The northward propagation of intraseasonal oscillations (ISO) is one of the major modes of variability in the tropics during boreal summer, associated with active and break spells of monsoon rainfall over the Indian region, and modulate the Indian summer monsoon rainfall (ISMR). The northward march starts close to the equator over warm waters of the Indian Ocean and continues till the foothills of the Himalayas. The northward propagations tend to be weaker during positive Indian Ocean Dipole (pIOD) years. We have used the "moisture mode" framework to understand the processes responsible for the weakening of northward propagations during IOD years. Our analyses show that moistening caused by the horizontal advection was the major contributor for the northward propagations during negative IOD (nIOD) years, and its amplitude is much smaller during pIOD years. The reduction in the zonal advection during pIOD is responsible for the weakening of northward propagations. Also, the mean structure of entropy between 925hpa – 500hpa levels remained similar over most of the monsoon region across the contrasting IOD years. The reason for weaker northward propagations can be attributed to the weaker zonal wind perturbations at intraseasonal timescales. The weaker zonal wind perturbations during ISO events in pIOD years owing to cooler sea surface temperatures (SST) in the South-East Equatorial Indian Ocean (SEIO) and warmer West Equatorial Indian Ocean (WEIO) and South-East Arabian Sea (SEAS) is proposed to be the possible reason for the weakening of northward propagations during pIOD years.