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Abstract
Senescent cells secrete cytokines, chemokines and growth factors collectively known as the senescence-
associated secretory phenotype (SASP) which can  reinforce senescence and activate the immune
response. However, it can also negatively impact neighbouring tissues facilitating tumor progression. We
have previously shown that in proliferating cells the nuclear long non-coding RNA
(lncRNA) MIR31HG inhibits p16/CDKN2A expression through interaction with polycomb repressor
complexes (PRC1/2) and that during BRAF-induced senescence MIR31HG is overexpressed and
translocates to the cytoplasm. Here, we show that MIR31HG regulates the expression of a subset of
SASP components during BRAF-induced senescence. The SASP secreted from senescent cells depleted
for MIR31HG fails to induce paracrine invasion without affecting the growth inhibitory effect.
Mechanistically, MIR31HG interacts with YBX1 facilitating its phosphorylation at serine 102 (p-YBX1S102)
by the kinase RSK.  p-YBX1S102 induces IL1A translation which acts as upstream regulator inducing the
transcription of the other SASP mRNAs. Our results suggest a dual role for MIR31HG in senescence
depending on its cellular localization and points to the lncRNA as a potential therapeutic target in the
treatment of senescence-related pathologies. 

Introduction
Cellular senescence is an irreversible state of growth arrest that can be driven by several stimuli including
telomere shortening due to extensive replication, DNA damage, oxidative stress or oncogene
overexpression (Hayflick, 1965, Kuilman, Michaloglou et al., 2010). In addition, it has been recently shown
that senescence can play a role in differentiation and tissue regeneration (Munoz-Espin, Canamero et al.,
2013, Storer, Mas et al., 2013). Oncogene-induced senescence (OIS) was firstly reported by Serrano et al.
when they observed that expressing an oncogenic form of Ras in primary fibroblast induced senescence
(Serrano, Lin et al., 1997). Later work demonstrated that other oncogenes such as mutated BRAF
promoted OIS both in vivo and in vitro (Braig, Lee et al., 2005, Michaloglou, Vredeveld et al., 2005). OIS
has been considered as a barrier to prevent tumour progression and additional mutations in tumour
suppressor genes are required in order to bypass senescence to promote malignancy (Braig et al., 2005,
Chen, Trotman et al., 2005, Daniotti, Oggionni et al., 2004). Senescent cells show a characteristic
morphology and biochemical features such as halted proliferation, enlarged size, activation of the
senescence-associated b-galactosidase, expression of cell cycle inhibitors and the presence senescence-
associated heterochromatin foci (SAHF). Importantly, in several types of senescence, the cells secrete
factors such as interleukins, cytokines and metalloproteases, which are part of the senescence-
associated secretory phenotype (SASP) that can impact the cellular environment and homeostasis of the
neighbouring tissues (Acosta, Banito et al., 2013, Coppe, Patil et al., 2008, Kuilman, Michaloglou et al.,
2008).  The downstream effects of the SASP can be beneficial or detrimental depending on the tissue
context (Coppe, Desprez et al., 2010, Salama, Sadaie et al., 2014). It has been shown to prevent cancer
progression by reinforcing autocrine senescence, inducing paracrine senescence in neighbouring cells
(Acosta et al., 2013, Kuilman et al., 2008), and by inducing tissue repair and regeneration (Demaria,
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Ohtani et al., 2014, Munoz-Espin et al., 2013, Storer et al., 2013). The SASP can also activate the immune
system facilitating the clearance of damaged cells (Iannello, Thompson et al., 2013, Xue, Zender et al.,
2007). On the other hand, the SASP can promote tumorigenic processes such as angiogenesis and
invasion (Coppe et al., 2008, Krtolica, Parrinello et al., 2001). During aging, excessive SASP secretion can
induce chronic inflammation that can lead to aged-related pathologies (Baker, Wijshake et al., 2011,
Jeyapalan, Ferreira et al., 2007). The composition of the SASP is very variable depending on different
aspects such as the senescence stimuli and the cell type (Casella, Munk et al., 2019, Hernandez-Segura,
de Jong et al., 2017). Defining the composition of the secretome and identifying new regulators in each
biological context is crucial to identify molecular signatures of such a complex phenotype.

Previously, the lncRNA TERRA has been shown to be a component of inflammatory exosomes and to
modulate transcription of inflammatory cytokines in recipient cells (Wang, Deng et al., 2015) and other
lncRNAs have been reported to regulate NF-kB activation and its downstream target genes (Jin, Jia et al.,
2016, Ozes, Miller et al., 2016, Rapicavoli, Qu et al., 2013). These findings raise the hypothesis that
lncRNAs could act as key players in the SASP induction during senescence. A few lncRNAs have been
directly linked to senescence (Li, van Breugel et al., 2018, Montes & Lund, 2016, Montes, Nielsen et al.,
2015). We have previously identified the lncRNA MIR31HG to be upregulated in BRAF mediated OIS
(Montes et al., 2015). In proliferating cells nuclear MIR31HG represses p16/CDKN2A expression by
recruiting Polycomb group complexes. Indeed, we have shown that in melanoma patients harbouring
BRAF mutations, MIR31HG negatively correlates with p16/CDKN2A expression (Montes et al., 2015).
Upon BRAF induction MIR31HG is upregulated and translocates to the cytoplasm where we now show
that it regulates the expression of a part of the SASP repertoire. MIR31HG knockdown in BRAF-induced
senescent fibroblasts reduces expression and secretion of several components of the SASP. Interestingly,
conditioned medium (CM) from MIR31HG-depleted senescent cells promotes paracrine senescence but
fails to induce cancer cell invasion. Mechanistically, we show that MIR31HG promotes the interaction
between YBX1 and the RSK kinase resulting in YBX1 phosphorylation and subsequent induction of IL1A
translation. Our results unveil the role of lncRNAs in the regulation of the SASP highlighting the dual role
in senescence of MIR31HG by suppressing CDKN2A expression in young cells and facilitating production
of a distinct subset of SASP factors in senescent cells.

 

Results
MIR31HG knock-down decreases the induction of SASP components during senescence

To assess the role of MIR31HG during OIS we used immortalised human fibroblasts BJ-hTERT,
expressing a constitutively active form of the mouse B-RAF (V600E) that is fused to the oestrogen
receptor (BJ ER:BRAF). Addition of 1mM of 4-hydroxitamoxifen (4-OHT) activates BRAF inducing OIS
(Pritchard, Samuels et al., 1995). We first confirmed that MIR31HG was overexpressed in BJ ER:BRAF
upon 4-OHT induction (Figure 1A), as we previously reported for TIG3 ER:BRAF cells (Montes et al., 2015).
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In validation of the model, analysis of TGCA data from thyroid and colorectal cancer tumor samples,
where BRAF is frequently mutated, demonstrated a higher MIR31HG expression in tumors harbouring
BRAF mutations (Figure 1B). We performed RNA sequencing in control cells and BRAF-induced senescent
cells transfected with control siRNA or siRNA targeting MIR31HG. As expected, many genes were
differentially expressed comparing control versus senescent cells (Figure 1C and Supplementary Table 1A
and 1B).  Moreover, the transcriptional profile of MIR31HG knock-down senescent cells resembled the
senescent profile with several clusters of differentially expressed genes (Figure 1C and Supplementary
Table 1A and 1B). Among the GO categories significantly represented among the genes specifically
downregulated in the MIR31HG knock-down conditions we found cytokine and chemokine-related
pathways (Supplementary Fig. 1A). Furthermore, we observed that senescent MIR31HG-depleted cells
failed to upregulate part of the main SASP components previously defined (Coppe et al., 2010) (Figure 1D
and Supplementary Table 1C and 1D). We validated transcriptomics data by RT-qPCR and confirmed that
several interleukins and chemokines such as IL6 and CXCL1 were nearly absent at the RNA level, whereas
other factors such as ICAM1 or IL1A were not affected (Figure 1E). To validate our results in another
cellular system, we performed RT-qPCR analysis in TIG3 ER:BRAF cell line. Depletion of MIR31HG during
BRAF induced senescence decreases the levels of the SASP RNAs (Supplementary Fig.1B).  In order to
analyse the composition of the SASP at the protein level, we knocked down MIR31HG in BJ ER:BRAF cells
and induced senescence by 72-hour 4-OHT treatment in serum-free medium followed by mass
spectrometry analysis of secreted proteins. Untreated cells transfected with control siRNA were used as
control. As expected, control senescent cells, when compared to control proliferating cells, showed
differential secretion of factors (Supplementary Fig.1C and Supplementary Table 2A and 2B). The
secretome of senescent MIR31HG knock-down cells resembled that of control senescent cells with
discrete differences (Figure 1F and Supplementary Fig. 1C and Supplementary Table 2A and 2B). Among
the less secreted proteins upon MIR31HG depletion were inflammatory SASP factors IL6 and CXCL1
(Figure 1F, and Supplementary Fig.1D and 1E). The reduced secretion of these factors was validated by
ELISA and western blotting using two different siRNAs for MIR31HG (Figure 1G and 1H). Altogether our
results demonstrate that MIR31HG knock-down reduces the production of several SASP components
during OIS already at the transcriptional level and these changes are reflected in the secretome.

The SASP of senescent MIR31HG knock-down cells induces senescence but not invasion in a non-
autonomous manner

To determine the paracrine effect of the SASP we induced senescence in cells transfected with control
siRNA or siRNAs targeting MIR31HG. After 72h 4-OHT treatment CM was harvested and used for
subsequent analysis. The CM from proliferating cells without 4-OHT induction was also harvested at the
same time point as control. To assess the potential of the SASP in inducing paracrine senescence, we
incubated BJ WT cells with the different CM for 72h. Protein analysis of whole cell extracts by western
blot revealed that BJ WT growing in CM from control senescent cells and MIR31HG knock-down
senescent were both able to mildly upregulate the senescence marker p53 (Figure 2A) as well as the
enzyme β-galactosidase (Figure 2B) compared to proliferating cells. However, the upregulation of
inflammatory cytokines that occurs upon 4-OHT induction is reduced after MIR31HG depletion (Figure



Page 6/39

2C). Acosta et al. reported that TGF-β signalling pathway is responsible for the paracrine senescence
effect(Acosta et al., 2013). As expected, RNA levels of TGFβ target genes were upregulated in BJ ER:BRAF
upon 4-OHT treatment compared to control proliferating cells (Supplementary Fig. 2A), while MIR31HG
knock-down did not affect this increase. Moreover, the protein level of pSMAD2, downstream effector of
TGFβ signalling, was upregulated during OIS in control as well as in MIR31HG knock-down senescent
cells (Supplementary Fig. 2B). Similarly, WT BJ cells discretely activated TGFβ signalling when incubated
with CM from control senescent cells and also with CM from MIR31HG knock-down senescent cells
(Supplementary Fig. 2C and 2D). These results demonstrate that the TGFβ signalling pathway remains
active in MIR31HG knock-down senescent cells suggesting that its activation could be responsible for the
paracrine senescence induction. To determine the role of the SASP in promoting cancer cell invasion we
performed transwell invasion assays using the different CM described above as chemoattractant in the
lower chamber of the transwell for MDA-MB-231 breast cancer cells. After 48h incubation a higher
number of MDA-MB-231 cells exposed to CM from senescent cells invaded through the matrigel
membrane compared to proliferating CM (Figure 2D). In contrast, the CM of MIR31HG knock-down
senescent cells did not promote invasion (Figure 2D). These results demonstrate that the paracrine
senescence effect is retained in the SASP of MIR31HG knock-down senescent cells but not the induction
of paracrine invasion. These findings suggest that the effect of MIR31HG in the SASP production does
not occur at a general level but that only a subset of components is inhibited.

MIR31HG knock-down decreases CEBPB protein levels and NF-kB activation during OIS

As NF-kB and CEBPB regulate the expression of many SASP genes by stimulating their transcription
(Acosta, O'Loghlen et al., 2008, Chien, Scuoppo et al., 2011, Kuilman et al., 2008) we investigated the
possibility that MIR31HG knock-down affected the abundance or the activation of these transcription
factors. As expected, the protein levels of CEBPB and activated phosphorylated RELA (p-RELA)
(component of the NF-kB complex) increased during BRAF activation (Figure 3A). Interestingly, MIR31HG
knock-down in senescent cells reduced CEBPB protein expression and activated p-RELA (Figure 3A)
without affecting their mRNA levels (Supplementary Fig. 3A). In accordance, binding of CEBPB to the IL6
promoter, a canonical CEBPB target, decreased significantly upon MIR31HG knock-down compare to
control senescent conditions (Figure 3B). Consistently, NF-kB translocation to the nucleus was inhibited
upon MIR31HG depletion (Figure 3C). Moreover, the signalling pathway upstream NF-kB activation was
affected in MIR31HG knock-down senescent (Supplementary Fig. 3B). These results suggest that
MIR31HG acts upstream of both CEBPB and NF-kB transcriptional activation.

MIR31HG knock-down decreases IL1A protein levels upon OIS induction

IL1A has been reported to function as an upstream regulator of the SASP (Orjalo, Bhaumik et al., 2009). 
In line with this, addition of human recombinant IL1A(hr-IL1A) in our model system induced expression of
SASP components at the RNA level (Supplementary Fig. 3C). Blocking IL1A signalling using siRNA
against IL1A reduced the levels of CEBPB expression upon senescence as well as the RNA levels of
different components of the SASP (Supplementary Fig. 3D and 3E). Interestingly, while IL1A mRNA was
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not affected by the levels of MIR31HG (Figure 1C), IL1A protein levels were strongly reduced in MIR31HG
knock-down senescent cells compared to control senescent cells as measured by immunofluorescence
staining (Figure 3D) and by western blotting of the total lysate (Figure 3E). Addition of human
recombinant IL1A (hr-IL1A) rescued the incapacity of MIR31HG knock-down senescent cells to induce
SASP RNA transcription (Figure 3F), IL6 secretion (Figure 3G) and NF-kB nuclear translocation
(Supplementary Fig. 3F).

To test whether MIR31HG would be regulating IL1A at a translational level we performed polysome
profiling in control senescent cells and senescent cells upon depletion of MIR31HG. The profiles obtained
upon sucrose gradient separation in both conditions showed no major changes in polysome distribution
(Figure 3H). Analysing the distribution of IL1A mRNA through the gradient we observed that the majority
of the transcript present in the heavy polysome fractions (Figure 3I). Remarkably, a significant decrease
of IL1A mRNA in these fractions was observed in MIR31HG knock-down senescent cells compared to
control senescent cells (Figure 3J and Supplementary Fig. 3G). These results correlate with the decreased
IL1A protein we observed upon these conditions. Distribution of ACTB mRNA through the gradient did not
show any difference (Figure 3J and Supplementary Fig 3G). Despite the decrease in mRNA levels of other
cytokines such as IL6, the similar distribution of their mRNAs through the gradient indicates an equal
translation efficiency suggesting that the effect of MIR31HG on translation is specific for IL1A (Figure 3J
and Supplementary Fig 3G). MTOR signalling has been recently involved in SASP regulation through IL1A
signalling (Laberge, Sun et al., 2015). However, MIR31HG knock-down does not affect mTOR signalling
activation (Supplementary Fig. 3H) indicating an alternative mechanism for MIR31HG regulation of IL1A.
These findings suggest that MIR31HG is implicated in the modulation of the SASP by regulating the
levels of IL1A independently of mTOR signalling pathway. HG

MIR31HG interacts with YBX1 and YBX1 knock-down phenocopies MIR31HG depletion

In order to elucidate the mechanism by which MIR31HG exerts its function in regulating the SASP, we
purified endogenous MIR31HG with its associated proteins from UV-crosslinked senescent BJ ER:BRAF
cells using antisense oligonucleotides containing locked nucleic acid (ASOs) complementary to the
MIR31HG sequence coupled to magnetic beads (Figure 4A). Oligonucleotides against the RNA sequence
of luciferase, not expressed in BJ ER:BRAF  cells, were used as control. Mass spectrometry analysis of
MIR31HG-associated proteins revealed a low number of significantly-enriched proteins among which
several RNA-binding proteins (Figure 4B, Supplementary Table 2C and D). MIR31HG has been previously
shown to interact with IκBα during osteogenic differentiation regulating NFκB activation(Jin et al., 2016).
However, we did not detect IκBα in our pull-down experiments. The majority were heterogeneous nuclear
ribonucleoproteins (hnRNPs) or other predominantly nuclear proteins, involved in RNA processing. Recent
reports have demonstrated the role of PTBP1 in regulating the SASP composition through the regulation
of the alternative splicing of genes implicated in intracellular trafficking (Georgilis, Klotz et al., 2018).
However, since MIR31HG localizes mainly in the cytoplasm during OIS we focused on YBX1 as a protein
with defined cytoplasmic functions (Figure 4B). YBX1 has been implicated in several cytoplasmic
processes, such as translation or mRNA stability among others (Lyabin, Eliseeva et al., 2014). According
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to previous findings, YBX1 prevents senescence in epidermal progenitors and knock-down of YBX1
induces senescence features in keratinocytes (Kwon, Todorova et al., 2018). Depletion of YBX1 had a
minor impact on cell growth in untreated BJ ER:BRAF  (Supplementary 4A and 4B). However, knock-down
of YBX1 in BRAF-induced senescent cells mimicked MIR31HG knock-down phenotype. SASP components
were decreased at RNA level in YBX1 knock-down senescent cells compared to control senescent cells
(Figure 4C and 4D and Supplementary Table 3A and 3B). Likewise, reduction in the secretion of IL6 and
CXCL1 upon YBX1 knock-down were comparable to the levels following MIR31HG knock-down (Figure 1E
and 4E). Furthermore, IL1A protein levels were strongly reduced (Figure 4F) whereas the mRNA level
remained unaltered (Figure 4D).

Formaldehyde crosslinked-RNA immunoprecipitation (RIP) of GFP-tagged YBX1 validated its interaction
with MIR31HG (Figure 4G). As a positive control, we found YBX1 binding its own RNA as previously
reported(Skabkina, Lyabin et al., 2005). Interestingly, YBX1 binds IL1A mRNA whereas other cytokines
mRNAs are bound to a lesser extent (Figure 4G). Furthermore, no binding to abundant nuclear RNAs
(MALAT1) or the mitochondrial RNAs previously used as negative controls(Matsumoto, Uchiumi et al.,
2012) was identified.

Altogether, these results suggest that the interaction between MIR31HG and YBX1 might have a role in
regulating the SASP during OIS by regulating IL1A translation. To study the biological function of the
MIR31HG and YBX1 interaction we analysed the stability and localization of MIR31HG upon YBX1 KD,
since stabilization of RNAs is a well-described function of cytoplasmic YBX1 (Evdokimova, Ruzanov et
al., 2001, Yang, Wang et al., 2019). We did not observe changes in MIR31HG expression nor localization
upon YBX1 knock-down (Supplementary Fig 4C and 4D). Moreover, protein levels of YBX1 did not change
upon depletion of MIR31HG (Supplementary Fig 4E).

YBX1 is phosphorylated at serine 102 by RSK in BRAF-induced senescence

Several modifications which can affect YBX1 function have been reported (Prabhu, Hartley et al., 2015).
Phosphorylation of serine in position 102 has been shown to be involved in the regulation of translation
(Evdokimova, Ruzanov et al., 2006).  We therefore studied the phosphorylation status of YBX1 and the
putative implication of MIR31HG in YBX1 regulation. In order to analyse p-YBX1 in BRAF-induced
senescence, we used an antibody that recognizes p-YBX1 at position S102 (p-YBX1S102). Interestingly, we
detected increased levels of this modification at different time points after BRAF induction (Figure 5A).
Different kinases have been reported to be responsible for S102 phosphorylation such as AKT and RSK
(Stratford, Fry et al., 2008, Sutherland, Kucab et al., 2005). We analysed the levels of activated AKT at
different time points after 4-OHT induction and we observed that p-Akt decreased over time to nearly
undetected levels already after 24h 4-OHT induction (Supplementary Fig 5A). The kinase RSK, however, is
activated at early points during senescence induction and remain active at later time points (Figure 5B)
suggesting that YBX1 might be a substrate for RSK during OIS. To investigate the role of RSK in YBX1
phosphorylation in BRAF-OIS, we treated the cells with specific RSK inhibitors. Treatment of senescent
cells with the inhibitor FMK reduced the levels of p-YBX1S102 (Figure 5C). Moreover, BI-D780, a more
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specific RSK inhibitor, was able to completely abolish phosphorylation of YBX1 in senescent cells (Figure
5C). Furthermore, overexpression of RSK resulted in an increased level of p-YBX1S102 (Supplementary Fig
5B). Our results conclude that YBX1 is phosphorylated by RSK kinase in a BRAF-dependent manner.

Phosphorylation of YBX1 at serine 102 induces translation of IL1A

It has been previously shown that YBX1 can promote translation of specific transcripts (El-Naggar,
Veinotte et al., 2015, Evdokimova, Tognon et al., 2009). We next wondered whether p-YBX1S102 could
impact IL1A translation. As expected, BRAF-induced senescence resulted in an upregulation of IL1A
protein levels compared to control untreated cells (Figure 5D). Interestingly, treatment with the RSK
inhibitor BI-D1780 failed to upregulate IL1A during senescence (Figure 5D). YBX1 has been recently
implicated in cytokine translation by binding the 3’UTR of their mRNAs(Kwon et al., 2018). Using reporter
plasmids harbouring the 3’UTR of IL1A after luciferase gene we demonstrated that a WT version of YBX1
is able to increase luciferase translation in response to 4-OHT induction. A mutant that is not able to be
phosphorylated at S102 (S102A) failed to induce translation whereas a phosphomimic mutant (S102D)
increased translation even in the absence of 4-OHT (Figure 5E and Supplementary Fig. 5D). These results
suggest that p-YBX1 binds IL1A 3’UTR to increase its translation. We assessed the binding capacity of
the different phosphorylated versions of YBX1 to IL1A mRNA and to MIR31HG by RIP. All the proteins
showed a similar binding to their targets suggesting that phosphorylation at S102 is not affecting YBX1
binding capacity (Figure 5F).

MIR31HG knock-down in senescent cells reduces cytoplasmic p-YBX1 inhibiting its interaction with RSK

We next examined whether MIR31HG might have an impact on YBX1 phosphorylation. We performed
cellular fractionation to analyse the localization of phosphorylated YBX1 in senescent cells and in
senescent cells where MIR31HG was depleted. Interestingly, we observed that upon MIR31HG knock-
down p-YBX1 is reduced in the cytoplasm (Figure 6A and Supplementary Fig. 6A) suggesting a role for
MIR31HG in the phosphorylation process of YBX1. Several cytoplasmic lncRNAs have been shown to act
as scaffolds for bringing molecules into close proximity. In order to analyse whether MIR31HG was
binding both YBX1 and its kinase RSK, we performed native RIP using GFP-tagged version of RSK. We
could not detect RSK binding to MIR31HG (Supplementary Fig. 6B and 6C). To further analyse the role of
MIR31HG in the interaction of YBX1 with its kinase RSK, we performed proximity ligation assays (PLA)
using antibodies against total YBX1 and total RSK. Importantly, the interaction was higher in senescence
compared to control (Figure 6B). Interestingly, MIR31HG knock-down reduced the level of interaction
confirming our hypothesis that MIR31HG mediates YBX1 interaction with its kinase RSK during OIS
(Figure 6B).

 

Discussion
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The SASP is a hallmark of senescent cells and responsible for mediating the patho-physiological effects
in the surrounding tissues. For a long time, efforts in the field have been focused on trying to induce
senescence in cancer cells in order to prevent cancer progression (Braig et al., 2005, Ventura, Kirsch et al.,
2007, Wu, van Riggelen et al., 2007). In contrast hereto, more recent reports have shown that targeting
senescent cells strongly improve age-related diseases (Baker et al., 2011, Farr, Xu et al., 2017, Xu, Palmer
et al., 2015). Although recent work has extended our knowledge of the signalling network upstream the
transcriptional induction of the SASP components (Freund, Patil et al., 2011, Herranz, Gallage et al., 2015,
Hoare, Ito et al., 2016, Kang, Xu et al., 2015, Tasdemir, Banito et al., 2016), the complexity and diversity of
the SASP suggest that additional regulators might be involved. It is crucial to acquire further knowledge
of the detailed mechanism to be able to design therapies for cancer, inflammation and aging treatment.
Here, we contribute to understanding the SASP regulation by describing the molecular mechanism by
which the lncRNA MIR31HG regulates a subset of the SASP components during BRAF-induced
senescence by modulating IL1A translation. It is known that most of the SASP components are regulated
at the transcriptional level, although a small fraction may additionally be regulated by post-transcriptional
mechanisms (Herranz et al., 2015, Laberge et al., 2015). In this study, we focus on the senescence
process initiated following the expression of a mutated BRAF. This is of importance as somatic
mutations in BRAF occur in approximately 7% of human cancer (Davies, Bignell et al., 2002). We
observed that MIR31HG expression is higher in thyroid and colorectal cancer tumor samples harbouring
BRAF mutations, as compared to BRAF wild type, suggesting the relevance of this lncRNA in cancer.

We find that the secretome from BJ ER:BRAF  senescent cells and BJ ER:BRAF MIR31HG knock-down
senescent cells show differences in the levels of key SASP components. Whereas most of the genes
deregulated at transcription level are also altered at the protein level, a small proportion is regulated only
at RNA or protein level. This, together with the comparable polysome distribution profiles of these cell
lines, suggest no changes in global translation upon MIR31HG depletion. Interestingly, IL1A, an upstream
regulator of the SASP, is reduced at the protein level following MIR31HG knock-down whereas the mRNA
level is not significantly altered. No IL1A was detected in the conditioned media by mass spectrometry or
by ELISA (data not shown), likely due to the fact that IL1A remains attached to the membrane during OIS
as previously described (Orjalo et al., 2009). In our cellular system addition of hr-IL1A induces the
transcription of several cytokines and instigates the SASP. Intriguingly, it also rescues the decreased
transcription of SASP components caused by MIR31HG depletion during BRAF-induced senescence.
These results strongly support the idea of MIR31HG regulating IL1A as an upstream regulator of the
SASP transcriptional program. Work from the Campisi lab has demonstrated that the translation of IL1A
during RAS-induced senescence is regulated by mTOR (Laberge et al., 2015). Although the mTOR
pathway is increased in our OIS model, it is not altered in MIR31HG knock-down conditions. Instead, we
found the lncRNA MIR31HG to affect IL1A translation through YBX1. Endogenous MIR31HG pull-down
and subsequent validations by RIP show that YBX1 is a MIR31HG binding partner. Importantly, YBX1
depletion mimics the MIR31HG knock-down phenotype in BRAF-induced senescence. This includes the
reduced translation of IL1A and therefore the downregulation of downstream SASP components at RNA
level, such as CXCL1, IL8 or IL6 among others. Interestingly, recent work has shown that YBX1 prevents
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cytokine translation in cycling keratinocytes by binding their 3’UTR. In these studies, YBX1 knock-down
results in increased translation of several cytokines and therefore induction of senescence (Kwon et al.,
2018).  In proliferating BJ cells, knock-down of YBX1 does induce a slight decrease of cell growth
consistent with this report. However, knock-down of YBX1 in cells subjected to BRAF-induced senescence
resulted in reduced RNA levels of most of the cytokines previously annotated as SASP components
(Coppe et al., 2010). Interestingly, in BRAF-induced senescence we observe that YBX1 binds a high
fraction of the IL1A mRNA while binding other cytokines to a lesser extent. YBX1 binds AU-rich motifs
present in the 3’UTR of cytokine mRNAs (Beiter, Hoene et al., 2015, Kwon et al., 2018), which is consistent
with our IL1A 3’ UTR luciferase reporter assays.  However, the stronger binding of YBX1 to IL1A mRNA
compared to other cytokines show some degree of specificity towards IL1A mRNA. The mechanism
underlying this specificity remains unknown. In a recent study, Dominguez and colleagues determined the
importance of contextual features in RNA recognition by RBPs (Dominguez, Freese et al., 2018). Perhaps
RNA secondary structures, the flanking nucleotide composition or the proximity to other RNA-binding
proteins might be influencing the binding of YBX1 to the IL1A mRNA.

We observe an increase in p-YBX1S102 in BRAF-induced senescence and, importantly, p-YBX1S102 is
reduced in the cytoplasm upon MIR31HG knock-down. Our results indicate that this post-transcriptional
modification of YBX1 is involved in promoting IL1A translation during BRAF-induced senescence through
its 3’UTR, which could explain the previously reported opposite roles of YBX1 in cytokine
translation(Kwon et al., 2018). The role of p-YBX1 in translation remains to be fully understood. It is
known that YBX1 binds the mRNA cap structure by displacing the eukaryotic translation factor 4E (eIF4A)
and eIF4G and hence promotes translational repression (Evdokimova et al., 2001, Nekrasov, Ivshina et al.,
2003). p-YBX1S102 on the other hand binds the mRNA cap structure less tightly allowing translation of
repressed mRNAs (Evdokimova et al., 2006). However, not much is known about its role in promoting
translation. Our luciferase reporter assay indicates that during senescence, p-YBX1102 may have a role in
promoting IL1A translation through the 3’UTR since the phosphomutant YBX1S102A fails to induce
luciferase induction. Mutation of S102 did not alter YBX1 binding capability to IL1A or other mRNAs,
consistently with previous reports demonstrating that phosphorylation at S102 does not affect the
general RNA binding capacity of YBX1 (Evdokimova et al., 2001) . Phosphorylation of translation factors
are determining events occurring during translation regulation (Proud, 2019) and perhaps p-YBX1 is
involved in differentially recruiting other translation factors with a role in IL1A mRNA translational
regulation. Further phospho-proteomic studies would help to address this question. We cannot exclude
that phosphorylation at other residues occur during senescence. In fact, S165 and S176 has been shown
to activate NF-kB signalling (Martin, Hua et al., 2017, Prabhu, Mundade et al., 2015). It would be
interesting to investigate whether these modifications have any impact in senescence or in translation
regulation.

LncRNAs can modulate post-transcriptional modifications of proteins (Li, Liu et al., 2017, Lo Piccolo,
Mochizuki et al., 2019, Wang, Xue et al., 2014, Yoon, Abdelmohsen et al., 2013). Our results suggest that
during BRAF-induce senescence RSK appears to be the main kinase responsible for YBX1
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phosphorylation. PLA experiments show an increase in RSK-YBX1 interaction during OIS correlating with
an increased level of p-YBX1. Despite at a lower level, the presence of interaction in proliferating
conditions suggests that the interaction may occur without BRAF induction. The signalling cascade
activated during OIS might be necessary to phosphorylate YBX1 at least at S102. We cannot exclude that
RSK phosphorylates other residues in proliferating cells.  Nevertheless, our results indicate that MIR3HG
is important for the YBX-RSK interaction during senescence, when the lncRNA is expressed and
predominantly located in the cytoplasm (Montes et al., 2015). We do not detect MIR31HG directly binding
RSK, likely excluding a role for MIR31HG as scaffold bridging together YBX1 and its kinase. Instead,
MIR31HG interaction with YBX1 might infer an optimal conformation to facilitate its phosphorylation.
Another possibility is that the interaction between YBX1 and MIR31HG brings YBX1 to another protein or
protein complex required for the phosphorylation. Structural studies or more exhaustive phospho-
proteomic analysis could improve our understanding on how MIR31HG promotes YBX1 phosphorylation
under OIS.

The SASP has been reported to either limit or promote tumor progression. Dissociation of the good and
bad sides of the SASPs is difficult since many of its components can have both roles depending on the
cellular context (Salama et al., 2014).  Besides, many of the senescence effectors are activated by the
same pathways that activate the SASP. Therefore, the identification of factors that can affect the SASP
without altering the tumour-suppressive effects associated with senescence is a promising strategy for
senescence-related therapies. Several reports have described factors that can uncouple the senescence
growth arrest from the SASP (Georgilis et al., 2018, Herranz et al., 2015, Laberge et al., 2015, Tasdemir et
al., 2016). Here, we identify a lncRNA that, when located in the cytoplasm during OIS, is responsible for
the production of a distinct subset of SASP components. Its depletion during OIS leads to a decrease of
interleukins, chemokines and other factors preventing invasion in vitro without reverting growth arrest.
Interestingly, we have previously described a mechanism for the nuclear MIR31HG in proliferating cells in
repressing p16INK4A expression by recruiting polycomb group proteins (Montes et al., 2015). Altogether,
our results suggest that the lncRNA MIR31HG has a dual role in inducing and buffering senescence
depending on the cellular localization, which highlights the complexity of the regulation of senescence
and the SASP. Interestingly, MIR31HG has been reported to be upregulated in different types of cancer
(Eide, Eilertsen et al., 2019, Shih, Chiang et al., 2017, Yang, Liu et al., 2016). The fact that depletion of
MIR31HG induces p16 expression without activation a SASP response (Montes et al., 2015) and
decreases pro-invasive factors during SASP induction makes it an interesting target for therapeutic
purposes. Inhibition of MIR31HG as well as other anti-SASP therapies could be potentially used to
ameliorate the detrimental effects of senescence cells.

Materials And Methods
Cell lines

The human diploid fibroblast cell lines TIG3 (lung) and BJ (foreskin) were immortalized with telomerase
(hTERT) and transduced with a retrovirus generated from pMSCV-ER:B-RAF as previously described



Page 13/39

(Christoffersen, Shalgi et al., 2010). BJ ER:BRAF, TIG3:BRAF, BJ wild type (WT) and MDA-MB-231 cells
were maintained in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% FBS
(Hyclone) and penicillin/streptomycin (Invitrogen).

Treatments and siRNA transfections

Senescence was induced by treatment with 1µM 4-hydroxytamoxifen (4-OHT, Sigma) 24h after cell
seeding for at least 48h (unless otherwise indicated). siRNA oligonucleotides were transfected at a final
concentration of 50nM by reverse transfection using RNAiMAX (Invitrogen) according to the
manufacturer's instructions for 48h or 72h. In case of senescence induction, 1µM 4-OHT was added 24h
after transfection to fresh media for 48h for RNA analysis or 72h for protein analysis. Primer sequences
are listed in Supplementary Table 4. BI-D1780 (Axon 1528)  and FMK (Gift from Morten Frodin)  Rsk
inhibitors were used at 10uM for the time indicated in each experiment.

MIR31HG expression analysis in tumor samples

Gene expression (RNAseq) and somatic mutation data for tumors in The Cancer Genome Atlas (TCGA
Pan-Cancer) were downloaded from UCSC Xena platform(Goldman, Craft et al., 2019). Thyroid carcinoma
(THCA) and colo-rectal adenocarcinoma (COAD & READ) were used for analysis because these tumors
have high frequency of BRAF mutations (>10%) and also express MIR31HG. Expression values for all the
samples were converted to log2(fpkm+1) unit. Wilcoxon test was performed to compare the expression
differences in the BRAF mutant and BRAF wild type tumors, using R.

YBX1-GFP and RSK-GFP overexpressing cell lines

To generate lentiviral constructs, we cloned the coding sequence of YBX1 amplified from cDNA, into the
inducible vector pLVX-TetOne Puro Vector (Clontech) that already contained GFP-fusion protein. We use
In-Fusion HD Cloning designing primers according to the manufacturer’s indications.

For the lentiviral production, HEK293T cells were transfected using lipofectamine 2000 (Lifetechnologies)
with 7μg of pLVX-YBX1-GFP or pLVX-empty-GFP, together with 6μg of VsVg and 5μg Pax8 viral plasmids.
After 48h supernatants containing the viral particles were filter through a 0.45μm filter. Confluent BJ
ER:BRAF  cells were then transduced with 1/3 of the viral supernatant and 8 μg/μl polybrene. 24h post-
transduction the cells were selected with 1 μg/ul puromycin. Cells were maintained in tetracycline-free
tested serum (Clontech). For the expression of YBX1, 100ng/ml doxycycline was used for 72h unless
otherwise indicated.

To generate the phosphomutant (S102A) and phosphomimic (S102D) versions of the protein, directed
mutagenesis was performed using QuikChange II XL Site-Directed Mutagenesis Kit (Agilent) directly from
the pLVX-YBX1-GFP construct. Primers with the respective mutations were designed according to the
manufacturer’s indications. The pLVX-RSK-GFP cell line was generated as described for YBX1, amplifying
the coding sequence from cDNA with specific primers.  Primer sequences are listed in Supplementary
Table 4.
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RNA extraction and qRT-PCR analysis

Total RNA was isolated using Trizol reagent (Invitrogen), treated with TURBO DNase (Ambion,
Lifetechnologies) and reverse transcribed using TaqMan Reverse Transcription kit (Applied Biosystems)
with random hexamer primers. Quantitative real-time PCRs were performed using Syber Green PCR Fast
PCR Master Mix 2x (Applied Biosystems). The housekeeping genes HPRT1 and RPLP0 were used for
normalization of qRT-PCR data, unless otherwise stated. Primer sequences are listed in Supplementary
Table 4.

Western blot analysis

Cells were seeded and reverse transfected in 6-well plates (NUNC). In case of senescence, cells were
treated the following day with 1 µM 4-OHT. After 72h cells were harvested, washed once with PBS and the
pellets lysed in RIPA buffer (150 nM NaCl, 0.1% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 
mm Tris–HCl (pH 8), 1 mM EDTA) containing protease inhibitors (Complete Mini Protease Inhibitor
Cocktail; Roche Applied Science). Proteins were separated by electrophoresis in 4–12% NuPAGE Bis–Tris
gels (Invitrogen) and transferred to nitrocellulose membranes (Amersham). Antibodies used are listed in
Supplementary Table 5.

Conditioned media

To generate conditioned media the cells transfected and treated as indicated were growing in serum-free
growth media for 24h. The media was filtered through a 0.45uM filter, centrifuged at 500g for 5min and
placed on the corresponding recipient cells for the time indicated in each experiment.

Enzyme-linked immunosorbent assay (ELISA)

To measure the secretion of IL6 and CXCL1 the CM from different conditions were analysed by ELISA
using commercially available kits (Thermo Fisher Scientific).

Secretome analysis

The CM for proteomics analysis was harvested from 6 cm plates as indicated above. CM was
concentrated using Centricon (Milipore) 3kDa filter, precipitated by TCA and washed in acetone. Protein
pellets were resuspended in 6M GndHCl in 10mM Tris/HCl pH 8.0 with 2mM DTT and incubated at 56°C
for 30min. In-solution digestion was performed after sample dilution with 50mM TEAB using 250ng of
LysC (Wako) (at 2M GndHCl) and followed by 500ng of trypsin (Promega) (at 0.6M GndHCl). Reduced,
alkylated and acidified peptides were desalted on 100ul C18 stage tips (Thermo) and subjected to LC-
MS/MS analysis.

Tryptic peptides were identified by LC-MS using an EASY-nLC 1000 (ThermoFisher Scientific) coupled to a
Q Exactive HF (ThermoFisher Scientific) equipped with a nanoelectrospray ion source. Peptides were
separated on an in-house packed column of ReproSil-Pur C18-AQ, 3µm resin (Dr Maisch, GmbH) using a
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90-minute gradient of solvent A (0.5% acetic acid) and solvent B (80% acetonitrile in 0.5% acetic acid)
and a flow of 250 nL/min. The mass spectrometer was operated in positive ion mode with a top 12 data-
dependent acquisition, a resolution of 60,000 (at 400 m/z), a scan range of 300 – 1700 m/z and an AGC
target of 3e6 for the MS survey.  MS/MS was performed at a scan range of 200-2000 m/z using a
resolution of 30,000 (at 400 m/z), an AGC target of 1e5, an intensity threshold of 1.0e5 and an isolation
window of 1.2 m/z. Further parameters included an exclusion time of 45 sec and a maximum injection
time for survey and MS/MS of 15 ms and 45 ms respectively.

The raw files obtained from LC-MS were processed using the MaxQuant software 72 version 1.5.3.30.
Peak lists were searched against the human UniProt database using the Andromeda search engine
incorporated in MaxQuant with a tolerance level of 7 ppm for MS and 20 ppm for MS/MS (Cox & Mann,
2008). Trypsin was chosen as digestion enzyme with max 2 missed cleavages allowed. Variable
modifications were set to methionine oxidation, protein N‐terminal acetylation, deamidation of
asparagine and glutamine. Carbamidomethylation of cysteine was set as fixed modification and other
parameters were kept as default.

Statistical analysis was conducted in R environment (https://www.r-project.org) using DEP (v. 1.8.0)
bioconductor package for proteomics analysis, and visualizations were made using the ggplot2 R
package(Wickham, 2016). Imputation of missing data was performed using MinProb setting based on
minimal intensity values observed for each sample.

Crystal violet staining

Cells were seeded and reverse transfected in 6-well or 12-well plates (NUNC). 24, 48 and 72h after
transfection or treatment cells were washed twice in PBS and fixed with 10% formalin for 10 min and
stained with 0.1% crystal violet solution for 30 min. Excess crystal violet stain was removed by several
washes with water. The plates were allowed to dry and crystal violet was extracted by the addition of 10%
acetic acid. The amount of crystal violet staining was quantified by measurement of the absorbance at
570 nm.

Senescence associated β-galactosidase staining

Cells were seeded and transfected in 12-well plates (NUNC). At 72h post-transfection they were fixed and
stained using the β-galactosidase staining kit (Cell signaling) according to the manufacturer’s protocol.

Invasion assay

50 ul of 0.5ug/ml Matrigel LDEV-Free (Corning)was added to the transwell. 400ul of the desired CM was
placed at the bottom of the transwell with 8.0 μm pore size (Croning). 50.000 MDA/MB-231 cells were
resuspended in 200ul DMEM without FBS and place on top of the transwell. After 48h cells across the
matrigel membrane were washed in PBS and fixed in cold 70% ethanol for 15 mins and stained using
crystal violet staining as indicated above.

https://www.r-project.org/
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Cell fractionation

Cells were grown in 15 cm dishes (Nunc). Nuclear/cytoplasmic fractionation was performed using Nuclei
EZ Lysis Buffer (Sigma) following the manufacturer’s protocol.

Immunofluorescence

Cells were seeded on multichamber slides (Nunc) and transfected or treated. 72h cells were washed with
PBS 1x and fixed in 4% paraformaldehyde (PFA) (Sigma) for 15 min. The cells were permeabilized by
incubation with 0.1% Triton X-100 in PBS (Sigma) for 10min and blocked for 30 min with 5% normal goat
serum in PBS before incubation with the primary antibodies in 2% normal goat serum overnight. After
intensive washing with PBS 1x, the secondary antibody was incubated in 2% goat serum for 1h at room
temperature in the dark. The coverslips were washed, drained and mounted on glass slides using Prolong
Gold Antifade Reagent with DAPI (ThermoFisher Scientific). Images were taken using a Zeiss
fluorescence microscope.

Chromatin Immunoprecipitation

Cells were fixed with 1% formaldehyde for 10 min. Crosslinking was arrested by adding glycine (0.125 M)
for 5 min at room temperature. The cells were subsequently harvested in SDS lysis buffer (0.5% SDS,
100mM NaCl, 50mM Tris-Cl pH8.1, 5mM EDTA pH 8.0, protease inhibitor mixture Complete [Roche], and 1
mM phenylmethylsulfonyl fluoride [PMSF]. Nuclei were pelleted and resuspended in IP buffer (2volumes
SDS lysis buffer:1 volume Triton-X buffer [100mM Tris-Cl, pH 8.6, 100mM NaCl, 5mM EDTA pH 8.0, 5%
Triton X-100]). The lysates were sonicated using BIORUPTOR sonicator for 12 cycles of 30sec and
centrifuged at maximum speed. The sheared chromatin was diluted to 1ml with IP buffer and precleared
with salmon sperm DNA/recombinant protein A-agarose (ThermoFisher Scientific) for 2 h. 1% of the
sample was used as the input control, and the remaining precleared chromatin was incubated overnight
with 10 μg of antibody by incubation with salmon sperm DNA/protein-A agarose (50% slurry) and
centrifugation. The bead pellets were washed in low or high salt conditions (0.1% SDS, 1% Triton X-100, 2
mM EDTA pH 8.0, 20 mM Tris-HCl pH 8.0, and 150 mM [low]/500 mM [high] NaCl). The beads were then
washed once with LiCl buffer (0.25 M LiCl, 1% NP-40, 1% Na-deoxycholate, 1 mM EDTA, and 10 mM Tris-
HCl pH 8.0) followed by two washes with Tris-EDTA buffer. Elution buffer (0.1% SDS, 0.1 M NaHCO3) was
added to the samples and the crosslinking was reverted by incubation at 68°C overnight. Samples were
incubated 1h at 37°C with RNAse A (Sigma) and 45 min at 50°C with proteinase K (Ambion).  The DNA
was purified using Minelute PCR Purification Kit (Qiagen) and then amplified by qPCR. Primer sequences
are listed in Supplementary Table 4.

RNA sequencing and bioinformatic analysis

RNA integrity was confirmed on Agilent 2100 Bioanalyzer using Agilent RNA 6000 Nano kit (Agilent
Technologies). RNA-seq libraries were prepared from 2 µg total RNA with CATS mRNA-seq Kit (with polyA
selection) v2 x24 (Diagenode) according to the manufacturer’s protocol. Concentrations of the libraries
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were measured using the Qubit fluorometer (Invitrogen) and fragment size was assessed on Agilent 2100
Bioanalyzer using Agilent High Sensitivity DNA kit (Agilent Technologies). The libraries were sequenced
on Illumina NextSeq500 with 75 bp single-end. Raw reads were trimmed using Cutadapt (Martin, 2011) to
remove adapters and minimum read length after trimming was set to 18. Trimmed reads were mapped to
hg38 using STAR aligner(Dobin, Davis et al., 2013) (version 2.5.1a). Uniquely mapped reads were counted
towards genes using featureCounts(Liao, Smyth et al., 2014) (version 1.5.1). Differential expression
analysis was performed with DESeq2(Love, Huber et al., 2014) using FDR < 0.01. Heatmaps were
generated using pheatmap package in R with default settings and relative expression as RPM calculated
by Z-score scaling. GO-term analysis was carried out using PANTHER(Thomas, Campbell et al., 2003) 
(http://pantherdb.org/about.jsp, version 14.1) using Fischer’s exact test with FDR multiple test correction.
Only genes differentially expressed between Senescence and Senescence MIR31HG-KD and |log2fold-
change| > 0.75 were used for GO-term analysis.

MIR31HG oligonucleotide-based pull down

Cells were grown in 150 and 500 cm2 dishes in 25 or 90ml media respectively up to ~90% confluency.
Prior to collection cell were irradiated with UV light at 254 nm, then scraped in ice-cold PBS, spun down at
800 x g for 5min at 4°C and stored at -80°C. Amino-C12-LNA-containing oligonucleotides against
MIR31HG and luciferase (five per target, Exiqon, custom design) were coupled to Dynabeads MyOne
Carboxylic Acid (Thermo Fisher Scientific) according to the manufacturer instructions using 1.5nmol
oligo per 100ul beads. Prior to use, the coated beads were blocked in RNA pulldown (RP) buffer (50mM
Tris/HCl ph7.5, 5mM EDTA, 500mM LiCl, 0.5% DDM, 0.2% SDS, 0.1% Na-deoxycholate, 4M Urea, 2.5M
TCEP, protease inhibitors (Roche)) with addition of ssDNA (200ug/mL) and BSA (1mg/mL) and yeast
RNA (200ug/mL). 0.5g cell pellet was used per condition and resuspended in 5mL volume of RP buffer
with murine RNase inhibitor (NEB, 1:500). Lysates were sonicated in 15mL tubes with Branson tip
sonicator (2x 10sek, with 30sek break, at setting 15%) and clarified at 16000 x g for 5min at 4°C.
Supernatants were transferred to 2mL tubes and pre-heated to 65°C with 1200rpm shaking, then
oligonucleotide-coated beads were added to lysates for 4h incubation at 65°C with shaking (250ul
beads/0.5g initial cell pellet distributed in 2ml tubes). The beads were washed four times with RP buffer
at room temperature and then washed with 1mL 50mM TEAB buffer to remove detergents. For mass
spectrometry sample preparation the beads were resuspend in 100ul 50mM TEAB buffer (Sigma)
including 2mM DTT. Trypsin was added (500ng) for O/N incubation at 37°C, then followed by treatments
with DTT (10mM) and IAA (55mM) and acidification with TFA. 100ul StageTips (Thermo Fisher Scienfic)
were used for desalting and purified peptides were subjected to LC-MS analysis (as described in the
above section).

Samples were analyzed using instrument settings described above, and the obtained data was analyzed
with MaxQuant v. 1.5.2.8, using N-terminal acetylation and methionine oxidation as variable
modifications. Fold change values of median peptide intensities were calculated for 5 replicates, and
missing values were imputed using minimal intensity value detected in the analysis. Significantly
enriched proteins in MIR31HG pulldown samples over control pulldown were selected based on pvalue <

http://pantherdb.org/about.jsp
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0.05, signal intensity (fold enrichment over luciferase control) and number of unique peptides present in
majority of replicates.

Polysome Profiling

 

Prior to harvesting, cells were treated with 100 μg/mL cycloheximide (Sigma-Aldrich) for 3 min. Cells were
washed and scrapped off in ice-cold PBS containing 100 μg/mL cycloheximide. Cell were lysed in excess
of polysome lysis buffer (20 mM Tris-HCl, 150 mM KCl, 5mM MgCl2, 0.5% NP40 (Igepal CA-630, Sigma-
Aldrich), 2 mM DTT, 100 μg/mL cycloheximide, Roche EDTA-free Protease Inhibitor (Roche) and murine
RNase inhibitor (NEB)) and incubated while rotating for 10 min at 4ºC. Debris, nuclei and mitochondria
were cleared by centrifugation at 12.000g for 15 min at 4ºC. Lysate material was normalized to equal
A260 value measured on NanoDrop. Normalized lysate, 400 μL total, was loaded on top of a 7% - 47%
(w/v) linear sucrose gradient (Sigma) in open top polyallomer tubes (Seton Scientific) and centrifuged at
38.000g for 2.5 h at 4o C using a Beckman ultracentrifuge (Optima L-90K, Class S) with the SW40ti rotor
head (Beckman). Following ultracentrifugation, gradients were fractionated by piercing the tube bottom
(Brandel Piercer), pushing gradient with 60% sucrose solution at a pace of 1 mL per minute while
continuously measuring A260 using BioLogicP system (BioRad). RNA was subsequently extracted from
each fraction by QIAzol (Qiagen) and chloroform extraction. Prior to RNA extraction, 20 pg of firefly-
luciferase in vitro transcribed RNA was spiked into each fraction to control for potential loss of material in
extraction protocol.

Luciferase reporter assays

For the luciferase reporter assays the 3’UTR of IL1A was cloned amplified by PCR from cDNA (see primer
list). The PCR constructs were cloned into the pGL3-promoter Firefly luciferase reporter vector (Promega)
using XbaI restriction enzyme.. 40.000 YBX1-GFP cells were reverse transfected with siRNAs against
endogenous YBX1 in a 24-well plate. After 24h the cells were transfected using Lipofectamine 3000
(Lifetechnologies) with 500ng of the PGL3-promoter or PGL-3_IL1A-3’UTR together with 150ng of pRL-Tk
Renilla luciferase reporter vector for transfection control and luciferase assay normalization. 24 hours
after transfection fresh media containing 1μM 4-OHT was added to the cells. 48h after treatment Firefly
and Renilla luciferase units were measured using Dual-Glo Luciferase Assay System and GLo-Max Multi
Detection System (Promega).

Proximity ligation assay (PLA)

Cells were reverse transfected and seeded in 8-well multichamber slides (Nunc® Lab-Tek® II Chamber
Slide™ system). 24h later media was changed and 1µM 4-OHT was added to the corresponding wells.
After 72h cells were fixed in 4% formaldehyde for 15minutes and processed for PLA using Duolink® In
Situ Orange Starter Kit Mouse/Rabbit (Sigma) according to manufacturer instructions. Images were

https://my.labguru.com/catalog/materials/41433


Page 19/39

obtained using fluorescence microscope (Zeiss) and quantified using Cell Pofiler software. 5-10 images
were quantified from 4 independent experiments.

Formaldehyde crosslinked RNA immunoprecipitation (RIP)

Cells were seeded in 15cm plates and treated with 1µM 4-OHT the day after for 48 hours. The cells were
washed twice with PBS and crosslinked with 1% formaldehyde in PBS shaking for 15 minutes.
Crosslinking was stopped incubating with glycine 0.25M for 5 minutes. After extensive washing with cold
PBS the cells were centrifuged at 800g for 5 minutes. 80-100 mg of cell pellet was resuspended in lysis
buffer (50mM TRIS/HCl, pH 7.4, 100mM NaCl, 0.5% Triton X-100, 5mM EDTA, 0.25% Na-deoxycholate,
Protease Inhibitor (Roche), RNase Inhibitor (NEB)) and sonicated 3 cycles of 10 sec using a BRANSON
sonicator at setting 15%. After 15 minutes centrifugation at 16000g the supernatant was collected in a
new tube. 10% of the extract was saved as RNA input. The rest of the cell extract was incubated with 10ul
of GFP-Trap® Magnetic Agarose beads (Chromotek) rotating at 4°C for 2 hours. The beads were then
collected using a magnetic rack and washed once with lysis buffer and 5 times with high salt buffer
((50mM TRIS/HC pH 7.4, 1000mM NaCl, 0.5% Triton-X100, 1M Urea, 5mM EDTA, 1mM DTT). After the
last wash, the beads were resuspended in 100 ul of RIP buffer (50mM Hepes pH. 7.5, 0.1M NaCl, 5mM
EDTA, 10mM DTT, 0.5% TritonX100, 1% SDS) and incubate 45 minutes at 70°C to revert crosslinking.
Proteins were digested incubating for 20 minutes at 37°Cwith 10ul proteinase K (Invitrogen,
ThermoFisher).  RNA was extracted adding 600ul of TRIzol reagent (Invitrogen, ThermoFisher) using
manufacturers protocol.

Native RNA immunoprecipitation

Cells were seeded in 15cm plates and treated with 1µM 4-OHT the day after for 48 hours. The cells were
washed twice with PBS and centrifuged at 500g for 5 minutes. The pellet was resuspended in lysis buffer
(50mM TRIS/HCl, pH 7.4, 100mM NaCl, 0.5% Triton X-100, 5mM EDTA, 0.25% Na-deoxycholate, Protease
Inhibitor (Roche), RNase Inhibitor (NEB)). After 15 minutes centrifugation at 16000g the supernatant was
collected in a new tube. 10% of the extract was saved as RNA input. The rest of the cell extract was
incubated with 10ul of GFP-Trap® Magnetic Agarose beads (Chromotek) rotating at 4°C for 2 hours. The
beads were then collected using a magnetic rack and washed three times with lysis buffer. RNA was
extracted adding 600ul of TRIzol reagent (Invitrogen, ThermoFisher) to the beads using manufacturers
protocol.

Statistical analysis

Student’s t-test was used for statistical analysis and performed using GraphPad Prism. Significance was
determine at p < 0,05. Data are represented as mean mean ± s.d. Figure legends show the number of
independent biological replicates  (n).

Data availability
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Raw data for the RNA-seq are deposited to GEO (GSE144752). Raw data for proteomics experiments are
deposited to PRIDE ProteomeXchange (PXD017475). The data and reagents that support the findings of
this study are available from the corresponding author upon reasonable request. Source data is available
for Figs. 1–6 and Supplementary Figs. 1–6.
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Figure 1

MIR31HG knock-down decreases the induction of SASP components during BRAF-induced senescence.
(A) qRT–PCR analysis of MIR31HG expression normalized to housekeeping genes (HPRT1 and RPLP0) in
BJ ER:BRAF cells were treated with ethanol (Control) or 1M 4-OHT for 48h (n=4). (B) Box plot showing
MIR31HG expression in log2(fpkm+1)units in Thyroid carcinoma (THCA) and colo-rectal carcinoma
(CRC) comparing BRAF mutant and BRAF wild type tumors. Wilcoxon test was performed to compare the
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expression differences in the BRAF mutant and BRAF wild type tumors. (C) BJ ER:BRAF cells (control or
siMIR31HG) were treated with ethanol (Control 1-3) or 1M 4-OHT for 48h (Sen 1-3 and Sen siMIR31HG 1-
3) and further processed for RNA-seq (see materials and methods). The heat map shows relative
expression of differentially expressed genes in the three conditions in triplicates. (D) The heat map shows
relative expression in RPKMs of a subset of SASP genes previously defined(Coppe et al., 2010) from the
data provide in (a), where differentially expressed genes (‘DE’, FDR < 0.01) are indicated in red, unchanged
(non-significant, ‘ns’) in white;. (E) qRT–PCR analysis of selected components of the SASP normalized to
housekeeping genes (HPRT1 and RPLP0) in BJ ER:BRAF cells transfected with the indicated siRNAs
(Control or siMIR31HG1-2), treated with ethanol (Control) or 1M 4-OHT for 48h. The graphs show results
compared to control ethanol-treated set to 1 (n=4). (F) Mass spectrometry-based secretome analysis of
senescent BJ ER:BRAF (1M 4-OHT) treated with MIR31HG or control siRNA. The volcano plot shows
differentially secreted proteins in MIR31HG knock-down senescent cells (Sen siMIR31HG) compared to
control senescence cells (Sen) (-log10 pvalue along y-axis and log fold change along x-axis). Names are
displayed for significantly changed proteins between secretomes (pval < 0.01) and SASP proteins are
marked in red. (G) BJ ER:BRAF (Control or siMIR31HG1-2) were treated for 72h with ethanol (Control) or
1M 4-OHT. The CM was then harvested and secreted CXCL1 and IL6 were measured by ELISA. The graph
shows the pg/ml of secreted protein (n=3). (H) BJ ER:BRAF (Control or siMIR31HG1-2) were treated for
72h with 1M 4-OHT. The CM was then harvested and proteins were precipitated using EtOH . IL6 protein
expression was analysed by western blot. Molecular weight marker is shown in kDa (n=3). All statistical
significances were calculated using two-tailed Student t-tests, **P < 0.01; *P < 0.05; ns, non-significant. All
error bars represent mean ± s.d.
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Figure 2

The SASP of senescent MIR31HG knock-down cells induces senescence but not invasion in a non-
autonomous manner. (A) Wild type BJ cells were incubated for 72h with the CM collected from BJ
ER:BRAF cells (Control or siMIR31HG1-2) treated with ethanol (Control) or 1M 4-OHT for 72h. Whole cell
extracts were analysed by western blot for p53 and GAPDH. Molecular weight marker is shown in kDa
(n=3). (B) Representative images of -galactosidase staining from the same condition as indicated in (a)
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(C) qRT–PCR analysis of a subset of components of the SASP normalized to housekeeping genes
(HPRT1 and RPLP0) in total RNA extracted from cells described in (a). The graph shows the RNA
expression relative to control ethanol-treated cells set to 1 (n=4). (D) MDA-MB-231 cells were placed in the
upper part of a transwell assay in contact with the CM collected from BJ ER:BRAF cells (Control or
siMIR31HG) treated for 72h with ethanol (Control) or 1M 4-OHT. After 24h cells invading the matrigel
membrane were stained with crystal violet. Representative images are shown in the figure. Bottom panel,
quantification of the invading cells relative to control ethanol-treated cells (n=3). All statistical
significances were calculated using two-tailed Student t-tests, **P < 0.01; *P < 0.05. All error bars
represent mean ± s.d.



Page 32/39

Figure 3

MIR31HG knock-down decreases IL1A translation. (A) BJ ER:BRAF cells (Control or siMIR31HG1-2) were
treated with ethanol (Control) or 1M 4-OHT for 72h. Whole cell extracts were analysed by western blot for
p-RELA, RELA and CEBPB. Vinculin and GAPDH were used as loading controls. Molecular weight marker
is shown in kDa (n=3).
(B) Chromatin immunoprecipitation followed by qPCR for CEBPB binding to the
IL6 promoter in BJ ER:BRAF cells (Control or siMIR31HG1) treated with ethanol (Control) or 1M 4-OHT
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for 48h. The graph shows the ratio of CEBPB to IgG binding normalized to the binding in control cells set
as 1 (n=3). (C) BJ ER:BRAF cells (Control or siMIR31HG1-2) were treated with ethanol (Control) or 1M 4-
OHT for 72h and processed for immunofluorescence (see materials and methods). Representative
images of RELA immunofluorescence and DAPI (4,6-diamidino-2-phenylindole) are shown in the figure (n-
3). (D) BJ ER:BRAF cells (Control or siMIR31HG1-2) were treated with ethanol (Control) or 1M 4-OHT for
72h and processed for immunofluorescence (see materials and methods). Representative merged images
of IL1A and DAPI are shown in the figure (n=3). (E) BJ ER:BRAF cells (Control or siMIR31HG1-2) were
treated with ethanol (Control) or 1M 4-OHT for 72h. Whole cell extracts were analysed by western blot for
IL1A protein levels. Vinculin is shown as loading control. Molecular weight marker is shown in kDa (n=3).
(F) qRT-PCR analysis for the indicated SASP factors in BJ ER:BRAF cells transfected with the indicated
siRNAs (Control or siMIR31HG1-2), treated with ethanol (Control) or 1M 4-OHT for 48h, in the absence or
presence of 10ng/ml of h-rIL1A for 2h before RNA extraction (n=3). (G) Western blot for IL6 from
precipitated protein from the media in the conditions indicated in (f) in in the absence or presence of
10ng/ml of h-rIL1A for 24h before harvesting the CM (n=3). (s.e, short exposure, l.e, long exposure). (H)
Polysome profile performed by sucrose gradient separation in BJ ER:BRAF control cells (Sen, black) or
siMIR31HG cells (Sen siMIR31HG, red) treated with 1M 4-OHT for 72h. Y axis shows the absorbance at
260nM and X axis shows the number of the fractions collected. Red area shows the heavy polysome
fractions and grey area shows the light polysome fractions. One representative experiment is shown in
the figure (n=3). (I) Distribution of the amount of IL1A mRNA in the heavy polysome (red) light polysome
(grey) or other fractions (white) from the experiment in (g). (J) Relative amount of IL1A, IL6 and ACTB
mRNA present in the heavy polysome fractions in the experiment described in (J). All statistical
significances were calculated using two-tailed Student t-tests, **P < 0.01; ns, non-significant. All error bars
represent mean ± s.d.
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Figure 4

MIR31HG interacts with YBX1. (A) Schematic representation of the pull-down procedure. (B) Cellular
extracts from BJ ER:BRAF (Control or siMIR31HG) treated with 1M 4-OHT for 72h were incubated with
antisense oligos, enriched proteins extracted and subjected to LC-MS analysis (see materials and
methods). The volcano plot highlights proteins enriched in the MIR31HG pull down analysis compared to
a luciferase control pull down. Marked in red are protein with pvalue < 0.05. (C) The heat map shows the
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relative expression of significant differentially expressed genes in BJ ER:BRAF cells (control or
siMIR31HG) treated with ethanol (Control1-3) or 1M 4-OHT for 48h (Sen 1-3, Sen siMIR31HG 1-3, Sen
YBX1-KD1-3) (D) qRT–PCR analysis of selected components of the SASP normalized to housekeeping
genes (HPRT1 and RPLP0) in BJ ER:BRAF cells transfected with the indicated siRNAs (Control or siYBX1,
1-2), treated with ethanol (Control) or 1M 4-OHT for 48h. The graph shows results compared to control
ethanol-treated set to 1 (n=4). (E) BJ ER:BRAF (Control or siYBX1, 1-2) were treated for 72h with ethanol
(Control) or 1M 4-OHT. The CM was then harvested and secreted CXCL1 and IL6 were measured by
ELISA. The graph shows the pg/ml of secreted protein (n=3). (F) BJ ER:BRAF cells (Control or siYBX1, 1-
2) were treated with ethanol (Control) or 1M 4-OHT for 72h. Whole cell extracts were analysed by
western blot for IL1A protein levels. Vinculin is shown as loading control. Molecular weight marker is
shown in kDa (n=3). (G) BJ ER:BRAF cells carrying a GFP-YBX1 were induced with 1M 4-OHT for 72h
and crosslinked and processed for RIP (see materials and methods) The graph shows YBX1 binding as
positive control (blue), MALAT1, ND1 and ND4 binding as negative controls (green) and cytokines binding
(pink). The results are shown as percentage of input relative to an empty GFP cell line treated in the same
conditions (n=3). All statistical significances were calculated using two-tailed Student t-tests, **P < 0.01;
*P < 0.05; ns, non-significant. All error bars represent mean ± s.d.
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Figure 5

Phosphorylated YBX1 induces IL1A translation. (A) BJ ER:BRAF cells treated with 1M 4-OHT for the
indicated time were analysed by western blot for p-YBX1 (arrow) and total YBX1. Vinculin is used as
loading control. Molecular weight marker is shown in kDa (n=2). (B) Western blot for pRSK1, RSK1, p-
YBX1, total YBX1 and VCL in BJ ER:BRAF cells treated with 1M 4-OHT for the indicated time. Molecular
weight marker is shown in kDa (n=3). (C) BJ ER:BRAF cells untreated (control) or treated with 1M 4-OHT
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and the corresponding inhibitors at 1M for the indicated time were analysed by western blot for p-YBX1,
total YBX1. DMSO is used as vehicle control. Vinculin is used as loading control. Molecular weight marker
is shown in kDa (n=3). (D) BJ ER:BRAF cells untreated (control) or treated with 1M 4-OHT and the
indicated inhibitor at 1M for 72h were analysed by western blot for p-YBX1, total YBX1, IL1A and
Vinculin. Molecular weight marker is shown in kDa (n>4). (E) BJ ER:BRAF cells expressing a doxycycline-
induced empty, wild type, mutant S102A or mutant S102D versions of YBX1 were transfected with a
siRNA against YBX1. 24h later cells were transfected with luciferase reporter constructs pGL3-promoter
(control) or pGL3-promoter-3’UTR (3’UTR) containing the 3’UTR of IL1A mRNA and treated with ethanol
(control) or with 1M 4-OHT for 48h. The graph shows the the luciferase values normalized to renilla and
relative to the empty cell line in the absence of 4-OHT set as 1 (n=4). (F) RIP analysis using a GFP-tagged
version of WT YBX1, S102A mutant or S102D mutant in formaldehyde crosslinked cells induced with
doxycycline and treated with 1M 4-OHT for 72h. The graph shows YBX1 binding to MIR31HG, IL1A and
MALAT as negative control. The results are shown as percentage of input relative to an empty GFP cell
line treated in the same conditions (n=4). All statistical significances were calculated using two-tailed
Student t-tests, ***P< 0.001; **P < 0.01; *P < 0.05; ns, non-significant. All error bars represent mean ± s.d.
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Figure 6

MIR31HG inhibits YBX1 interaction with its kinase RSK. (A) BJ ER:BRAF cells (Control or siMIR31HG1-2)
were treated with ethanol (Control) or 1M 4-OHT for 72h. After cellular fractionation p-YBX1 and YBX1in
the total and cytoplasmic fractions were analysed by western blot. Vinculin and GAPDH were used as
cytoplasmic controls and histone H3 as nuclear control (n=3). (B) BJ ER:BRAF cells (Control or
siMIR31HG1) were treated with ethanol (Control) or 1M 4-OHT for 72h. The cells were fixed and
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processed for PLA (see materials and methods). PLA representative images showing the interaction (red
dots) between YBX1 and RSK are shown in the figure (left). Quantification of the number of interactions
(dots) per cell in the conditions indicated (right) in a representative experiment out of 4 independent
replicates (n=4). Statistical significance was calculated using two-tailed Student t-tests, ***P< 0.001; **P
< 0.01. Error bars represent mean ± s.d. (C) Scheme of the working model. 1) During OIS MIR31HG is
induced and locates in the cytoplasm. 2) At the same time, transcription of IL1A mRNA is induced. 3)
IL1A mRNA is exported to the cytoplasm where it interacts with YBX1. MIR31HG facilitates YBX1
interaction with the kinase RSK promoting its phosphorylation which in turns promotes IL1A translation.
4) IL1A signalling induces the transcription of other SASP mRNAs through CEBPB and NF-kB. 5) These
RNAs will be translated in the cytoplasm and the SASP components will be secreted (6).
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