu, L. Rozsa, A. Finco, L. Schmidt, K. Palotas, E. Vedmedenko, L. Udvardi, L. Szunyogh, A. Kubetzka, K. von Bergmann, and R. Wiesendanger, Inducing skyrmions in ultrathin Fe films by hydrogen exposure. Nat. Commun. 9, 1571 (2018).
[28] K. Christmann, Interaction of Hydrogen with Solid-Surfaces. Surf Sci Rep 9, 1 (1988).
[29] G. Chen, A. Mascaraque, H. Jia, B. Zimmermann, M. Robertson, R. L. Conte, M. Hoffmann, M. A. González Barrio, H. Ding, R. Wiesendanger, E. G. Michel, S. Blügel, A. K. Schmid, and K. Liu, Large Dzyaloshinskii-Moriya interaction induced by chemisorbed oxygen on a ferromagnet surface. Sci. Adv. 6, eaba4924 (2020).
[30] G. Chen, M. Robertson, M. Hoffmann, C. Ophus, A. L. F. Cauduro, R. Lo Conte, H. F. Ding, R. Wiesendanger, S. Blügel, A. K. Schmid, and K. Liu, Observation of hydrogen-induced Dzyaloshinskii-Moriya interaction and reversible switching of magnetic chirality. Phys. Rev. X 11, 021015 (2021).
[31] B. Santos, S. Gallego, A. Mascaraque, K. F. McCarty, A. Quesada, A. T. N’Diaye, A. K. Schmid, and J. de la Figuera, Hydrogen-induced reversible spin-reorientation transition and magnetic stripe domain phase in bilayer Co on Ru(0001). Phys. Rev. B 85, 134409 (2012).
[32] U. Bauer, L. Yao, A. J. Tan, P. Agrawal, S. Emori, H. L. Tuller, S. van Dijken, and G. S. D. Beach, Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174 (2015).
[33] D. A. Gilbert, J. Olamit, R. K. Dumas, B. J. Kirby, A. J. Grutter, B. B. Maranville, E. Arenholz, J. A. Borchers, and K. Liu, Controllable Positive Exchange Bias via Redox-Driven Oxygen Migration. Nat. Commun. 7, 11050 (2016).
[34] D. A. Gilbert, A. J. Grutter, E. Arenholz, K. Liu, B. J. Kirby, J. A. Borchers, and B. B. Maranville, Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nat. Commun. 7, 12264 (2016).
[35] A. J. Tan, M. Huang, C. O. Avci, F. Büttner, M. Mann, W. Hu, C. Mazzoli, S. Wilkins, H. L. Tuller, and G. S. D. Beach, Magneto-ionic control of magnetism using a solid-state proton pump. Nat. Mater. 18, 35 (2019).
[36] J. de Rojas, A. Quintana, A. Lopeandia, J. Salguero, B. Muniz, F. Ibrahim, M. Chshiev, A. Nicolenco, M. O. Liedke, M. Butterling, A. Wagner, V. Sireus, L. Abad, C. J. Jensen, K. Liu, J. Nogues, J. L. Costa-Kramer, E. Menendez, and J. Sort, Voltage-driven motion of nitrogen ions: a new paradigm for magneto-ionics. Nature Communications 11, 5871 (2020).
[37] Y. Z. Wu, C. Won, A. Scholl, A. Doran, H. W. Zhao, X. F. Jin, and Z. Q. Qiu, Magnetic stripe domains in coupled magnetic sandwiches. Phys. Rev. Lett. 93, 117205 (2004).
[38] C. Won, Y. Z. Wu, J. Choi, W. Kim, A. Scholl, A. Doran, T. Owens, J. Wu, X. F. Jin, H. W. Zhao, and Z. Q. Qiu, Magnetic stripe melting at the spin reorientation transition inFe/Ni/Cu(001). Phys. Rev. B 71 (2005).
[39] I. Chorkendorff, J. N. Russell, and J. T. Yates, Hydrogen Implantation in Ni(111) - a Study of H-2 Desorption Dynamics from the Bulk. Surf. Sci. 182, 375 (1987).
[40] B. Bhatia and D. S. Sholl, Chemisorption and diffusion of hydrogen on surface and subsurface sites of flat and stepped nickel surfaces. J. Chem. Phys. 122, 204707 (2005).
[41] J. Greeley and M. Mavrikakis, Surface and subsurface hydrogen: Adsorption properties on transition metals and near-surface alloys. J. Phys. Chem. B 109, 3460 (2005).
[42] K. Christmann, R. J. Behm, G. Ertl, M. A. Van Hove, and W. H. Weinberg, Chemisorption geometry of hydrogen on Ni(111): Order and disorder. J. Chem. Phys. 70, 4168 (1979).
[43] J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909 (2006).
[44] G. Chen, A. Mascaraque, A. T. N'Diaye, and A. K. Schmid, Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106 (2015).
[45] G. Chen, J. Zhu, A. Quesada, J. Li, A. T. N'Diaye, Y. Huo, T. P. Ma, Y. Chen, H. Y. Kwon, C. Won, Z. Q. Qiu, A. K. Schmid, and Y. Z. Wu, Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys. Rev. Lett. 110, 177204 (2013).
[46] G. Chen, T. Ma, A. T. N'Diaye, H. Kwon, C. Won, Y. Wu, and A. K. Schmid, Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013).
[47] J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B. Kortright, and K. Liu, Magnetization reversal of Co/Pt multilayers: Microscopic origin of high-field magnetic irreversibility. Phys. Rev. B 70, 224434 (2004).
[48] C. Moreau-Luchaire, S. C. Mouta, N. Reyren, J. Sampaio, C. A. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhuter, J. M. George, M. Weigand, J. Raabe, V. Cros, and A. Fert, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444 (2016).
[49] K. O. Ng and D. Vanderbilt, Stability of Periodic Domain-Structures in a 2-Dimensional Dipolar Model. Phys. Rev. B 52, 2177 (1995).
[50] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011).