Based on the Hirota's bilinear method, a more classic limit technique is perfected to obtain second-order smooth positons. Immediately afterwards, we propose an extremely ingenious limit approach in which higher-order smooth positons and breather positons can be quickly derived from N-soliton solution. Under this ingenious technique, the smooth positons and breather positons of the modified Korteweg-de Vries system are quickly and easily derived. Compared with the generalized Darboux transformation, the approach mentioned in this paper has the following advantages and disadvantages: the advantage is that it is simple and fast; the disadvantage is that this method cannot get a concise general mathematical expression of nth-order smooth positons.