In this work, an uncertain switched system expressed as a series of uncertain differential equations is considered in depth. Stability issues have been widely investigated on switched systems while few results related to stability analysis for uncertain switched systems can be found. Due to such fact, three different stabilities, including stability in measure, almost sure stability and stability in mean, are comprehensively studied for linear uncertain switched systems in infinite-time domain. Internal property of the systems is able to be illustrated from different perspectives with the help of above stability analysis. By employing uncertainty theory and the feature of switched systems, corresponding judgement theorems of these stabilities are proposed and verified. An example with respect to stability in measure is provided to display the validness of the results derived.