1. Mijalis, A. J. et al. A fully automated flow-based approach for accelerated peptide synthesis. Nat. Chem. Biol. 13, 464–466 (2017).
2. Zheng, H. et al. An automated Teflon microfluidic peptide synthesizer. Lab Chip 13, 3347–3350 (2013).
3. Dopp, J. L., Rothstein, S. M., Mansell, T. J. & Reuel, N. F. Rapid prototyping of proteins: Mail order gene fragments to assayable proteins within 24 hours. Biotechnol. Bioeng. 116, 667–676 (2019).
4. Rudilla, H. et al. New and old tools to evaluate new antimicrobial peptides. AIMS Microbiol. 4, 522 (2018).
5. Osterman, I. A. et al. Sorting out antibiotics’ mechanisms of action: A double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother. 60, 7481–7489 (2016).
6. Hendriks, G. et al. The ToxTracker assay: novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicol. Sci. 125, 285–298 (2012).
7. Lee, T.-H., Hirst, D. J. & Aguilar, M.-I. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. Biochim. Biophys. Acta (BBA)-Biomembranes 1848, 1868–1885 (2015).
8. Gee, M. L. et al. Imaging the action of antimicrobial peptides on living bacterial cells. Sci. Rep. 3, 1–6 (2013).
9. Carney, R. P. et al. Combinatorial library screening with liposomes for discovery of membrane active peptides. ACS Comb. Sci. 19, 299–307 (2017).
10. Marks, J. R., Placone, J., Hristova, K. & Wimley, W. C. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J. Am. Chem. Soc. 133, 8995–9004 (2011).
11. Zepik, H. H., Walde, P., Kostoryz, E. L., Code, J. & Yourtee, D. M. Lipid vesicles as membrane models for toxicological assessment of xenobiotics. Crit. Rev. Toxicol. 38, 1–11 (2008).
12. Strandberg, E. & Ulrich, A. S. NMR methods for studying membrane‐active antimicrobial peptides. Concepts Magn. Reson. Part A An Educ. J. 23, 89–120 (2004).
13. Smirnova, T. I. & Smirnov, A. I. Peptide–membrane interactions by spin-labeling EPR. Methods Enzymol. 564, 219–258 (2015).
14. Avci, F. G., Sariyar Akbulut, B. & Ozkirimli, E. Membrane active peptides and their biophysical characterization. Biomolecules 8, 77 (2018).
15. Mio, K. & Sato, C. Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys. Rev. 10, 307–316 (2018).
16. Hammond, K., Ryadnov, M. G. & Hoogenboom, B. W. Atomic force microscopy to elucidate how peptides disrupt membranes. Biochim. Biophys. Acta (BBA)-Biomembranes 183447 (2020).
17. Kruss, S. et al. Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 65, 1933–1950 (2013).
18. Zhang, J. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959–968 (2013).
19. Landry, M. P. et al. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 23, (2017).
20. Salem, D. P. et al. Chirality dependent corona phase molecular recognition of DNA-wrapped carbon nanotubes. Carbon N. Y. 97, 147–153 (2016).
21. Kallmyer, N. E., Musielewicz, J., Sutter, J. & Reuel, N. F. N. F. Substrate-Wrapped, Single-Walled Carbon Nanotube Probes for Hydrolytic Enzyme Characterization. Anal. Chem. 90, 5209–5216 (2018).
22. Kallmyer, N. E. et al. Inexpensive Near-Infrared Fluorimeters: Enabling Translation of nIR-Based Assays to the Field. Anal. Chem. (2021).
23. Hertel, T. et al. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005).
24. Kallmyer, N. E. N. et al. Influence of sonication conditions and wrapping type on yield and fluorescent quality of noncovalently functionalized single-walled carbon nanotubes. Carbon N. Y. 139, 609–613 (2018).
25. Byagathvalli, G. et al. ElectroPen: An ultra-low–cost, electricity-free, portable electroporator. PLoS Biol. 18, e3000589 (2020).
26. Brooks, H., Lebleu, B. & Vivès, E. Tat peptide-mediated cellular delivery: back to basics. Adv. Drug Deliv. Rev. 57, 559–577 (2005).
27. Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55 (2003).
28. Rádis‐Baptista, G., de la Torre, B. G. & Andreu, D. Insights into the uptake mechanism of NrTP, a cell‐penetrating peptide preferentially targeting the nucleolus of tumour cells. Chem. Biol. Drug Des. 79, 907–915 (2012).
29. Walkty, A. et al. In vitro activity of ceftazidime combined with NXL104 versus Pseudomonas aeruginosa isolates obtained from patients in Canadian hospitals (CANWARD 2009 study). Antimicrob. Agents Chemother. 55, 2992–2994 (2011).
30. Yau, Y. H., Ho, B., Tan, N. S., Ng, M. L. & Ding, J. L. High therapeutic index of factor C Sushi peptides: potent antimicrobials against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45, 2820–2825 (2001).
31. Souli, M. et al. In vitro activity of tigecycline against multiple-drug-resistant, including pan-resistant, gram-negative and gram-positive clinical isolates from Greek hospitals. Antimicrob. Agents Chemother. 50, 3166–3169 (2006).
32. Eckert, R. et al. Adding selectivity to antimicrobial peptides: Rational design of a multidomain peptide against Pseudomonas spp. Antimicrob. Agents Chemother. 50, 1480–1488 (2006).