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Abstract 21 

Flavonoids are secondary metabolites that accumulate in most plants. Calycosin-7-O-β-D-22 

glycoside (CG), as a flavonoid, plays an important role in the abiotic stress response of Astragalus 23 

membranaceus Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus). CG is also an active 24 

ingredient in A. mongholicus with high medicinal value. However, the response mechanism of CG 25 

biosynthetic pathway to drought stress is not clear. In this research, drought stress was inflicted 26 

upon annual potted A. mongholicus for 15 days and the variations in flavonoid metabolites and the 27 

correlating gene expression in CG biosynthesis were studied in roots, stems and leaves of A. 28 

mongholicus by UHPLC-MRM-MS/MS and qRT-PCR. Drought stress reduced the dry weight and 29 

increased the content of MDA and Proline. Drought promoted the accumulation of most 30 

compounds in the CG synthetic pathway of A. mongholicus, which decreased after rewatering. 31 

AmI3’H is highly expressed in the roots under drought stress. Overexpression of AmIOMT was 32 

observed in the leaves, but the content of formononetin which is the product of IOMT catalysis 33 

was higher in stems than in leaves. This research aims to further understand the acclimation of 34 

plant to abiotic stress and the regulation mechanism of flavonoid accumulation in astragalus species. 35 

Keywords: Drought stress A. mongholicus Secondary metabolite qRT-PCR Targeted metabolome 36 
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Introduction 41 

Secondary metabolites are an important group of compounds essential for plant acclimation and 42 

survival to varying environmental conditions, which can be classified into three major types, 43 

including terpenoids, nitrogen-containing metabolites and phenolics[1]. As antioxidants, phenolic 44 

compounds (tannins, flavonoids and lignin) can inhibit the generation of reactive oxygen species 45 

(ROS)[2] and contribute to counteracting the negative impacts of drought stress[3]. The main 46 

reason for drought-induced accumulation of phenolic acids and flavonoids is the modulation of 47 

phenylpropanoid biosynthetic pathway[4]. Drought enhanced the transcription levels of PAL, C4H 48 

and F3H, which are genes encoding key enzyme in enzyme-catalyzed phenylpropanoid 49 

biosynthesis, leading to increase in the flavonoid levels[5, 6]. In soybeans, flavonoid biosynthesis 50 

is upregulated under drought-induced oxidative stress [7]. Controlled drought stress significantly 51 

increased the production of glycyrrhizic acid and liquiritin without reducing root biomass [8]. 52 

Drought stress enhanced beta caotene composition in Choysum varieties[9], the content of total 53 

antioxidant activity, total polyphenols and total flavonoids content in Silybum marianum [10], 54 

Achillea species [11], Amaranthus tricolor [12, 13]. Successful and effective use of deliberate 55 

drought stress can directly increase the production of secondary metabolites, which can be achieved 56 

by applying simple and inexpensive special irrigation systems [14]. 57 

Radix astragali is the dried root of Astragalus membranaceus Bge. var. mongholicus (Bge.) (A. 58 

mongholicus or Astragalus membranaceus (Fisch.) Bge.). It is one of the most commonly 59 

employed natural herbs in China, Japan, Korea and other Asian regions. Currently, the natural 60 
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resources of A. mongholicus is dwindling and commercial supply mostly depends on artificial 61 

cultivation. The quality of radix astragali is related to the content of biological active compounds. 62 

While calycosin-7-O-β-D-glucoside (CG) is one of them, which plays an important role in 63 

preventing osteoporosis [15], relieving myocardial injury upon hyperthermia [16], antioxidant [17], 64 

and anticancer [18].  65 

The three early steps of the conversion from phenylalanine to cinnamic acid derivatives in the 66 

biosynthetic pathway of flavonoids are identical for all major phenylpropane pathways. Therefore, 67 

these series of reactions are known as ‘generic phenylpropane metabolism’ [19]. As shown in Fig. 68 

1[20], PAL, the first enzyme to enter the flavonoid pathway [21], converts the L-phenylalanine to 69 

cinnamic acid, Then C4H [22] and 4CL were applied in cinnamic acid to form 4-coumaroyl-CoA 70 

[23]. The first step during the biosynthesis of flavonoids and flavonol glycosides is catalyzed by 71 

chalcone synthase (CHS), which is a key enzyme in various flavonoid pathways [24]. In the 72 

following reaction, naringin (5,7,4-trihydroxy flavonoids) was generated by isomerization of 73 

chalcone isomerase (CHI) [25]. During the synthesis of isoflavone species, isoflavone synthetase 74 

(IFS) catalyzes the formation of all isoflavones [26] ,which has the function of converting naringin 75 

into genistein and catalyzing daidzein. A methyl group is then added in daidzein to form 76 

formononetin by isoflavone O-methyltransferase (IOMT) [27]. Finally, isoflavone 3' -hydroxylase 77 

(I3’H) is hydroxylated to form calycosin, and the compound can be modified into CG by UDP-78 

glucose: calycosin-7-O-glucosyl transferase (UCGT) [20].  79 

Our previous studies have shown that moderate drought is conducive to the accumulation of 80 
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CG[28]. Therefore, a possibility is that the use of water stress to improve the quality of A. 81 

mongholicus. The premise of achieving this goal is to grasp the response to drought stress of A. 82 

mongholicus. In this paper, changes of CG synthesis related to metabolites and enzyme gene 83 

expression levels were studied in different organs of A. mongholicus under drought stress, which 84 

can contribute to the further understanding of the calycosin-7-O-β-D-glucoside synthetic pathway. 85 

 86 

Fig. 1 Proposed calycosin and CG biosynthetic pathways in plants [18]. PAL, phenylalanine ammonia lyase; 87 

C4H, cinnamate-4-hydroxylase; 4CL, 4-coumaroyl CoA ligase; CHS, chalcone synthase; CHR, chalcone 88 

reductase; CHI, chalcone isomerase; IFS, isoflavone synthase; IOMT, isoflavone O-methyltransferase; I3′H, 89 

isoflavone3′-hydroxylase; UCGT, UDP-glucose: calycosin-7-O-glucosyltransferase. 90 

Materials & Methods 91 

Experimental Materials and Experimental Design 92 

Greenhouse pot experiment was conducted in Inner Mongolia University south campus (40°17′ 93 
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N, 111°38′ E, altitude: 1050 m), Hohhot city, Inner Mongolia Province, Northwest China. In the 94 

natural photon-cycle (about 14/10 h light/dark cycle) and 26±4℃/16±3℃ day/night cycle from 95 

march to June 2018. Seeds of A. mongholicus were purchased from Inner Mongolia Tianchuang 96 

Pharmaceutical Technology Co., Ltd. The seeds were immersed in water at 100 °C for 90 s, 97 

followed by soaking in water at 30 °C for 3 h, which were then sown in plastic pots (17 cm in 98 

diameter and 25 cm in height), 40 per pot on March 15, 2018. Cultivated soil from field soil 99 

Wuchuan County, is chestnut soil. The soil organic matter content is 12.92±1.06 g/kg, total nitrogen 100 

is 0.86±0.07 g/kg, alkali nitrogen is 53.67±10.69mg/kg, total phosphorus is 0.36±0.07 g/kg, 101 

available phosphorus is 43.77±0.93mg/kg, total potassium. 10.77±0.87g/kg, available potassium 102 

24.25±3.55mg/kg, pH=8.14±0.03. Water is poured once every 4-5 days after the seeds are 103 

germinated. When the plant height of most seedlings was about 15cm, seedlings with roughly equal 104 

height were selected and randomly divided into two groups. Adequate water was continued to be 105 

retained in the control group, while the dry group was fully irrigated, which was then kept drought 106 

for 15 days. The roots, stems and leaves of seedlings in two groups (6 pots each) were collected as 107 

samples at 8:00 a.m. The samples were immediately frozen in liquid nitrogen and stored at -80 °C. 108 

The remaining seedlings were replenished on day 15 after drought stress. Two groups of seedlings 109 

(6 pots each) were collected at 8:00 am on day 21. Roots, stems and leaves were frozen in liquid 110 

nitrogen and placed at -80 °C. 111 

Determination of soil water content (SWC) and root, shoot dry weight  112 

Soil samples from six pots were collected shortly after sampling. Soil samples were dried at 105℃ 113 
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for 48 h in oven to determine the DW after determination of the FW. SWC was calculated as follows: 114 

SWC (%) = [(FW - DW)/FW] ×100. Root and shoot of the seedlings were separated, which were 115 

then washed with distilled water, gently blotted dry with a filter paper, weighed for FW and then 116 

were oven dried at 60 ℃ for 48 h for DW determination, respectively.                                                                 117 

Determination of MDA, Pro 118 

Content of malondialdehyde (MDA), the final product of lipid peroxidation, was measured as 119 

described by Du and Bramlage [29]. Proline content was determined according to ninhydrin 120 

coloring method [30].  121 

RNA Extraction and Real-Time PCR 122 

The extraction of total RNA and the reaction of polymerase chain were performed based on the 123 

reference [31]. The extraction of total RNA and the reaction of polymerase chain were performed 124 

based on the reference [32].The response consisted of three biological replications, the use of 18S 125 

as a reference was repeated to calculate the expression of each gene in a relatively quantitative 126 

manner in three techniques. 127 

Isoflavone Extraction and UHPLC-MRM-MS/MS Analysis  128 

This part of the experiment was commissioned by Shanghai BioTree biotech Co.,Ltd . The 129 

extraction of related compounds follows previous studies [33]. The instrument model is Agilent 130 

1290 Infinity II series (Agilent Technologies), the target compound was chromatographed using a 131 

Waters ACQUITY UPLC HSS T3 (100×2.1 mm, 1.8 μm, Waters) liquid chromatography column. 132 

The liquid phase A phase is 0.1% aqueous acetic acid, B phase is methanol. The oven temperature 133 
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was 40 °C, the sample tray was set to 4 °C, and the injection volume was 3 μL. 134 

Mass spectrometry was conducted in a multiple reaction monitoring (MRM) mode using an 135 

Agilent 6460 triple quadrupole mass spectrometer equipped with an AJS-ESI ion source. The ion 136 

source parameters are as follows: Capillary voltage = +4000/-3500 V, Nozzle voltage = +500/-500 137 

V, gas (N2) temperature = 300 °C, Gas (N2) flow = 5 L/min, sheath gas (N2) temperature = 250 °C, 138 

sheath gas flow = 11 L/min, nebulizer = 45 psi. 139 

Statistical Analysis 140 

SigmaPlot mapping was employed. Each result shown in the figure was the mean of three 141 

replicated treatments. The significant differences between treatments were statistically evaluated 142 

by standard deviation. Processing data with SPSS 19. Treatment means were compared using 143 

Duncan’s multiple range examination. 144 

Results  145 

Soil water content (SWC) and root, shoot dry weight 146 

The seedlings of A. mongholicus were treated with drought for 15 days. First, the relative water 147 

content of the soil was examined under drought stress. SWC significantly reduced from 34.17% to 148 

22.55% on day 3, and then gradually reduced to 7.55% on day 20 (Fig.2a). The root dry weight is 149 

0.09 g/plant, which is about 16.45% lower than the control. As a result, about half of the drought-150 

stressed plants exhibited leaf yellowing and curling. The shoot dry weight was 0.20 g/plant, which 151 

was decreased by 33.56% compared with the control. Root dry weight decreased significantly to 152 

be about 0.09 g/plant on day 15, which was 83.6% of the control. Shoot dry weight continued to 153 
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decrease to be about 0.20 g/plant on day 3, which was 66.4% of the control (Fig.2b). 154 

 155 

Fig.2 Effects of progressive drought stress and rehydration on soil water content (a), plant growth variables(b) 156 

R-DS: root dry weight under drought stress, R-CK: root dry weight under control conditions, S-DS: shoot dry 157 

weight under drought stress, S-CK: shoot dry weight under control conditions. Red arrows indicate to start 158 

rehydration at the date. Data represent the mean values ± SE. The asterisk represents significant difference (P < 159 

0.05) 160 

Physiological changes during drought acclimation 161 

  MDA is one of the lipid peroxidation products of plant cell membranes. The MDA contents in 162 

roots, stems and leaves are is increased under drought stress. The MDA content in roots increased 163 

significantly from day 9, it reached 3.54 times of the control by day 12.MDA levels in stems and 164 

leaves increased by 52% and 66% respectively (Fig. 3a) on day 14. The content of proline in roots, 165 

stems and leaves increased with the prolonged drought. The proline content increased slowly at the 166 

beginning of the drought and increased remarkably on day 12. On day 15, the proline contents in 167 

leaves, stems and roots were 34.77, 54.27, 36.29 times of that on day 0 (Fig. 3b). 168 
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 169 

Fig.3 Changes of A. mongholicus Physiological Indexes under Drought Stress (a) MDA content (b) proline 170 

contents. Red arrows indicate to start rehydration at the date. Data represent the mean values ± SE. The asterisk 171 

represents significant difference (P < 0.05) 172 

The Expression Levels of Related Genes in Different Organs of A. mongholicus Under 173 

Drought Stress  174 

To study the related genes in calycosin and CG biosynthesis, the expression levels of genes 175 

related to CG biosynthesis in root, stem, and leaf are investigated using qRT-PCR. The expression 176 

levels of AmIOMT, AmIOMT, AmCHR, AmIFS, AmI3'H, AmPAL, AmC4H, Am4CL and AmCHI are 177 

expressed in Fig. 4. The expression level of AmIOMT in leaves increased significantly under 178 

drought treatment. The expression level of AmCHS in stems was significantly increased. The 179 

expression levels of AmCHR, AmIFS and AmI3'H in the roots increased significantly (Fig. 4). The 180 

expression levels of AmPAL, AmC4H and Am4CL showed similar expression patterns under 181 

drought stress, wherein, expression level of AmPAL was increased by about three-fold in the root. 182 

PAL, CHI and IFS, catalytic synthesis of respective cinnamic acid, liquiritigenin and daidzein in 183 

the CG pathway, was upward expression levels in roots of A. mongholicus under drought treatment, 184 
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just as the trends of these three compounds. The expression levels of AmCHR, AmCHI, AmIFS and 185 

AmI3’H in roots were the highest, while the expression levels of AmCHR, AmCHI, AmIFS and 186 

AmI3’H in leaves were the lowest. The expression levels of AmCHR, AmCHI, AmIFS and AmI3’H 187 

in leaves were decreased by about 2.00-, 2.35- ,3.55-,5.25 times, respectively. The expression levels 188 

of AmCHR, AmCHI, AmIFS and AmI3’H in roots were increased by about 4.76-,2.71-,8.01- and 189 

5.57 times, respectively. The expression level of AmCHS (Fig. 4d) in the stem was the highest, 190 

which was increased by about 1.86 times compared with the control. The expression level of 191 

AmCHS in the leaves and roots decreased by about 2.51- and 3.04 times respectively, while the 192 

expression level of AmIOMT in the leaves was the highest, which was increased by about 193 

6.69-,3.93- and 1.59 times respectively compared with the control. 194 

 195 

Fig.4 Effect of drought stress on the expression of genes related to the calycosin and CG biosynthetic pathways 196 

in different organs of A. mongholicus. (a) AmPAL; (b) AmC4H; (c) Am4CL; (d) AmCHS; (e) AmCHR; (f) AmCHI; 197 
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(g) AmIFS; (h) AmIOMT; (i) AmI3’H. The height of each bar and the error bars indicate the means and standard 198 

deviation, respectively, from three independent measurements. 199 

The Expression Level of Related Genes in Different Organs of A. mongholicus Under Rewater  200 

Fig. 5 showed the expression of AmIOMT, AmIOMT, AmCHR, AmIFS, AmI3'H, AmPAL, AmC4H, 201 

Am4CL and AmCHI in roots, stems, and leaves after rewater, these genes showed an increased 202 

trend in leaves, except AmCHR, AmCHI and AmI3'H. PAL and C4H, catalytic synthesis of cinnamic 203 

acid and 4-coumaric acid respectively, in the CG pathway, was downward expression levels in 204 

stems of A. mongholicus with rewater treatment, just as the trends of cinnamic acid and 4-coumaric 205 

acid. AmPAL, AmC4H, Am4CL, AmCHS, AmIFS, AmIOMT all exhibited the highest expression 206 

levels in leaves compared with the roots and stems, increasing by about 3.17-, 1.34-, 4.98-, 6.31-, 207 

3.57- and 2.42 times respectively. AmCHS expression level in the roots was decreased by about 208 

2.06 times. The expression of AmPAL, AmC4H, Am4CL, AmIFS and AmIOMT in the root was 209 

higher than that in the stems, these genes increased about 1.24-,1.05-,2.36-,1.02- and 1.14 times 210 

respectively in the root. The expression levels of AmPAL, AmC4H, AmIFS and AmIOMT in the 211 

stem decreased by about 1.42-, 1.82-, 1.18- and 1.35 times respectively. The expression levels of 212 

AmCHR, AmCHI and AmI3’H were the highest in the stems compared with the roots and leaves, 213 

meanwhile the expression levels of these genes increased by about 4.67-,4.36- and 3.11 times 214 

respectively. The expression levels of AmCHR, AmCHI and AmI3’H in the leaves increased by 215 

about 3.04-1.29- and 1.33 times respectively, while the expression levels of these genes in the roots 216 

decreased by about 4.95-, 1.03- and 1.33- fold respectively.  217 
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 218 

Fig.5 Under rewater, expression levels in the leaves, stems, roots of genes related to the calycosin and CG 219 

biosynthetic pathways. (a) AmPAL; (b) AmC4H; (c) Am4CL; (d) AmCHS; (e) AmCHR; (f) AmCHI; (g) AmIFS; 220 

(h) AmIOMT; (i) AmI3’H. The height of each bar and the error bars indicate the means and standard deviation, 221 

respectively, from three independent. 222 

Accumulation of Metabolites Related to CG Synthesis in Different Organs Under Drought 223 

Stress 224 

The content of compounds on the CG synthesis pathway was determined in different organs of 225 

A. mongholicus by UHPLC-MS /MS under drought stress, as shown in Fig. 6. All target compounds, 226 

in addition to calycosin, exhibited enhanced accumulation in response to drought stress in roots of 227 

A. mongholicus. The content of cinnamic acid, liquiritigenin, daidzein and CG in roots were 0.1389 228 

μg /g DW (dry weight), 0.2198 μg /g DW and 0.0643 μg /g DW respectively, which were 229 

2.86-,12.93-, 34.63 times than those of the control. L-phenylalanine and 4-coumaric acid were 230 
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accumulated significantly in leaves after treatment. The contents of L-phenylalanine and 4-231 

coumaric acid were 76.3323 μg /g DW and 0.3555 μg /g DW, respectively, which were 5.90 and 232 

1.99 times higher than the control. Drought induced accumulation of formononetin and calycosin 233 

in stems were 0.2632 and 0.6039 μg /g DW respectively, which was 6.79- and 7.19 times over the 234 

levels in control plants. The content of CG in roots was15.8522 μg /g DW, increased remarkably 235 

compared with the control. 236 

 237 

Fig.6 Effect of drought stress on the content of metabolites related to calycosin-7-O-β-D-glucoside biosynthetic 238 

pathways in different organs of A. mongholicus: (a) L-Phenylalanine; (b) Cinnamic acid;(c) 4-Coumaric acid; (d) 239 

Liquiritigenin; (e) Daidzein; (f) Formononetin; (g) Calycosin; (h) CG. Data represent the mean values ± SE. 240 

Different letters indicate significant differences by Tukey’s test (P < 0.05). 241 

Accumulation of Metabolites Related to CG Synthesis in Different Organs Under Rewater 242 

The contents of related compounds in different organs were detected under rewater. As shown 243 
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in Fig. 7, liquiritigenin, formononetin and calycosin exhibited increased accumulation in response 244 

to rewater elicitation in roots, stems and leaves of A. mongholicus. In contrast, the accumulation of 245 

cinnamic acid in stems and roots was decreased. Rewater induced accumulation of daidzein in 246 

stems and the opposite trend appeared in leaves. As shown in Fig. 7d and Fig. 7e, the contents of 247 

liquiritigenin and daidzein in stems were 0.0748 μg /g DW and 3.4387 μg /g DW, which were 4.38- 248 

and 1.78 times higher than the control. More cinnamic acid, formononetin, calycosin and CG were 249 

accumulated in roots than stems and leaves after rewater. The contents of formononetin and 250 

calycosin in roots were significantly increased by 0.81- and 0.78-time compared with the control. 251 

In contrast, the content of cinnamic acid in roots was significantly decreased by 1.41 times 252 

compared with the control. However, no change in content of CG in roots is achieved compared 253 

with the control. 254 

 255 
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Fig.7 Effect of rewater on the content of metabolites related to calycosin-7-O-β-D-glucoside biosynthetic 256 

pathways in different organs of A. mongholicus: (a) L-Phenylalanine;(b) Cinnamic acid;(c) 4-Coumaricacid; (d) 257 

Liquiritigenin;(e) Daidzein;(f) Formononetin;(g) Calycosin;(h) CG. Data represent the mean values ± SE. 258 

Different letters indicate significant differences by Tukey’s test (P < 0.05).  259 

Correlation analysis of target metabolites and related enzyme genes in CG pathway 260 

During this process, most of the metabolites and key enzyme genes related to the CG pathway 261 

changed under water stress. In order to clarify whether there was a correlation between these 262 

variations, correlation analysis of targeted metabolites and related genes in the leaves, stems and 263 

roots were demonstrated. As shown in Fig. 8, AmIOMT in leaves showed a strong negative 264 

correlation with the content of liquiritigenin, but have a strong positive correlation with 265 

formononetin. Interestingly, AmIFS also exhibited a strong positive correlation with the 266 

accumulation of liquiritigenin (Fig. 8a). In the stems, AmPAL was moderately correlated with the 267 

accumulation of cinnamic acid, while Am4CL was strongly correlated with the accumulation of 268 

liquiritigenin and daidzein (Fig. 8b). In roots, AmC4H was moderately correlated with L-269 

phenylalanine content. AmIFS was negatively correlated with the accumulation of daidzein. a 270 

strong correlation between AmI3’H and the accumulation of calycosin existed (Fig. 8c). 271 
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Fig. 8 Correlation map of target metabolites and relative genes in (A) Leaves (B) Stems (C) Roots of A. 273 

mongholicus under drought stress. Each square indicates r (Pearson’s correlation coefficient values for pairs of 274 

isoflavones or relative genes values). The red color represents a positive (0 < r < 1) correlation, and the green 275 

color represents a negative (-1 < r < 0) correlation. 276 

Discussion 277 

In addition to causing material transfer between the shoot and root, drought also increased the root-278 

shoot ratio. Proline is the main organic osmotic agent, which plays an important role in the response 279 

of plants to abiotic stress, such as reducing the osmotic potential of cells to promote plant retention 280 

or absorption of water[34]. Previous studies have shown that Astragalus can increase proline levels 281 

under water deficit stress[35]. In this study, the content of proline increased significantly with time 282 

under drought-stress treatment, reached the peak on day 15, and it was particularly higher in stems 283 

than in leaves. Drought stress led to lipid peroxidation, the production of MDA, and ultimately 284 

generated cell damage and plant death[36]. We observed that drought stress significantly increased 285 

the MDA content, reaching a peak on day 12, and the MDA content in roots was higher than that 286 

in leaves and stems, indicating that the roots suffered more severe lipid peroxidation.  287 

Moderate drought stress can promote the accumulation of CG [29], however the change in the 288 

accumulation of intermediate metabolites is not clear. We found that liquiritigenin was accumulated 289 

significantly in roots and stems of A. mongholicus under drought stress, and similar results were 290 

also obtained in Glycyrrhiza uralensis [37]. Previous studies have shown that the contents of 291 

daidzein, formononetin in soybean roots were increased under water deficit[38], which is consistent 292 
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with our results (Fig. 6). However, the accumulation of them is decreased, in soybean roots under 293 

salt stress, which may be due to the fact that soybean mainly formed 24 dihydroxy b-ring flavonoids 294 

instead of 40 1-hydroxy b-ring flavonoids in response to salt stress[39]. Interestingly, the 295 

accumulation of daidzein and formononetin in soybean leaves was decreased under high 296 

temperature [6]. The content of them in soybean root was increased after low temperature 297 

treatment[40]. After salt stress, the contents of calycosin and CG in roots, stems and leaves of A. 298 

mongholicus were decreased [33]. Pan's study found that CG content in A. mongholicus root 299 

decreased during cold treatment, while no significant change in calycosin was observed [41]. In 300 

general, flavonoids have antioxidant functions when higher plants are challenged by a series of 301 

environmental pressures [12]. At present, there is a view that the increased calycosin in roots may 302 

arise from leaves and stems. Some studies have shown that metabolic compounds are usually 303 

transported from the synthetic site to the accumulation site of plants [42, 43]. In addition, the 304 

accumulation of phenylpropanoid is discrepant in various organs of the same plant when the plant 305 

grows under stress[44].  306 

The biosynthetic pathway of flavonoids is one of the crucial secondary metabolic pathways in 307 

plants, and many key genes responding to environmental stress have been studied [45]. Under 308 

drought stress, AmPAL, AmC4H and Am4CL showed similar expression patterns, elevated 309 

transcription levels in roots indicated that phenols in the roots were stimulated in response to 310 

drought and these genes showed similar expression trends in most cases. Previous reports also 311 

highlighted the co-expression of these genes under drought conditions [45]. CHS is thought to be 312 
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the entry point of the flavonoid pathway, where CHI converts chalcone to flavanone compounds, a 313 

prerequisite for many other flavonoid compounds [45]. CHS gene expression was the highest in 314 

the period of strong drought stress [46]. Previous studies found that water deficit can contribute to 315 

the expression of CHS in leaves and roots of Scutellaria baicalensis [47]. The expression of some 316 

genes overlaps under drought, salt stress and low temperature stress [48]. Margarita et al. found 317 

that the expression of AmIFS in the leaves of Lotus japonicas was increased under drought 318 

treatment [49], while our study showed that the expression level of AmIFS in the leaves of A. 319 

mongholicus was decreased under drought treatment but increased significantly in the roots (Fig. 320 

4). This may be due to different storage organs of isoflavones, leading to various expression levels 321 

of AmIFS. The transcription level of AmPAL, AmC4H, AmCHI and AmIFS were up-regulated in 322 

roots under drought induction, and down-regulated in leaves and stems. This change is similar to 323 

the accumulation pattern of the corresponding compounds of these enzymes.For example, the 324 

isoflavones of Lotus japonicus are mainly stored in leaves [50], while the isoflavones of A. 325 

mongholicus are mainly stored in roots. AmIOMT is highly expressed in the context of water 326 

deficiency, which has similar results in chickpeas (Cicer arietinum L.) [51]. It has been reported 327 

that the expression level of I3’H was increased significantly in response to drought, low 328 

temperature and salt stress [52]. I3’H in roots of A. mongholicus was highly expressed in response 329 

to drought stress (Fig. 4). These results show that the high expression of IFS and I3’H contributes 330 

to the accumulation of CG in roots after drought stress.  331 

In this study, drought stress exhibited an obvious induction effect on the accumulation of 332 
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isoflavones in A. mongholicus (Fig. 6). The expression level of AmIOMT in the leaves was the 333 

highest under drought stress, while the product of IOMT catalyzed synthesis, formononetin, was 334 

accumulated mostly in the stem (Fig. 4, Fig. 6). One possible origin is that significant increased 335 

AmIOMT expression level in leaves, leading to a large amount of formononetin synthesis in leaves, 336 

which is then transported to the stem through the petiole. This is consistent with previous reports. 337 

Isoflavones were found in the secretion of phloem of Astragalus membranaceus petiole [41]. 338 

Another reason is probably that AmIOMT interferes or even blocks the process of regulating and 339 

synthesizing formononetin during water deficiency. The accumulation of calycosin and CG in 340 

leaves was significantly reduced under drought stress compared with the control one, indicating 341 

that formononetin might be transported to other organs instead of being transformed into 342 

downstream metabolites in leaves[31, 43]. Previous evidence has demonstrated that under drought 343 

stress, the accumulation of CG, an active ingredient with medicinal value, in Astragalus 344 

membranaceus root increased under drought stress [28, 35], which probably results from calycosin, 345 

a precursor compound synthesized from CG in stem[41, 53].  346 

Conclusions 347 

Previous studies mainly focused on the influences of abiotic stress on CG content, which is the 348 

final metabolite content in the Calycosin-7-O-β-D-glycoside (CG) synthesis pathway, while the 349 

content of all intermediate metabolites in this pathway was measured in this research. Moreover, 350 

the regulation mechanism of CG accumulation in different organs under continuous drought 351 

conditions was studied. The accumulation of calycosin and CG in roots under drought stress may 352 
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be derived from formononetin synthesized in leaves. This study explored the flavonoid synthesis 353 

of plants undergoing abiotic stress on the level of metabolites and key enzyme gene expression, 354 

which is of great significance for obtaining high-quality Astragalus membranaceus in arid or semi-355 

arid area. In traditional Chinese medicine, the root of Astragalus membranaceus is used and most 356 

of its stems and leaves are discarded. Therefore, the future research will focus on the 357 

comprehensive utilization of the non-medicinal parts of astragalus species.  358 
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