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Abstract 22 

A combination of multiple discrimination artificial neural networks using different seismic source 23 

parameters is suggested using a committee machine. In this work, a committee machine was used to 24 

combine supervised and unsupervised artificial neural networks to discriminate between earthquakes 25 

and quarry blasts using data from the Egyptian National Seismological Network (ENSN). The 26 

unsupervised network is used as a measure of accuracy for the results of the supervised neural 27 

network. The unsupervised Self-Organized Map (SOM) and the k-means clustering algorithms are used 28 

to estimate support and confidence measures for the results. Meanwhile, the supervised neural 29 

network is used to discriminate between earthquakes and explosions.  30 

The artificial neural networks are trained using different input parameters which are the P wave 31 

spectrum corner frequency (PcF), S wave corner frequency (ScF), and the ratio (Rcf) of PcF to Scf. The 32 

combined approach succeeds to discriminate between earthquakes and quarry blasts in Northern 33 

Egypt. The method provides the results with a measure of confidence which eliminates false 34 

discrimination. 35 

The current paper represents an idea to implement artificial intelligence to assist experts in decision-36 

making situations. The committee machine could identify the nature of a particular event, using the 37 

aid of several discrimination methods. The proposed committee machine could combine the results 38 

of several algorithms and expert opinions to form one single output with a confidence measure. 39 

 40 

Keywords  41 
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Introduction 43 

Both explosions and earthquakes release a large amount of acoustic energy that ripples through the 44 

earth and recorded by seismic stations; thanks to the difference in source dynamics, the recorded 45 

waveform may look different. But it is still a job that needs trained analysts to conduct such 46 

discrimination, which is very critical to clean seismic catalogs from possible explosions and provide 47 

monitoring tools for controlling such blasts in vast areas for security and proliferation.  48 

Different discriminating methods have been previously proposed based on waveform amplitude ratios 49 
1–4, or spectral methods5–13, or even coda based methods 14,15. Also, discrimination was proposed based 50 

on the time of the day seismicity maps where quarries blasts are usually carried out during the early 51 

hours of the day16,17. In addition, pattern recognition techniques have been used for seismic 52 

discrimination 18,19 53 

Nevertheless, many attempts have been made to discriminate between earthquakes and man-made 54 

seismic sources using neural network6,9,20–25. Tiira26 used a multilayer perceptron (MPL) to discriminate 55 

between nuclear explosions and earthquakes. Del Pezzo et al.,27 used a neural network to discriminate 56 

between earthquakes and underwater chemical explosions fired by fishermen in Pozzuoli bay.  57 

 58 

Nowadays, with the expansion in the use of explosive demolition-based techniques in mining and new 59 

infrastructure projects, it became very crucial to distinguish between naturally occurring from man-60 

made seismic events. Identification of the event's nature is urgently required for decision-makers. 61 

Without true verification from the ground, experts use different published methods for discrimination. 62 

However, these methods have different results, rising argue about confidence and depend mainly on 63 

the analyst experience. Therefore, we develop an automated expert artificial neural network that 64 

could combine the results of different methods and produce a single output with a confidence 65 

measure. This expert artificial neural network is a committee machine with the ability to identify the 66 

nature of a particular event, using the aid of several discrimination methods. The proposed committee 67 

machine could combine the results of several algorithms and expert opinions to form one single 68 

output with a confidence measure. The confidence measure is estimated using unsupervised Self-69 

Organized Map (SOM) and the k-means clustering algorithms. 70 

 71 

  72 
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Data Set 73 

The data set used in this study are seismic events (natural earthquakes and explosions) recorded by 74 

the Egyptian National Seismological Network (ENSN)28–30. This data set was recorded within the 75 

Northern part of Egypt (Figure 1). The events were selected during the period from 2009 to 2015. 76 

These events have a duration magnitude ranging from 1.5 to 3.3, epicentral distances up to 200 km, 77 

and depth shallower than 25 km. The earthquakes and explosions events have a comparable 78 

magnitude range. Figure 2, shows the duration magnitude histograms for both earthquakes and 79 

explosions. The histograms show similar occurrence frequency distribution for both earthquakes and 80 

explosions. 81 

 82 

The dataset contains 720 events where 354 of these events are earthquakes and 366 events represent 83 

local quarry explosions. The data set is formed of two main seismic source parameters that are 84 

hypocenter parameters and spectral parameters. The hypocenter parameters (origin time, epicentral 85 

distance, latitude, longitude, focal depth, and duration magnitude) are collected from the ENSN 86 

bulletins. Meanwhile, the seismic source spectral parameters are estimated using the EQK_SRC_PARA 87 

software31. The used parameters are the duration magnitude (Md), P-wave spectrum corner 88 

frequency (Pcf), S-wave corner frequency (Scf), and the ratio (Rcf) of Pcf to Scf. 89 

 90 

The parameters dependency could be investigated through the correlation matrix listed in Table 1. 91 

The corner frequencies of the P and S waves spectrum are highly correlated (the correlation coefficient 92 

is 0.96). Meanwhile, the corner frequencies and their ratio are uncorrelated with the duration 93 

magnitude, indicating that the corner frequencies are independent of the duration magnitude. 94 

The events distribution over the four parameters is represented in (Figure 3). The scatter plot (Figure 95 

3), shows a continuous distribution of events along the range of each parameter. Remarkably, the 96 

corner frequencies and their ratio are almost separating the earthquakes from the explosion events 97 

with a small overlap. This may be attributed to the time delays of the ripple-fired quarry blasts in the 98 

northern part of Egypt32. These ripple-fired explosions have a characteristic spectrum due to the time 99 

delay between detonations6,33–38. 100 
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 101 

Figure 1:Events spatial distribution. 102 

 103 

 104 

Figure 2: The occurrence frequency of duration magnitude of earthquakes (left) and explosions (Right). 105 

 106 
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Table 1: The correlation coefficients between the four parameters 107 

 Md Pcf Scf Rcf 

Md 1 -0.37 -0.28 0.029 

Pcf  1 0.96 -0.65 

Scf   1 -0.81 

Rcf    1 

 108 

 109 

Figure 3: P-wave cornel frequency versus S-wave cornel frequency and the duration magnitude versus 110 

corner frequency ratio. The blue dots represent earthquakes and the red dots represent explosions. 111 

Method 112 

Artificial Neural Network (ANN) 113 

The artificial neural network (ANN) became very popular in the last decade. It is a computational 114 

scheme that tries to simulate the neuronal biological systems. The artificial neural network consists of 115 

various interconnected units (neurons/nodes).Artificial neural network has been widely used for 116 

detecting seismic events39 and even for velocity model inversion40. 117 

A common neural network structure formed of three layers, called input, hidden, and output layers 118 

were used in this study41,42. Each layer consists of one or more neurons where the values from the 119 

input layer, Xi, is sent to all neurons in the hidden layer in a fully interconnected structure. The values 120 

entering neurons in the hidden layer, Nj, are multiplied by weights, Wij. Then the weighted inputs are 121 

summed together and feed to a mathematical function (known as activation function) that bounds 122 

the neuron output. The data flow is in one direction from the input layer passing through the hidden 123 

layer towards the output layer. This type of neural network is known as a feedforward network43. 124 

The neural networks were trained using the Levenberg-Marquardt algorithm44–46 in a batch training 125 

mode. Where, all the training samples are passed to the network in advance to update the network 126 

weights 46,47. The objective of the training function is to minimize the batch error between the 127 

calculated and actual values using mean square error (MSE). 128 
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The learning data set was divided randomly into three sets containing 70%, 15%, and 15% of the data. 129 

The training set, that 70 % of the data were used to train the neural to achieve the required targets. 130 

The validation set contains 15% of the data to validate the training progress throughout the training 131 

process. Finally, the test set contains 15% of the data used to test the neural after training. Four pairs 132 

of ANNs were developed to discriminate between earthquakes and explosions using different input 133 

data sets. The first three pairs of ANNs have a single parameter (either the {Pcf}, {Scf} or {Rcf} ) in the 134 

input set while the last pair of ANNs has the three parameters in the input set {Pcf, Scf, Rcf}. 135 

In a supervised training, the neural is trained to output a specific target set. The pairs of ANNs were 136 

trained with two distinct target sets. The first target set is the source depth, where the explosions 137 

have zero depth and the earthquakes have deeper depths. Meanwhile, the second target set was a 138 

binary set formed of ones for earthquakes and zeros for explosions. The networks were trained to 139 

produce 1 for earthquakes and 0 for explosions. So, eventually we end up with eight ANNs. 140 

Each neural network was trained several times (epochs) to reach the specified target set. During each 141 

epoch, the network goes through all the training samples and then updates its coefficients based on 142 

the MSE. Then the data of the validation and test sets are applied to the neural network and the MSE 143 

errors are computed. To be sure that the neural network is not memorizing the training set, the neural 144 

network coefficient set that produces the best validation results is used for discrimination.  145 

Usually, the overall performance of the ANN is measured using mean square error (MSE), mean 146 

absolute error (MAE), and the correlation coefficient (R) between the estimated (y) and the actual (x) 147 

values as follows: 148 𝑀𝑆𝐸 = ∑ (𝑦𝑖−𝑥𝑖)2𝑛𝑖=0 𝑛 , (1) 149 𝑀𝐴𝐸 = 1𝑛 ∑ |𝑦𝑖 − 𝑥𝑖|𝑛𝑖=0 , (2) 150 

𝑅 = 𝑛 ∑ 𝑥𝑖𝑦𝑖𝑛𝑖=0 −∑ 𝑥𝑖𝑛𝑖=0 ∑ 𝑦𝑖𝑛𝑖=0√𝑛 ∑ 𝑥𝑖2−(∑ 𝑥𝑖𝑛𝑖=0 )2𝑛𝑖=0 √𝑛 ∑ 𝑦𝑖2−(∑ 𝑦𝑖𝑛𝑖=0 )2𝑛𝑖=0 , (3) 151 

By considering the ANN as a function of the input and target sets, then eight ANNs could be defined 152 

in the form ANN (input set, target set). The performance results of the eight ANNs are listed in Table 153 

2. The MSE and MAE could be misleading in the comparison between the ANNs that have the depth 154 

as a target set and those that have the binary target set as both sets have different ranges and 155 

different units (the depth is km and the binary is unitless). Therefore, the correlation coefficient R is 156 

more suitable for such a comparison.  157 

For the same input set, the performance is enhanced for the binary target set. The best performance 158 

was for the ANN with the ratio of the cornel frequencies Rcf as input parameter and the binary target 159 

set 𝐴𝑁𝑁({𝑅𝑐𝑓}, 𝑏𝑖𝑛𝑎𝑟𝑦). This indicates that the Rcf has a more separation capability than the other 160 

parameters (also this could be deduced from Figure 3). In the training phase, the 𝐴𝑁𝑁({𝑅𝑐𝑓}, 𝑏𝑖𝑛𝑎𝑟𝑦) 161 

and 𝐴𝑁𝑁({𝑃𝑐𝑓, 𝑆𝑐𝑓, 𝑅𝑐𝑓}, 𝑏𝑖𝑛𝑎𝑟𝑦) has the highest performance. Meanwhile in the validation phase, 162 

the 𝐴𝑁𝑁({𝑅𝑐𝑓}, 𝑏𝑖𝑛𝑎𝑟𝑦) has the highest performance and 𝐴𝑁𝑁({𝑃𝑐𝑓 , 𝑆𝑐𝑓 , 𝑅𝑐𝑓}, 𝑏𝑖𝑛𝑎𝑟𝑦)  has a 163 

slightly lower performance. Finally, the 𝐴𝑁𝑁({𝑃𝑐𝑓, 𝑆𝑐𝑓, 𝑅𝑐𝑓}, 𝑏𝑖𝑛𝑎𝑟𝑦) has the highest performance in 164 

the test phase. 165 
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Eventually, the overall performance of the ANN is computed over the unity of the three sets (training, 166 

validation, and test) while the most important part is the test set where it indicates the ability of the 167 

ANN for generalization48. The test set is relatively small in comparison to the input sample space. A 168 

larger test set could produce a relatively larger error. 169 

Table 2: The performance of the ANNs  170 

ANN Training Validation Test All 

Input 

parameter 

Target 

set 
MSE R MSE R MSE R MSE R MAE 

Pcf Depth 31.562 0.678 30.955 0.714 29.413 0.702 31.148 0.687 3.877 

Pcf 0/1 0.080 0.825 0.089 0.803 0.080 0.825 0.081 0.822 0.183 

Scf Depth 20.697 0.808 15.725 0.845 21.253 0.804 20.035 0.813 2.670 

Scf 0/1 0.005 0.990 0.010 0.979 0.017 0.966 0.008 0.985 0.015 

Rcf Depth 19.365 0.815 21.628 0.851 18.254 0.804 19.538 0.818 2.609 

Rcf 0/1 0.002 0.996 0.000 1.000 0.004 0.992 0.002 0.996 0.010 

Pcf ,Scf , Rcf Depth 22.391 0.794 15.296 0.850 11.946 0.888 19.760 0.816 2.973 

Pcf ,Scf , Rcf 0/1 0.002 0.996 0.004 0.993 0.003 0.994 0.003 0.995 0.025 

 171 

Generally, the performance is very high indicating that the ANNs are well trained (at least for the last 172 

5 ANNs in Table 2). Unfortunately, well trained ANN could occasionally produce unreliable results. The 173 

results of the eight ANNs are presented in Figure 4. This figure represents the fitting between the 174 

estimated and the actual target sets. Perfect results should be aligned along a 45-degrees line. 175 

Histograms in the plots indicated the amplitude and frequency of the errors. This figure shows that 176 

even with high-performance neural networks several events were misclassified (e.g., Figure 4 (f) the 177 

correlation coefficient is relatively high R=0.985 and the error measures are very low MSE=0.008 & 178 

MAE=0.015, even so, several events were misclassified). 179 

To enhance the results, the output of each pair of the ANNs that has the same input parameter are 180 

combined. The combination is done through a simple mathematical condition. The ANN could be 181 

considered as a function of the target set and the combined ANN (ANNC) could be defined as: 182 

ANNC = {1 𝑖𝑓 𝐴𝑁𝑁(𝑑𝑒𝑝𝑡ℎ) > 2 𝑎𝑛𝑑 𝐴𝑁𝑁(𝑏𝑖𝑛𝑎𝑟𝑦) > 0.50 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         , (4) 183 

Therefore, any event is declared as an Earthquake, if the output of the ANN that has the source depth 184 

as the target set is greater than 2 and the output of the ANN that has the binary set as target set is 185 

greater than 0.5. Otherwise, the event is declared to be an explosion. 186 

This simple combination enhances the result significantly. Figure 5 shows the combined results of the 187 

ANNs. The outputs of each successive pair of the eight ANNs listed in Table 2 are combined to produce 188 

four ANNCs labeled ANN1 to ANN4 as depicted in Figure 5. The first combined ANNs has 83 mistakes 189 

and the second has only 6 mistakes. While the third and fourth combined ANNs (Figure 5 c & d) almost 190 

have 100 percentage accurate discrimination (720 and 719 correct discriminations respectively). 191 

However, this may not be true for any other events that were not part of the learning data set. 192 

Therefore, ±0.05 percent of random noise was added to the learning data set. This random error could 193 

account for miss picking of the cornel frequencies in the real situation. The results are shown in Figure 194 

6. The ANNs are still capable of discriminating with few mistakes. The total mistakes are 123, 8, 13, 195 
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and 3 for the ANN1, ANN2, ANN3, and ANN4 respectively. This indicates that for future event 196 

discrimination any ANN of the listed ANNs could produce a wrong classification. Therefore, the 197 

discrimination process can’t depend on any of them alone. 198 

Moreover, the ANN has no measure of accuracy for any new input that was not part of the learning 199 

data set. To deduce such a measure, the Self-organized Map (SOM) clustering and K-means clustering 200 

techniques were combined to produce what is known as support and confidence measures 49,50. These 201 

techniques will be explained in the coming sections. 202 

 203 

Figure 4: The results of the eight ANNs. The above row represents ANNs with the depth as the target 204 

set while the lower row represents ANNs with 0/1 as the target set. Error histograms are present in 205 

each panel. (a & e) The ANNs input parameter is Pcf. (b & f) The ANNs input parameter is Scf. (c & g) 206 

The ANNs input parameter is Rcf. (d & h) The ANNs input parameters are Pcf, Scf, Rcf. 207 

 208 

 209 

Figure 5: The combined results of the ANNs. The histograms present the absolute values of the 210 

errors. 211 

 212 
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 213 

Figure 6: The results of the combined ANNs with ±0.05% random noise embedded in the input data. 214 

The histograms show the absolute values of the errors. 215 

 216 

Self-organizing map clustering (SOM) 217 

 The Self-organizing map (SOM) is a type of neural network that can perform clustering using 218 

competitive learning which is an unsupervised learning technique. Du51 gave a good review of neural 219 

network clustering. Flexer52 discussed the application of SOM for clustering and data visualization. 220 

Roden et al.,53 implemented SOM to analyze several seismic attributes to identify natural patterns for 221 

stratigraphic interpretation. Meanwhile, Köhler et al.54 used SOMs to detect and classify events in 222 

continuous seismic wavefield records also the SOM was able to visualize the 24-hour human activity 223 

cycle. Kuyuk et al.,55 applied SOM for discriminating between earthquakes and quarry blasts using the 224 

complexity, spectral ratio, S/P wave amplitude peak ratio, and origin time of events as the input 225 

parameters. Messina & Langer56 used the SOM to classify volcanic tremor. 226 

The neurons in the SOM are arranged in a two-dimensional array/lattice. Each neuron is a vector with 227 

the dimensionality of the input vector. The connections between adjacent neurons define the SOM 228 

topology. The SOM can preserve the topology in the projection of the input data from high-229 

dimensional space onto the two-dimensional SOM lattice in a way that relative distances between 230 

data points are preserved 57,58 231 

Different SOM topologies have been investigated by several researchers57,59,60. The neurons are 232 

commonly connected via square or hexagonal topology. The hexagonal topology is used in this work 233 

because it has the highest number of connections between adjacent neuron The SOM is used to 234 

classify the dataset into 9 clusters based on the three parameters (Pcf, Scf, Rcf) and into 4 clusters based 235 

on every single parameter. The events were grouped in one of the groups by similarity according to 236 

the Euclidean distance between parameters. The results of SOM are usually represented by hits and 237 

weights positions plots. Figure 7, shows the topology, connections, and the number of hits per cluster. 238 

Remarkably, some clusters are dominated by a single event type. Meanwhile, Figure 8 shows a 3D plot 239 

of the distribution of the events over the 9 clusters with the estimated SOM weights positions marked 240 

within each parameter. It should be noted that the clusters have overlapping ranges over the three 241 

parameters.  242 

Each cluster 𝐶 contains a number of events “hits” (𝑛𝐸). Some of them represent Earthquakes (𝑛𝐸𝑞) 243 

and the others represent explosions (𝑛𝐸𝑥). 244 

The support and confidence measures 49,50 for these clusters could be defined as follows: 245 
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The cluster support value (𝑆𝐶)is the ratio of the number of events in that cluster to the total number 246 

of events (TE). 247 𝑆𝐶 = 𝑛𝐸/𝑇𝐸, (5) 248 

The confidence of a certain type of event in a given cluster is the ratio of the number of events of that 249 

type in the given cluster to the number of events in that cluster. 250 

The confidence of earthquakes of a given cluster is 𝐶𝑓𝐸𝑞 = 𝑛𝐸𝑞/𝑛𝐸, (6) 251 

The confidence of explosions of a given cluster is 𝐶𝑓𝐸𝑥 = 𝑛𝐸𝑥/𝑛𝐸, (7) 252 

For simplicity, these ratios could be presented as a percentage. The support and confidence measures 253 

of the nine clusters are listed in Table 3, while those of the 4 clusters are listed in Table 4. 254 

 255 

Figure 7: Clusters hits plot. The number of events in each cluster is shown with the cluster color 256 

indicating the dominant event-type. Red-colored clusters are dominated by explosions while blue-257 
colored clusters are dominated by earthquakes. The hexagons are representing the neurons and their 258 

adjacent sides are representing the connections between neurons. 259 

 260 

 261 

Figure 8:The events distribution over the 9 clusters and the estimated SOM weight positions within 262 

each parameter are marked by X. 263 
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Table 3: The estimated support and confidence measures of the nine clusters presented as a 264 

percentage for clarity. 265 

Cluster 1 2 3 4 5 6 7 8 9 

No. of events (𝒏𝑬) 36 67 85 69 61 101 88 95 118 

No. of Earthquakes (𝒏𝑬𝒒) 36 67 0 69 0 0 88 94 0 

No of Explosions (𝒏𝑬𝒙) 0 0 85 0 61 101 0 1 118 

Support (𝑺𝑪) % 5.0 9.3 11.8 9.5 8.4 14.0 12.2 13.2 16.4 

Confidence (𝑪𝒇𝑬𝒒) % 100 100 0.0 100 0.0 0.0 100 98.95 0.0 

Confidence (𝑪𝒇𝑬𝒙) % 0.0 0.0 100 0.0 100 100 0.0 1.05 100 

 266 

Table 4: The estimated support and confidence measures of the 4 clusters of each parameter. 267 

Parameter Cluster 𝒏𝑬 𝒏𝑬𝒒 𝒏𝑬𝒙 𝑺𝑪 (%) 𝑪𝒇𝑬𝒒 (%) 𝑪𝒇𝑬𝒙 (%) 

Pcf 

1 254 1 253 35.28 0.39 99.61 

2 161 139 22 22.36 86.34 13.66 

3 187 96 91 25.97 51.34 48.66 

4 118 118 0 16.39 100 0.0 

Scf 

1 133 49 84 18.47 36.84 63.16 

2 111 111 0 15.42 100 0.0 

3 282 0 282 39.17 0.0 100 

4 194 194 0 26.94 100 0.00 

Rcf 

1 145 22 123 20.14 15.17 84.83 

2 113 0 113 15.69 0.0 100 

3 332 332 0 46.11 100 0.0 

4 130 0 130 18.06 0.0 100 

 268 

k-means clustering 269 

The k-means algorithm partitions a dataset into subsets by minimizing the mean square error between 270 

the center of the cluster and the elements in the same cluster. k-means are unsupervised clustering 271 

techniques. It requires a predetermined number of clusters. k-means clustering algorithms are 272 

discussed in detail in 51,61–64. Kuyuk et al.65 used the k-means to classify the seismic activities. 273 

 The main idea in k-means clustering is to find the center of each subset/cluster. The optimum location 274 

of the center is obtained as the average of the members in the subset 51. Using the clusters obtained 275 

by the SOMs, the number of clusters is predetermined and the centers could easily be obtained by 276 

finding the mean of the members of each cluster using Euclidean distance. Actually, the centers are 277 

very close to the SOM weights positions (Figure 8) and almost overlay each other. 278 

Committee machines 279 

The committee machine is utilizing the divide and conquer strategy in which the output of multiple 280 

neural networks (experts) are combined to produce a single outcome 41,66,67. The committee machine 281 

has been used in several applications. Mazurov & Polyakova68, gave a brief history and applications 282 

with the mathematical background of the committee theory. Nadiri et al.69, used a supervised 283 
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committee machine for the prediction of fluoride concentration in groundwater. Pandey et al.70 used 284 

a committee machine for the prediction of the currency exchange rate. 285 

The trial-and-error technique is commonly practiced with neural networks to find the best neural 286 

network structure that produces the best performance. Therefore, many different neural networks 287 

(different structure, number of layers, and the number of neurons per layer) are trained and only the 288 

one with the best performance is used. The performance is measured over the training, validation, 289 

and test sets which usually do not cover the entire input space. This technique has two drawbacks. 290 

First, the network with the best performance on these sets is not necessary to have the best 291 

performance over any other sets of the input space. It is not necessary to have the best performance 292 

over the three sets. The 𝐴𝑁𝑁({𝑅𝑐𝑓}, 𝑏𝑖𝑛𝑎𝑟𝑦) (Table 2) has the best performance but not over the 293 

test set. Second, wasting all the efforts involved in the training of the discarded networks. 294 

The committee machine could overcome these drawbacks. The committee machine can offer better 295 

performance than any individual constituent neural network. Although the ANNs have an identical 296 

configuration and are trained with similar data, they are trained with different initial conditions. 297 

Therefore, they usually converge to different local minima. Committee machines use different 298 

combination algorithms to combine the results. The combiner function could be simple as averaging 299 

or more complex as a nonlinear gating function 41. However, in this work, an ANN was used as a 300 

combination function for the result of different discrimination methods as well as the results of the 301 

trained ANNs. 302 

 303 

The committee machine will tend to follow the inputs that are best matching the target, which 304 

happens to be of the ANN4. To overcome this issue, intentionally, randomly manipulate the results of 305 

the four ANNs (ANN1 to ANN4) to reach 20% wrong classification. So, the input from the four 306 

combined ANNs has the same priority during the training process of the committee machine. 307 

Discrimination procedure 308 

The discrimination algorithm consists of three stages. 309 

Stage 1 (ANN) 310 

For any new event of an unknown source, the three parameters are estimated using the 311 

EQK_SRC_PARA software 31 as indicated earlier. 312 

This data is feed to the ANNs presented in Figure 4 and listed in Table 2. Then the results are combined 313 

using Eq. (4). The output of this stage is four event-type. 314 

Stage 2 (finding the holding cluster) 315 

The inputs of this stage are the event spectral parameters (Pcf, Scf, Rcf) and the combined networks 316 

ANN1 to ANN4 estimated event-type. The event parameters are used to find the SOM holding cluster 317 

using the k-means centers. In each SOM of the four SOMs presented in Figure 7, the event will belong 318 

to the cluster with the closest k-mean center. 319 

Holding cluster (e)=arg min𝑖∈{1,…,𝑚}‖𝑒 − 𝐶𝑖‖ 320 
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Where m is the number of clusters, Ci is the k-mean center of cluster number i. e=(Pcf, Scf, Rcf), 321 

Every cluster in the SOM has a support measure and each event-type within that cluster has a 322 

confidence value as listed in Tables 3 & 4. The output of this stage is the support and confidence of 323 

the holding clusters from the four SOMs for the designated event-type. 324 

Stage 3 (Committee machine) 325 

The inputs of this stage are the combined networks ANN1 to ANN4 estimated event-type with their 326 

corresponding SOM support and confidence measures. These data are feed to the committee 327 

machine ANN combiner to produce the final output. The output of this stage is the event-type with a 328 

confidence measure. 329 

Stage 4 (Measures update) 330 

After verification and approval of the resulted event-type, the number of events in holding clusters is 331 

incremented and its support and confidence measures are recomputed. 332 

 333 

Discussion and Conclusion 334 

The neural networks were not able to estimate the depth of the earthquake. Also, it produces 335 

relatively low or negative depths for explosions. 336 

Even though the neural network fails to estimate the depths of the earthquakes, it separates the 337 

earthquake events from the explosion events by produce different depth ranges for both (Figure 4c). 338 

The neural were not able to estimate the depths of the earthquakes, because the number of samples 339 

representing any single depth value is relatively low. 340 

A simple combination was applied to the results of the ANNs trained with the same parameter, 341 

however, they trained to produce different outputs either the depth or binary output (1 for 342 

earthquakes and 0 for explosions). This combination is a simple form of committee machine applied 343 

in the first stage. 344 

The simple combination applied to the ANN outputs enhances the result significantly. The combined 345 

results of the ANN trained with the corner frequency ratio Rcf and the ANN trained with the three 346 

parameters almost have 100 percentage correct discrimination. These results indicate that the Rcf 347 

parameter is significantly characterizing the earthquakes from the explosions. 348 

The nine cluster SOM almost separates the earthquakes and explosions in different clusters. All the 349 

clusters contain a single event-type except cluster 8 which contains 94 earthquakes and only one 350 

explosion. To visualize the result of these SOM clusters the events were posted on a satellite map with 351 

the holding cluster number indicated with different shapes (Figure 9). The green-colored asterisks 352 

(cluster 5) are almost concentrated in a single location. Indicating different detonation techniques.  353 

The committee machine produces 100% correct results with confidence measures that represent the 354 

probability of event-type occurrence within the holding cluster. 355 
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The current paper represents an idea to implement artificial intelligence to assist experts in decision-356 

making situations. The committee machine could Identify the nature of a particular event using the 357 

aid of several discrimination methods. The proposed committee machine could combine the results 358 

of several algorithms and expert opinions to form one single output with a confidence measure. 359 

 360 

 361 

Figure 9: The spatial distribution of the 9 clusters SOM. The explosions are marked by asterisks and 362 
Earthquakes by other shapes. The green-colored asterisks (cluster 5) are almost concentrated in a 363 

single location. This indicates that this location has a special detonation characteristic.  364 
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