1. M. Armand, J. M. Tarascon, Building better batteries. Nature 451, 652-657 (2008).
2. J. B. Goodenough, K. S. J. A. C. S. Park, The Li-ion rechargeable battery: A perspective J. Am. Chem. Soc. 135, 1167-1176 (2013).
3. A. Manthiram, X. W. Yu, S. F. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).
4. D. E. Fenton, J. M. Parker, P. V. Wright, Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14, 589-589 (1973).
5. J. Mindemark, M. J. Lacey, T. Bowden, D. Brandell, Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114-143 (2018).
6. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. X. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem-Us 5, 2326-2352 (2019).
7. R. Khurana, J. L. Schaefer, L. A. Archer, G. W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395-7402 (2014).
8. J. Lopez, Y. Sun, D. G. Mackanic, M. Lee, A. M. Foudeh, M. S. Song, Y. Cui, Z. Bao, A dual-crosslinking design for resilient lithium-ion conductors. Adv. Mater. 30, 1804142 (2018).
9. W. Liu, N. Liu, J. Sun, P. C. Hsu, Y. Li, H. W. Lee, Y. Cui, Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740-2745 (2016).
10. W. Liu, S. W. Lee, D. Lin, F. Shi, S. Wang, A. D. Sendek, Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017).
11. H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal, Y. Yang, A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182-3187 (2017).
12. Z. Xue, T. Liu, S. Zhang, H. Xin, B. Xu, Y. Lin, B. Xu, L. Li, C. W. Nan, S. Yang, Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779 (2017).
13. Jin, Zheng, Dr., Mingxue, Tang, Prof., Yan-Yan, Hu, Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538-12542 (2016).
14. M. A. Ratner, D. F. Shriver, Ion-transport in solvent-free polymers. Chem. Rev. 88, 109-124 (1988).
15. M. Li, C. Wang, Z. Chen, K. Xu, New concepts in electrolytes. Chem. Rev. 120, 6783-6819 (2020).
16. O. Borodin, G. D. Smith, Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39, 1620-1629 (2006).
17. D. Diddens, A. Heuer, O. Borodin, Understanding the Lithium Transport within a Rouse-Based Model for a PEO/LiTFSI Polymer Electrolyte. Macromolecules 43, 2028-2036 (2010).
18. I. Rey, J. Lassègues, P. Baudry, H. Majastre, Study of a lithium battery by confocal Raman microspectrometry. Electrochimica Acta 43, 1539-1544 (1998).
19. I. Rey, J. L. Bruneel, J. Grondin, L. Servant, J. C. Lassegues, Raman spectroelectrochemistry of a lithium/polymer electrolyte symmetric cell. J. Electrochem. Soc. 145, 3034-3042 (1998).
20. M. Doyle, T. F. Fuller, J. Newman, The Importance of the Lithium Ion Transference Number in Lithium Polymer Cells. Electrochimica Acta 39, 2073-2081 (1994).
21. M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J. M. Tarascon, R. Bouchetc, S. Lascaud, Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochimica Acta 51, 5334-5340 (2006).
22. R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J. P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452-457 (2013).
23. H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand, Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797-815 (2017).
24. K. M. Diederichsen, E. J. Mcshane, B. D. Mccloskey, The most promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2, 2563-2575 (2017).
25. D. Zhou, A. Tkacheva, X. Tang, B. Sun, D. Shanmukaraj, P. Li, F. Zhang, M. Armand, G. Wang, Stable conversion chemistry‐based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near‐single ion conduction. Angew. Chem. Int. Ed. 58, 6001 –6006 (2019).
26. C. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lu, C. J. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245-250 (2019).
27. M. C. Lin, M. Gong, B. Lu, Y. Wu, D. Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery. Nature 520, 325-328 (2015).
28. X. F. Xu, K. Lin, D. Zhou, Q. Liu, X. Y. Qin, S. W. Wang, S. He, F. Y. Kang, B. H. Li, G. X. Wang, Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem. 6, 902-918 (2020).
29. W. Meng, C. Jiang, S. Zhang, X. Song, Y. Tang, H. M. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018).
30. G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual‐ion battery based on PVDF‐HFP‐modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8, 1801219 (2018).
31. Y. Zhao, Y. Ding, J. Song, G. Li, G. B. Dong, J. B. Goodenough, G. H. Yu, Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. Angew. Chem. Int. Ed. 53, 11036-11040 (2014).
32. H. Bo, C. Debruler, Z. Rhodes, T. L. Liu, Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139, 1207-1214 (2016).
33. Z. P. Song, H. S. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280-2301 (2013).
34. Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127-142 (2020).
35. J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L. Q. Chen, J. Qin, Y. Cui, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705-711 (2019).
36. T. Xie, A. France-Lanord, Y. Wang, Y. Shao-Horn, J. C. Grossman, Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials. Nat. Commun. 10, 2667 (2019).
37. H. K. Kim, N. P. Balsara, V. Srinivasan, Continuum description of the role of negative transference numbers on ion motion in polymer electrolytes. J. Electrochem. Soc. 167, 110559 (110511pp) (2020).
38. D. M. Pesko, K. Timachova, R. Bhattacharya, M. C. Smith, I. Villaluenga, J. Newman, N. P. Balsara, Negative transference numbers in poly(ethylene oxide)-based electrolytes. J. Electrochem. Soc. 164, E3569-E3575 (2017).
39. A. France-Lanord, J. C. Grossman, Correlations from ion-pairing and the Nernst-Einstein equation. Phys. Rev. Lett. 122, 136001 (2018).
40. J. Redepenning, E. Castro-Narro, G. Venkataraman, E. Mechalke, Influence of supporting electrolyte activity on formal potentials measured for dissolved internal standards in acetonitrile. J. Electrochem. Soc. 498, 192-200 (2001).
41. K. Uosaki, Y. Sato, H. Kita, Electrochemical characteristics of a gold electrode modified with a self-assembled monolayer of ferrocenylalkanethiols. Langmuir 7, 1510-1514 (1991).
42. G. Inzelt, L. Szabo, The effect of the nature and the concentration of counter ions on the electrochemistry of poly(vinylferrocene) polymer film electrodes. Electrochimica Acta 31, 1381-1387 (1986).
43. Y. Wang, Y. Deng, Q. Qu, X. Zheng, J. Zhang, G. Liu, V. S. Battaglia, H. Zheng, Ultrahigh-capacity organic anode with high-rate capability and long cycle life for lithium-ion batteries. ACS Energy Lett. 2, 2140-2148 (2017).
44. W. Zhou, Z. Wang, Y. Pu, Y. Li, J. B. Goodenough, Double‐layer polymer electrolyte for high‐voltage all‐solid‐state rechargeable batteries. Adv. Mater. 31, 1805574 (2019).
45. H. Wang, Q. Wang, X. Cao, Y. He, K. Wu, J. Yang, H. Zhou, W. Liu, X. Sun, Thiol‐branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium‐metal batteries. Adv. Mater. 32, 2001259 (2020).
46. D. G. Mackanic, W. Michaels, M. Lee, D. W. Feng, J. Lopez, J. Qin, Y. Cui, Z. N. Bao, Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 8, 1800703 (2018).
47. Y. Liu, R. Hu, D. Zhang, J. Liu, M. Zhu, Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all solid-state lithium metal batteries. Adv. Mater. 33, 2004711 (2021).
48. C. K. Zhang, Z. H. Niu, J. Bae, L. Y. Zhang, Y. Zhao, G. H. Yu, Polyeutectic-based stable and effective electrolytes for high-performance energy storage systems. Energy Environ. Sci. 14, 931-939 (2021).
49. Q. Liu, D. Zhou, D. Shanmukaraj, P. Li, F. Y. Kang, B. H. Li, M. Armand, G. X. Wang, Self-Healing Janus interfaces for high-performance LAGP-based lithiummetal batteries. ACS Energy Lett. 5, 1456-1464 (2020).
50. P. Jaumaux, Q. Liu, D. Zhou, X. Xu, T. Wang, Y. Wang, F. Kang, B. Li, G. Wang, Deep‐Eutectic‐solvent‐based self‐healing polymer electrolyte for safe and long‐life lithium‐metal batteries. Angew. Chem. Int. Ed. 132, 9219 – 9227 (2020).
51. M. Martinez-Ibaez, E. Sanchez-Diez, L. Qiao, Y. Zhang, H. J. A. F. M. Zhang, Unprecedented improvement of single Li-ion conductive solid polymer electrolyte through salt additive. Adv. Funct. Mater. 30, 2000455 (2020).
52. P. J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 3, 476-481 (2004).
53. L. Z. Fan, Y. S. Hu, A. J. Bhattacharyya, J. Maier, Succinonitrile as a Versatile Additive for Polymer Electrolytes. Adv. Funct. Mater. 17, 2800-2807 (2010).