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Abstract
More than a year after the emergence of COVID-19, significant regional differences in terms of morbidity
persist, showing lower incidence rates in central Africa. The work reported here aims to test for a pre-
pandemic natural immunity among populations in this region. To identify such pre-existing immunity,
sera samples collected before the emergence of COVID-19 were tested to detect IgG antibodies reacting
against SARS-CoV-2 proteins of major significance. Sera samples from blood donors of France were used
as control. The results showed a statistically significant difference for antibodies prevalence between the
samples collected in central Africa and the control samples. Our results suggest that in the central African
sub-region the populations have been potentially pre-exposed before the COVID-19 pandemic to the
antigens of a SARS-CoV-2-like virus.

Introduction
More than a year after the emergence of COVID-19, significant regional differences persist, showing the
lowest incidence rates in sub-Saharan Africa, Southeast Asia, and Oceania. This trend was observed at
the onset of the epidemic and has been confirmed during subsequent epidemic waves (Fig. 1) [1].

Several hypotheses have been proposed to explain this situation, including among others: the morbidity
and mortality counts likely to be underestimated in some low- and middle-income countries due to limited
epidemiological surveillance and/or public health screening activity; the population of sub-Saharan Africa
is younger with only 2.3% of the population over 65 years old, whereas people over 65 years old account
for more than three-quarters of the deaths related to COVID-19 in Europe (where this population
represents more than 20% of the population); more rural living conditions may reduce the spread of the
disease; climatic and environmental conditions unfavorable to the virus and its spread; a natural
immunity innate (nonspecific) or secondary due to previous contact with a coronavirus closely related to
SARS-CoV-2 and sharing common antigenic profiles.

The objective of this present study was to identify the later hypothesis of a pre-existing natural humoral
anti-SARS-CoV-2 immunity among central African population by testing sera samples from repository
collected several months before the COVID-19 epidemic started. We tested the presence of a reacting
antibodies against five SARS-CoV-2 proteins playing an essential role in virus attachment, fusion, entry
and transmission (supplementary text). We present here our first results, obtained from 1,341 sera
samples collected before January 2020 from people living in Democratic Republic of Congo (DRC),
Cameroon, and Republic of Congo (ROC).

Background
SARS-CoV-2 virus pertains to the Betacoronavirus genus, which includes numerous virus species of
Chiropterans. Chiropteran species are also hosts of several coronaviruses species close to the original
strain of SARS-CoV-2 isolated in China [2]. SARS-CoV-1 and MERS viruses are also monophyletically
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placed with chiropteran coronavirus parental species [3]. In Cambodia and Myanmar, viruses closely
related to SARS-CoV-2 were isolated from bat samples (Rhinolophus Shameli) collected before 2020 [4–
6]. Globally, it can be observed that the spatial distribution of fruit bats matches the spatial distribution of
countries with lower symptomatic circulation of COVID-19, especially in rural populations (Fig. 2) [7].
Ecology and behavior of bats, especially fruit bats (e.g.: mass frequentation of fruit orchards, roosting
trees close to dwelling) may have favored the direct or indirect contact with humans. Such type of
antigenic relationship and acquisition of natural immunity without morbidity, have already been observed
with several viruses, including filoviruses and flaviviruses [8–10].

The long genome of Coronaviruses mainly encodes four major structural proteins: spike (S); envelope (E);
membrane (M); nucleocapsid (N). The spike-shaped transmembrane glycoprotein (S) on the surface of
the virus plays an essential role in virus attachment, fusion, entry, and transmission. It comprises two
functional subunits: S1 subunit responsible for binding between the virus and the receptor; and S2
subunit (C-terminal stem) that allows fusion of viral and cellular membranes. The S1 subunit is divided
into an N-terminal domain (NTD) and a receptor binding domain (RBD) of the C-terminal region
responsible for binding the virus to the host cell (ACE2) receptor binding domain [11,12]. The
nucleocapsid (N protein) is involved in the packaging of RNA during the externalization of viral particles
from the infected cell and is an internal protein of the virus [13]. The N protein appears more conserved
across Betacoronavirus species than the S protein, while the RBD appears more conserved within the S1
unit. From the point of view of protection (i.e., neutralizing antibodies), there is a strong correlation
between the levels of RBD antibodies and the neutralizing antibodies to SARS-CoV-2 in humans [14]. Also,
SARS-CoV-2 genome is closely related to SARS-CoV-1 (79.6% genomic sequence identity), several
antibodies covering all structural proteins of SARS-CoV-1 (spike, membrane, nucleocapsid, envelope)
have been identified and extensively studied showing cross-reactivity with SARS-CoV-2, as well as partial
cross-neutralization of spike antibodies [15]. Moreover, sera from SARS-CoV-1 convalescent or S1 CoV-
specific animal antibodies can neutralize SARS-CoV-1 infection by reducing S protein-mediated SARS-
CoV-1 entry [16]. Finally, SARS-CoV-1 and MERS-CoV show that many fragments (S1-NTD, RBD, S2) of S
protein are targets for neutralizing antibody production [17].

Methods

Antibody detection
The INNOBIOCHIPS ELISA serological test used detects the IgG antibodies targeting the N protein, the S1
protein, the RBD domain of the S1 protein, the NTD domain of the S1 protein, and the S2 protein [18]. The
test values are obtained by optical density reading using a laser reader. The specificity of the test was
evaluated using 25 samples positive for low pathogenic human coronaviruses (229E, OC43, NL63, HKU1)
[19]. All 25 samples tested negative for all SARS-CoV-2 proteins used in the ELISA test.

Data analysis
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After calculating the statistical moments and the distribution of the samples’ values for each antigen,
several statistical tests and calculations were performed including: For each antigen, comparison of the
means (Student's T-test) and the variances (F-test) between the samples group and the "control" group;
Difference between the two groups (samples and controls) considering all the five antigens was tested
using Hotelling test; The control group was taken as a whole, without excluding the few suspected false-
negative samples. Calculation of the number and percentage of samples considered positive for each
antigen (with confidence interval), according to the cutoff value; calculation of the number of positive
samples for two or more antigens.

All data are available in the main text or the supplementary materials (2021_Results PRECOV central
Africa.xlsx).

Control sera collection
The controls sera were obtained by INNOBIOCHIPS company from 189 samples from blood donors
collected in Northern France, randomly selected (EFS, Etablissement Français du Sang) and tested
negative for SARS-CoV-2 by PCR. These sera collection was used by the manufacturer to define the
thresholds of positivity as compared to the sera collected from patients infected by SARS-CoV-2 (PCR test
positive). We used this control group to establish thresholds for the absence of SARS-CoV-2-like
antibodies with respect to their geographic origin while such blood donors from France are supposed to
have not been in direct or indirect contact with bats. To eliminate the risk of false negatives (samples
may came from donors of African or South Asian origin), for each antigen the distribution of control
values was modeled. For each antigen, the PRECOV threshold value correspond to a probability equal to
0.0002. All control samples with a value for an antigen above the threshold will be considered as false
negatives for this antigen.

Sample sera collection
RDC samples originated from the Monkole Hospital Center biobank (190 samples, collected in 2019 from
healthy subjects from the hospital staff, from volunteers, and from young sickle-cell disease patients who
are part of a study cohort), and from the ALTADEVA/Monkole biobank (383 samples, collected in 2014
and 2015 as part of a study of Plasmodium falciparum chemoresistance in the city-province of Kinshasa,
in the central province of Kongo, and southwestern DRC).

The 383 tested samples from Cameroon were selected among samples received from various
laboratories between June 2018 and June 2019 at the Chantal BIYA International Research Center for HIV
Prevention and Management (CIRCB), as part of continual health monitoring among PLHIV. 51% of the
383 samples selected were among samples received from some Central and General Hospitals within the
country. The remaining 49% were selected among samples received from peripheral healthcare facilities.

The samples from the Republic of Congo (384 tested samples) were collected by The Fondation
Congolaise pour la Recherche Médicale in Southern district of Brazzaville, Madibou and in the Northern
part of the country (Sangha) in the district of Bomassa, in 2016 and 2019, respectively.
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All samples were aliquoted and kept frozen as appropriate and each sample had companion data
including date of collection, age, sex, and province of origin.

Ethical Approvals
All samples used in this study were collected before 2020 in the laboratories of the partner institutes from
volunteer donors for diagnostic purposes. Blood samples were collected after informed consent for the
use and reuse from each patient or from his or her parent/guardian in the case of minors. All experiments
were performed in accordance with relevant named guidelines and regulations. All documents and
samples were anonymized. For samples from DRC, ethical approval was obtained from the comité
d’éthique du Centre de Formation et d'Appui Sanitaire/Centre Hospitalier Monkole (N/Ref.:
01/CEFAMONKOLE/CEL/2013). For samples from Republic of Congo, ethical approval was obtained
from the comité d'éthique institutionnel de la Fondation Congolaise pour la Recherche Médicale (N/Ref.:
001/CEI/FCRM/2012 and 019/CEI/FCRM/2018). For samples from Cameroon, full approval was
obtained from the IRB of the Centre International de Référence Chantal Biya.

Results
The controls samples from France blood donors tested for SARS-CoV-2 reacting antibodies are shown in
Table 1. Among 189 control samples, we detected 18 samples with antibodies reacting against at least 1
antigen (9.5 %), and none sample with antibodies reacting against at least 2 antigens (0 %).

 
Table 1

Optical density values of the INNOBIOCHIPS ELISA test for the control samples, PRECOV threshold, and
percentage of control samples above the threshold. The PRECOV thresholds were determined modeling

the values distribution (Supplementary materials).
Antigen (189 samples) N S1 S2 S1-

RBD
S1-
NTD

Min 0 0 0 0 0

Max 17.95 1.40 13.56 1.10 5.24

Mean 0.695 0.106 1.125 0.105 0.353

1st quartile 0.07 0.04 0.08 0.02 0.03

Median 0.117 0.067 0.254 0.067 0.114

3rd quartile 0.31 0.10 1.13 0.12 0.28

Standard Deviation 2.22 0.16 2.11 0.158 0.796

PRECOV threshold 9 0.6 10 0.6 4.5

Percentage and count of samples above the
threshold

1.6%
(3)

2.1%
(4)

1.5%
(3)

2.6%
(5)

1.6%
(3)
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Antibodies against the five tested SARS-CoV-2 antigens were detected in the pre-COVID samples, with
differential optical density mean value for central African samples significantly higher than for the control
samples (Table 2). The S1 antigen shows the highest percentage of positives: 22.2% for central Africa
samples versus 2.11% for the control samples. The S2 and RBD antigens also show significantly higher
rates. We find also a high significant difference with control samples (p-value < 10− 6) when all antigens
were considered together.

Among the 1341 tested samples, 528 samples reacted at least against 1 antigen above the threshold
(39% vs. 9.5% for the controls), while 173 samples reacted at least against 2 antigens above the
threshold (12.9% vs 0% for the controls).

 
Table 2

Samples values, obtained by differential optical density (1341 samples). For each antigen, the table
indicate the distribution of values and the number of samples with value above the threshold (percentage

and 95% confidence interval, count). The Student T-test p-value indicate the probability of no difference
between the mean of Central Africa samples and the mean of control samples.

Results (1341 samples) N S1 S2 S1-RBD S1-NTD

Minimum 0 0 0 0 0

Maximum 59.09 50.28 95.40 45.34 70.37

Mean 2.77 1.10 4.33 0.42 1.22

Standard deviation 6.93 4.06 10.42 2.20 4.44

1st quartile 0.19 0.10 0.14 0.004 0.03

Median 0.63 0.21 0.66 0.08 0.14

3rd quartile 1.81 0.54 2.96 0.25 0.50

Number of samples > threshold :
%, 95% C.I., and count

6.9%

[5.5–
8.3]
(93)

22.2% [19.8–
24.2] (298)

10.9%

[9.2–
12.6]
(146)

11.0%

[9.3–
12.7]
(147)

5.5%

[4.3–
6.7]
(74)

Student T-test p-value p = 
2.2*10 
− 5

p = 4.2*10− 4 p = 
1.3*10− 5

p = 0.02 p = 
0.003

The results by country (Table 3) show higher values for Cameroon, especially for S1, S2, and S1-RBD
antigens. The other antigens don’t show significantly different values between countries. All values are
significantly higher than control values.
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Table 3
Number of samples with value above the threshold, by country. For each antigen and each

country, the table indicate the percentage and 95% confidence interval of samples with value
above the threshold.

Country (samples) N S1 S2 S1-RBD S1-NTD

Cameroon (383) 5.7%

[3.4-8.0]

32.4%

[27.7–37.1]

18.0%

[14.2–21.8]

22.2%

[17.9–26.1]

6.0%

[3.6–8.4]

Congo (ROC) (384) 7.6%

[4.9–10.3]

16.7%

[13.0-20.4]

8.1%

[5.4–10.8]

7.3%

[4.7–9.9]

5.0%

[2.8–7.2]

Congo (DRC) (574) 7.3%

[5.2–9.4]

19.2%

[16.0-22.4]

7.8%

[5.6–10.0]

5.7%

[3.8–7.6]

5.6%

[3.7–7.5]

Discussion
Our results are in favor of the hypothesis that some populations in Africa and potentially from other part
of the World might be less susceptible to the SARS-CoV2 infection due to a pre-existing immunity
triggered by other not yet identified Betacoronavirus of animal origin. Indeed, several Betacoronaviruses
closed to the Sabercoronavirus cluster have been found in horseshoe bats, as well as specific antibody
response to these viruses in African fruit bats [20,21].

Higher serological cross-reactivity to SARS-CoV-2 in sub-Saharan African regions than elsewhere has
already been reported and attributed to higher exposure to human coronaviruses (HCoVs). Although it has
been showed that cross-reactive T cells against SARS-CoV2 can be induced by Common Cold
Coronavirus, SARS-CoV1 virus or eventually other animal Betacoronaviruses [22–24], this is the first time
that specific antibodies against SARS-CoV2 proteins in sera collected before the SARS-CoV-2 emerged in
China have been reported in central Africa. The novelty of our finding is that a stronger cross-reactivity in
central African regions may come from exposure, not to HCoVs as already published [25], but to other
animal coronaviruses circulating in these areas. Indeed, the specificity of the ELISA used in this work
excludes reactions against congenital human coronaviruses (e.g., HCoV-NL63, HCoV-229E) and confirms
that the identified antibodies react precisely against the SARS-Cov-2 proteins. We observed a stronger
cross-reactivity to S1, S2 and RBD (considered specific to SARS-CoV-2) than for the N protein, considered
common to Betacoronaviruses. Therefore, it can be assumed that this cross-reactivity must have been
induced by a virus close (i.e., sharing spike epitopes) to SARS-CoV-2, rather than by other known human
Betacoronaviruses. Indeed, the S1 subunit is the least conserved and cross-reactivity cannot be explained
by exposure to the known Human CoVs while the N protein is the most conserved. Moreover, such cross-
reactivity with S1 does not quantitatively reproduced the S1-RBD or S1-NTD data. These consistently
observed discrepancies can be explained by a variation of antibodies affinities to these epitopes due to a
change of, either or both, the structure of the spike or their amino-acid sequence. Eventually a more
consistent response with S1 could be the fact of a non-tested here CTD protein [26]. Altogether, such



Page 9/13

discrepancy of antibody response is in favor of an S1 belonging to a SARS-CoV-2-like virus, while all
sequence of the antigens included in the commercial ELISA (INNOBIOCHIPS) were entirely based on the
reference SARS-CoV-2 strain. It is also important to note that S and N protein sequences are equally
divergent among coronaviruses while the S2 subunit is better conserved than the N protein.

We are aware of the limitations of this somewhat pioneering study. The next step is to conduct sensitive
investigations among populations potentially exposed to wild animals and to perform back-to-back tests
with the present ELISA test and with an essential SARS-CoV-2 neutralization assays to confirm the
surprisingly high S1 cross-reactivity and the potential of the pre-pandemic antibodies to protect against
SARS-CoV-2. Furthermore, if it is true that background reactivity in SARS-CoV-2 serological tests is higher,
especially in central African populations, this may be due not only to widespread circulation/exposure
of/to Betacoronavirus of chiropterans or other animals, but to a potential increased cross-reactivity
induced by other microorganisms (e.g., malaria, tuberculosis, etc.) as previously observed [27–29].
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Figure 1

COVID-19 incidence in the World, as for April 19, 2021. Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the
part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.

Figure 2
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Fruit bats geographic distribution. Note: The designations employed and the presentation of the material
on this map do not imply the expression of any opinion whatsoever on the part of Research Square
concerning the legal status of any country, territory, city or area or of its authorities, or concerning the
delimitation of its frontiers or boundaries. This map has been provided by the authors.


