1 Dong, D. et al. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrest plants. Environ. Pollut. 231, 1442-1445 (2017).
2 Menz, F.C. et al. Acid rain in Europe and the United States: an update. Energy. Sci. Policy 7, 253−265 (2004).
3 Curson, A.R.J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat Microbiol. 3, 430-439 (2018).
4 Greene, R.C. et al. Biosynthesis of d imethyl-β-propiothetin. J. Bio Chem. 237, 2251-2254 (1962).
5 Archer, S. et al. Phytoplankton taxa, irradiance and nutrient availability determine the seasonal cycle of DMSP in temperate shelf seas. Mar Ecol Prog Ser. 394, 111-124 (2009).
6 Bates, T. S. et al. Dimethylsulfide (DMS) in theequatorial Pacific Ocean (1982 to 1996): Evidence of a climate feedback? Geophys Res Lett. 24, 861−864 (1997).
7 Ficko-Blean, E. et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat. Commun. 8, 1685 (2017).
8 Li, D. et al. Double-helix structure in carrageenan–metal hydrogels: A general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem. Int. Ed. 55, 15925-15928 (2016).
9 Li, J. et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 1, 1805159 (2018).
10 Liu, W. J. et al. Emerging applications of biochar-based materials for energy storage and conversion. Energy. Environ. Sci. 12, 1751−1779 (2019).
11 Zhang, T. et al. Ti-Sn-Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a threedimensional electrochemical reaction system. J. Clean. Prod. 258, 120273 (2020).
12 Li, D. et al. Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. J. Am. Chem. Soc.. 18, 8104−8108 (2020).
13 Li, D. et al. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem. 4, 2345-2356 (2018).
14 Gong, Y. T. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 1, 178−185 (2018).
15 Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934-940 (2012).
16 Rosca, V., Duca, M., DeGroot, M. T. & Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209-2244 (2009).
17 Ma, J. L. et al. Reversible Nitrogen Fixation Based on a Rechargeable Lithium-Nitrogen Battery for Energy Storage. Chem. 2, 525-532 (2017).
18 Liu, S. et al. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat Commun. 10, 3898−3906 (2019).
19 Wan, Y. et al. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today. 27, 69-90 (2019).
20 Guo, R. et al. Porous Ni3S4/C aerogels derived from carrageenan-Ni hydrogels for high-performance sodium-ion batteries anode. Electrochim. Acta. 10, 72-79 (2019).
21 Liu, L. et al. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small. 10, 1295-1301 (2016).
22 Lv, C. D. et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 6073-6076 (2018).
23 Li, D. et al. Egg-box structure in cobalt alginate: A new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Cent. Sci. 1, 261-269 (2015).
24 Chen, X. et al. Cationic S-doped TiO2/SiO2 visible-light photocatalyst synthesized by co-hydrolysis method and its application for organic degradation. J. Mol. Liq. 273, 50-57 (2019).
25 Li, D. et al. Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon. 137, 31-40 (2018).
26 Mishra, G. et al. Facile Fabrication of S‑TiO2/β-SiC Nanocomposite Photocatalyst for Hydrogen Evolution under Visible Light Irradiation. ACS. Sustainable. Chem. Eng 3, 245-253 (2015).
27 Xing, L. B. et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and power lithiumesulfur batteries. Journal of Power Sources. 303, 22-28 (2016).
28 Su, Y. Z. et al. Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc–air battery. Adv. Funct. Mater. 26, 5893-5902 (2016).
29 Qian, W. J. et al. Condiment-derived 3D architecture porous carbon for electrochemical supercapacitors. Small. 37, 4959-4969 (2015).
30 Farideh, J. Sulfur: not a ‘‘silent’’ element any more. Chem. Soc. Rev. 35, 1256-1268 (2006).
31 Vairavamurthy, A. Using X-ray absorption to probe sulfur oxidation states incomplex molecules. Spectrochimica Acta Part A. 54, 2009-2017 (1998).
32 Han, J. R. et al. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy. 52, 264-270 (2018).
33 Xia, L. et al. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem Commun. 55, 3371-3374 (2019).
34 Xia, L. et al. S-doped carbon nanospheres: An effcient electrocatalyst toward artifcial N2 fixation to NH3. Small Methods. 1800251 (2018).
35 Ren, Y. et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ. Sci. 14, 1176-1193 (2021).
36 Zhang, W. et al. Single-crystalline (FexNi1-x)2P nanosheets with dominant {01 } facets: Efficient electrocatalysts for hydrogen evolution reaction at all pH values. Nano Energy. 56, 813-822 (2019).
37 Wang, K. W. et al. Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP3 and Ni2P. J. Mater. Chem. A 6, 5560-5565 (2018).
38 Li, Q. et al. Electronic modulation of electrocatalytically active center of Cu7S4 nanodisks by Cobalt-doping for highly efficient oxygen evolution reaction. ACS Nano. 11, 12230-12239 (2017).