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Abstract Recently, the development of deep learning
(DL), which has accomplished unbelievable success in

many fields, especially in scientific computational fields.
And almost all computational problems and physical
phenomena can be described by partial differential equa-

tions (PDEs). In this work, we proposed two potential

high-order geometric flows. Motivation by the physical-

information neural networks (PINNs) and the tradi-

tional level set method (LSM), we have integrated deep

neural networks (DNNs) and LSM to make the pro-

posed method more robust and efficient. Also, to test

the sensitivity of the system to different input data, we

set up three sets of initial conditions to test the model.

Furthermore, numerical experiments on different input

data are implemented to demonstrate the effectiveness

and superiority of the proposed models compared to the

state-of-the-art approach.

Keywords High-Order Geometric Flow · Physics

constrained learning · deep learning · level set method

1 Introduction

Recently, the development of artificial intelligence (AI)

has received comprehensive attention and assistance thr-

ough the breakthrough of deep learning (DL) technol-

ogy. Which has reached a consensus on it is becoming
a development hotspot over the world. DL has accom-
plished unbelievable success in many fields, especially
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in scientific computational fields, including computer

vision, medical imaging, and control problem [1–6]. For-

tunately, almost all computational problems and phys-

ical phenomena can be described by differential equa-

tions, especially geometric partial differential equations

(GPDEs). Such multi-phase flows play an increasing

role in several scientific and engineering applications

[7–9]. The PDEs can be solved analytically and nu-

merically. However, so far, the analytical solutions of
many PDEs have not been solved. Therefore, in terms
of PDEs that have not been analytically solved, we can
only understand the physical phenomenon described

by them from the perspective of the numerical solu-

tion. Usually, the numerical approaches are used to dis-

cretized the solution domain and construct algebraic

equations, after that, they are solved analytically or it-
erative. The traditional numerical methods include the
finite volume method (FVM), finite difference method
(FDM), finite element method (FEM), and so on. The

computational cost of the equations becomes extremely

expensive when the number of equations increases. More-

over, the GPDEs are generally defined on the surface

(manifold), which can fall into the curse of dimensional-
ity. Furthermore, GPDEs solutions can be distinctively
different, and there is no general approach that applies

to all kinds of GPDEs.

Happily, since the universal approximation theorem

(UAT), which is the fundamental theoretical basis of

DL. And it opens another door for the numerical so-

lution of GPDEs. According to the UAT, the complex

or even dynamical GPDEs can be approximated via

a DNN. To find the solutions of them, the DNN is

trained on the solution domain of the GPDEs. More-

over, a surface (manifold) can be implicitly represented

by a level set method (LSM), which was first introduced

by Osher and Sethian [10], and has a significant im-
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pact on the computational field. Currently, DNN has

applied successfully for solving PDEs, such as hidden

physics models [11] and physics-informed neural net-

works (PINNs) [12].

In this work, motivated by hidden physics mod-
els, PINNs, and LSM, a robust deep LSM learning of

the data-driven high-order GPDEs method is proposed.

Our contributions are summarized as follows:

– We focus on the data-driven and learning

methods to solve two GPDEs: (1) Quasi Xuguo
flow [13], (2). High-order surface diffusion flow

of Cahn–Hilliard model.
– Theoretically, our framework is flexible to adapt

to different high-order GPDEs, which enables

effective integration of traditional LSM and

DNN to improve computational efficiency. Our

experiments confirm this property.

The rest of the paper is organized as follows, in Section

2, we first present some related works about learning

high-order geometric flow. Furthermore, we introduce

the proposed algorithm about learning high-order geo-

metric flow based on the level set method in Section 3.

After that, in Section 4, we describe the experimental

settings and experimental results. Finally, we summa-

rize this paper and present the limitations of the current

study, and present several future research directions in

Section 5.

2 Related Work

In this section, we briefly review the most relevant stud-

ies from the following three aspects: 1) The manifold

learning and some definitions, 2) The level set method,

and 3) The deep learning-based approach for solving

PDEs.

2.1 Manifold learning and some definitions

Manifold learning is a method for nonlinear dimension

reduction. Algorithms for this task think that the di-

mension of several data sets is only artificially high. Set

S =
{

u (x, y) ∈ R3 : (x, y) ∈ D ∈ R2
}

be a sufficiently
smooth, regular and the parametric surface. And let

g = 〈ux, uy〉 be the coefficients of the first and sec-

ond fundamental forms of surfaces with ux = ∂u
∂x

, uy =
∂u
∂y

, ∂2u
∂x∂y

= uxy, where 〈·, ·〉 refers to the usual inner

product in Euclidean space R3.

Definition 1 (Tangential gradient operator). Sup-

pose |∇φ| 6= 0 on some open neighborhood Ω of the
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Fig. 1: Schematic illustration of our LSM-Physics

Constrained Learning (PCL) framework for learning
GPDE.

level set Γ = {(x, y) : φ (x, y, t) = 0}, f is a differen-
tiable function on Ω, then the tangential gradient op-

erator ∇S acting on f is given by ∇Sf = P∇f , where
P = I− n⊗ n = I− nnT is the projection operator to

the tangential plane of the surface Γ , n = ∇φ
|∇φ| , and I

refers to the identify mapping.

Definition 2 (Tangential divergence operator). Sup-

pose |∇φ| 6= 0 on some open neighborhood Ω of the
level set Γ = {(x, y) : φ (x, y, t) = 0}, v is a smooth

vector field defined on Ω, the divergence operator divS
acting on v is given by divS (v) = div (v)−nT (∇v)n,

where div is the usual divergence operator.

Definition 3 (Laplace-Beltrami operator (LBO)).
Suppose |∇φ| 6= 0 on some open neighborhood Ω of the

level set Γ = {(x, y) : φ (x, y, t) = 0}, f is twice differ-
entiable function on Ω, then the Laplace-Beltrami op-

erator ∆S acting on f is given by ∆Sf = divS (∇Sf).

Recently, manifold learning has made great progress.

For example, Bachmann et al. [1] developed constant
curvature graph convolutional networks (GNN), bridg-
ing the gap that popular GNNs consider the data only
via Euclidean geometry and associated vector space

operations. Also, Sanchez-Gonzalez et al. [3] used the

GNN to simulate complex physical phenomenon. More-

over, Chen et al. [14] utilized the convolutional kernel

networks for learning the graph-structured data. Other
related works about manifold learning, include and not
only include the following references [15–19].

2.2 Level set method

The LSM was first developed by Osher and Sethian [10],

which made a huge impact on computational methods

for interface motion. Since the surface manifold can be
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implicitly represented by the LSM, therefore, which is

widely used in various fields including computational

geometry, fluid mechanics, computer vision, and ma-

terials science [20]. Moreover, Fedkiw et al. [21] used

the LSM for representing the dynamic implicit surfaces.

More recently, Lin et al. [22] developed the LSM for

solving constrained convex optimization. More about

the LSM please refer to [23–27].

2.3 Deep learning-based approach for solving PDEs

Recently, with the rapid development of DL, the numer-
ical methods of PDEs have made significant progress.
Advantageously, as mesh-free approximators, compared

with the traditional mesh-based numerical schemes in-

clude FVM, FDM, and FEM, the DNNs are inherently

mesh-free function-approximators. Such that they not

only can avoid the curse of dimensionality but also ap-

proximate the solutions of PDEs on complex geometries
effectively. One remarkable application of DNNs is the
physics-informed neural networks (PINNs) [12], which

can solve both forward and inverse problems with the

desired accuracy. Also, Sirignano et al. [28] developed a

method called DGM for solving PDEs. Moreover, Long

et al. [2] proposed PDE-Net for learning PDEs from

data. For more examples on solving differential equa-
tions with DL, please refer to [11, 15,29–36].

3 The proposed method

3.1 High-Order Quasi Xuguo flow

Algorithm 1: The framework of learning high-
order geometric flow based on the LSM.

initialization:
(1) Initialize the parameters Θ, and the learning

rate αn;
(2) Initialize u0;

for n = 1, 2, 3, ..., N do
(1) Read current L (Θ) via Eq. (5);
(2) Update the parameters Θ via gradient
descent

Θn+1 = Θn−αn∇ΘLr (Θn)−αn

N
∑

i=1

λi∇ΘLi (Θn);

end
output:
(1) Output the learned solution;
(2) Output the parameters Θn+1;

In this section, we describe more details about the

algorithm of learning high-order geometric flow based
on the LSM. In [13], Xu and Zhang constructed the
Quasi Xuguo flow from the perspective of computa-

tional geometry. However, the higher-order geometric

flow is not solved analytically and numerically in that

paper, according to [13] and LSM, the high-order GPDE

is we obtained as follows,

φt = ∆3
s

(

div
(

∇φ
‖∇φ‖ε

))

‖∇φ‖ε

= ∆s

(

∆s

(

∆sdiv
(

∇φ
‖∇φ‖ε

)))

‖∇φ‖ε,
(1)

where ∆s refers to LBO, ‖∇φ‖ε =
√

φ2
x + φ2

y + ε, κ =

div
(

∇φ
‖∇φ‖ε

)

refers to the mean curvature (MC), and

ε > 0. According to [37], take κ as an example, the

LBO can be explicitly formulated as following,

∆sκ =
κxx

(

1 + κ2
y

)

+ κyy

(

1 + κ2
x

)

− 2κxκyκxy

(1 + κ2
x + κ2

x)
2 . (2)

Based on Eq. (2), such that Eq. ((1) can be rewritten

as follows,



















κ =
φxx(1+φ2

y)+φyy(1+φ2
x)−2φxφyφxy

(1+φ2
x+φ2

x)
3
2

,

φt = ∆3
s (κ) ‖∇φ‖ε,

∆sκ =
κxx(1+κ2

y)+κyy(1+κ2
x)−2κxκyκxy

(1+κ2
x+κ2

x)
2 .

(3)

To obtain the order reduction of GPDEs, the new

variables q = ∆sκ, w = ∆sq are introduced. Hence,∆sq

and ∆sw can be explicitly formulated via the same ap-

proach as ∆sκ. Therefore, Eq. (1) can be reformulated

as follows,







q = ∆sκ,

w = ∆sq,

φt = ∆sw‖∇φ‖ε.

(4)

Motivated by PINNs, the GPDEs are encoded into the
loss function, and the partial derivatives can be compu-

tational via automatic differentiation (AD). For conve-

nience, the following symbols are introduced, e1 = φt−

∆sw‖∇φ‖ε, e2 = κ−
φxx(1+φ2

y)+φyy(1+φ2
x)−2φxφyφxy

(1+φ2
x+φ2

x)
3
2

,

e3 = ∆sκ−
κxx

(

1 + κ2
y

)

+ κyy

(

1 + κ2
x

)

− 2κxκyκxy

(1 + κ2
x + κ2

x)
2 ,

e4 = ∆sq −
qxx

(

1 + q2y
)

+ qyy
(

1 + q2x
)

− 2qxqyqxy

(1 + q2x + q2x)
2 ,

e5 = ∆sw−
wxx

(

1 + w2
y

)

+ wyy

(

1 + w2
x

)

− 2wxwywxy

(1 + w2
x + w2

x)
2 ,
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(a) initial-u-1 (PINNs) [12] (b) PINNs (t=31) [12] (c) PINNs (t=61) [12] (d) PINNs (t=100) [12]

(e) initial-u-1 (Ours) (f) Ours (t=31) (g) Our (t=61) (h) Ours (t=100)

(i) initial-u-2 (j) PINNs (t=31) [12] (k) PINNs (t=61) [12] (l) PINNs (t=100) [12]

(m) initial-u-2 (n) Ours (t=31) (o) Ours (t=61) (p) Ours (t=100)

(q) initial-u-3 (r) PINNs (t=31) [12] (s) PINNs (t=61) [12] (t) PINNs (t=99) [12]

(u) initial-u-3 (Ours) (v) Ours (t=31) (w) Ours (t=61) (x) Ours (t=100)

Fig. 2: Examples of the visualization process of evolutionary for high-order Quasi Xuguo flow with initial

conditions 1-3 for PINNs and Ours.
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Table 1: The comparison of the training loss values and times for high-order Quasi Xuguo flow with different

initial conditions.

Initial condition Training loss values Training times (s)

initial condition-1

PINNs [12] 0.1574 267.8658

Ours 0.1306 309.3411

initial condition-2

PINNs [12] 0.7473 269.5971

Ours 0.7473 313.4896

initial condition-3

PINNs [12] 0.1970 270.0388

Ours 1.6325 311.6468

Table 2: Summary of some initial conditions of u (observed data).

Synthetic observed data u (x, y, 0)

Initial Condition-1 u0 =
tanh

(

0.2−
√

(x−0.3)2+(y−0.5)2
)

0.03
√

2

Initial Condition-2 u0 =





















10max
(

0.04− (x− 0.2)2 − (y − 0.65)2, 0
)

+12max
(

0.03− (x− 0.5)2 − (y − 0.2)2, 0
)

+12max
(

0.03− (x− 0.8)2 − (y − 0.55)2, 0
)

+
tanh

(

0.2−
√

(x−0.3)2+(y−0.3)2
)

0.03
√

2

+
tanh

(

0.2−
√

(x−0.3)2+(y−0.5)2
)

0.03
√

2





















×
tanh

(

0.2−
√

(x−0.3)2+(y−0.5)2
)

0.03
√

2

Initial Condition-3



















u0 = 0.5 tanh
−r+

√

(x−ax)
2+(y−ay)

2

2
√

2ε

+0.5 tanh
−r+

√

(x−bx)
2+(y−by)

2

2
√

2ε
, ε = 0.01

ax = − r
√

2
; ay = r

√

2
bx = r

√

2
; by = − r

√

2
r = 0.2

√
2

Table 3: The comparison of the training loss values and times for high-order Quasi Xuguo flow with different

initial conditions for DnCNN and FNN.

Initial condition Training loss values Training times (s)

initial condition-1

DnCNN [38] 19.9318 354.0328

FNN 0.1306 309.3411

initial condition-2

DnCNN [38] 57.6121 354.2204

FNN 0.7473 313.4896

initial condition-3

DnCNN [38] 19.6188 353.8251

FNN 1.6325 311.6468
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(a) initial-u-1 (PINNs) [12] (b) PINNs (t=31) [12] (c) PINNs (t=61) [12] (d) PINNs (t=100) [12]

(e) initial-u-1 (Ours) (f) Ours (t=31) (g) Our (t=61) (h) Ours (t=100)

(i) initial-u-2 (j) PINNs (t=31) [12] (k) PINNs (t=61) [12] (l) PINNs (t=100) [12]

(m) initial-u-2 (n) Ours (t=31) (o) Ours (t=61) (p) Ours (t=100)

(q) initial-u-3 (r) PINNs (t=31) [12] (s) PINNs (t=61) [12] (t) PINNs (t=99) [12]

(u) initial-u-3 (Ours) (v) Ours (t=31) (w) Ours (t=61) (x) Ours (t=100)

Fig. 3: Examples of the visualization process of evolutionary for the new high-order surface diffusion

Cahn–Hilliard flow with different initial conditions for PINNs and Ours.
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(a) initial-u-1 (DnCNN) [38] (b) DnCNN (t=31) [38] (c) DnCNN (t=61) [38] (d) DnCNN (t=100) [38]

(e) initial-u-1 (FNN) (f) FNN (t=31) (g) FNN (t=61) (h) FNN (t=100)

(i) initial-u-2 (DnCNN) [38] (j) DnCNN (t=31) [38] (k) DnCNN (t=61) [38] (l) DnCNN (t=100) [38]

(m) initial-u-2 (FNN) (n) (FNN) (t=31) (o) (FNN) (t=61) (p) (FNN) (t=100)

(q) initial-u-3 (DnCNN) (r) (DnCNN) (t=31) [38] (s) (DnCNN) (t=61) [38] (t) (DnCNN) (t=99) [38]

(u) initial-u-3 (FNN) (v) (FNN) (t=31) (w) (FNN) (t=61) (x) (FNN) (t=100)

Fig. 4: Examples of the visualization process of evolutionary for high-order Quasi Xuguo flow with initial

conditions 1-3 for DnCNN and FNN.
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(a) initial-u-2 (Adadelta)
[39]

(b) Adadelta (t=31) [39] (c) Adadelta (t=61) [39] (d) Adadelta (t=100) [39]

(e) initial-u-2 (Adagrad) [40] (f) Adagrad (t=31) [40] (g) Adagrad (t=61) [40] (h) Adagrad (t=100) [40]

(i) initial-u-2 (RM-
Sprop) [41]

(j) RMSprop (t=31) [41] (k) RMSprop (t=61) [41] (l) RMSprop (t=100) [41]

(m) initial-u-2 (Adam) [42] (n) (Adam) (t=31) [42] (o) (Adam) (t=61) [42] (p) (Adam) (t=100) [42]

Fig. 5: Examples of the visualization process of evolutionary for high-order Quasi Xuguo flow with initial

condition 2 and different optimizers.

Table 4: The comparison of the training loss values and times for high-order Quasi Xuguo flow with initial

condition 2 for different optimizers.

Initial condition Training loss values Training times (s)

initial condition-2

Adadelta [39] 21.8484 310.3310

Adagrad [40] 13.9149 315.1199

RMSprop [41] 2.4678 316.8016

Adam [42] 0.7473 313.4896
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Fig. 6: The training loss for different situations.

e6 = q−∆sκ, and e7 = w−∆sq. Based on the analysis
above, then the total loss function is obtained as follows,

Loss = LossIC + LossBC +
7

∑

i=1

‖ei‖
2
2, (5)

where IC and BC refer to the initial and bound con-

ditions, respectively. In this work, the initial conditions

are discussed in more detail later, and the boundary

condition is the periodic boundary one.

Usually, the systems of PDEs are viewed as the

PDE-constrained optimization problem,

min
Θ

L (Θ) s.t.F (Θ, u) = 0, (6)

where Θ is the set of model parameters, and L is the

loss function. When we replace Θ with NNΘ, the fol-

lowing physics-constraint optimization learning one is

obtained,

min
Θ

L (Θ) s.t.F (NNΘ, u) = 0. (7)

The gradient descent approach can be used for solving

it, and the parameter update equation is,

Θn+1 = Θn − αn∇ΘL (Θn) (8)

where L refers to Eq. (5). The algorithm can be sum-
marized as in Algritghm 1, and the schematic illus-

tration of our LSM-physics constrained learning (PCL)
framework for learning GPDE is shown in Fig.1.

3.2 High-order surface diffusion flow of Cahn–Hilliard
model

Such as [7], we want to approximate the surface dif-

fusion flow using LSM and high-order LBO of κ, to

smoothing the system of PDEs, the Heaviside function
is introduced as,
{

Hε (u) = 0.5 + 1
π
arctan

(

u
ε

)

,

δε (u) = H ′
ε (u) =

ε
π(ε2+u2) .

(9)

Then, the proposed new Cahn-Hilliard model reads as,















φt = N (φ) divs (M (φ)∇s (N (φ)µ)) ‖∇φ‖εδε (φ) ,

µ = 1
ε
W ′ (φ)−∆sκ‖∇φ‖εδε (φ) ,

M (φ) = W (φ) + γε2, γ > 0,

N (φ) =
√

M (φ);W (φ) = 0.5φ2(1− φ)
2
.

(10)

Since the definition 1-2, we can get a smooth

vector field v defined on Ω, and the divergence opera-
tor divS acting on v, which has the following explicit
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representation,

divS (v) = div (v)− nT (∇v)n

= vx + vy −
φ2
xvx+φxφy(vx+vy)+φ2

yvy

φ2
x+φ2

y+1

. (11)

Since Eq. (11) and Definition 1, Eq. (10) is explicitly

represented, thereafter, which is solved by Algorithm

1 with order reduction.

4 Experiments

In this section, we describe more details about the ex-

perimental setup and results while test the performance

of our method. We train the deep neural network mod-

els on our equipment with a GeForce RTX 1080 su-

per GPU. The software is developed based on the Py-
Torch framework (www.pytorch.org/). We present sev-

eral numerical examples in two dimensions, including

various phenomena to test the convergence of the pro-

posed framework on the synthetic data. Our compu-

tational domain is the square Ω = [0, 1] × [0, 1], and
t ∈ [0, 5]. We use periodic boundary conditions in all

directions. And the computational parameters with a

uniform space-grid Nx = Ny = 100 and a uniform

time-grid Nt = 100 in all examples. Also, we test two

NNs, namely, the feed-forward NN with 14 hidden lay-

ers (each layer contains 50 neurons), and the DnCNN

[38], to test the robustness of our framework for vari-

ous networks. We choose 50 boundary sampling points,

50000 inner sampling points, and 5000 initial sampling
points for training. Examples of the visualization pro-
cess of evolutionary for high-order flows with initial con-

ditions for PINNs and Ours are shown in Fig. 2-3.

And the training loss of PINNs and Ours for high-order

flows with different initial conditions is shown in Fig.

6. Also, the comparison of the training loss values and

times for high-order Quasi Xuguo flow with different

initial conditions is shown in Table 1.

Examples of the visualization process of evolution-
ary for high-order Quasi Xuguo flow with initial condi-

tions 1-3 for DnCNN and FNN is shown in Fig. 4. Also,
some initial conditions of u is given in Table 2. And

the comparison of the training loss values and times

for high-order Quasi Xuguo flow with different initial

conditions for DnCNN and FNN is shown in Table

3. Moreover, the examples of the visualization process
of evolutionary for high-order Quasi Xuguo flow with

initial condition 2 and different optimizers is found in

Fig. 5. Furthermore, the comparison of the training

loss values and times for high-order Quasi Xuguo flow

with initial condition 2 for different optimizers can be

shown in Table 4.

Conclusion

In this work, we explore the problem of high-order Quasi
Xuguo flow and high-order surface diffusion Cahn–Hilliard

flow with different initial conditions based on deep LSM.
Also, we use different initial conditions that aim to
study the sensitivity of the algorithm on different in-

put data. Moreover, to verify the robustness of the al-

gorithm, we used two networks for testing our algo-

rithm. Theoretically, almost all networks fit our frame-

work. Besides, through the combination of the tradi-

tional LSM and DNN, such that our framework be-

comes a powerful tool for solving high-order GPDEs.

Furthermore, we study the influence of different opti-

mizers on the learning results and convergence of the

algorithm. And these optimization methods mainly in-

clude Adadelta, Adagrad, Adam, and RMSprop. The

test results show that Adam is more suitable for our

framework. In future work, we will use real-world data

to test our framework and solve practical problems in

computer vision such as denoising, inpainting, recon-

struction, and segmentation problem.
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