[1] V. Jevtovic-Todorovic, R.E. Hartman, Y. Izumi, N.D. Benshoff, K. Dikranian, C.F. Zorumski, J.W. Olney, D.F. Wozniak, Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits., J. Neurosci. 23 (2003) 876–882. https://doi.org/10.1523/JNEUROSCI.23-03-00876.2003.
[2] G. Stratmann, J.W. Sall, L.D. V May, J.S. Bell, K.R. Magnusson, V. Rau, K.H. Visrodia, R.S. Alvi, B. Ku, M.T. Lee, R. Dai, Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats., Anesthesiology. 110 (2009) 834–848. https://doi.org/10.1097/ALN.0b013e31819c463d.
[3] M. Satomoto, Y. Satoh, K. Terui, H. Miyao, K. Takishima, M. Ito, J. Imaki, Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice., Anesthesiology. 110 (2009) 628–637. https://doi.org/10.1097/ALN.0b013e3181974fa2.
[4] H.H. Hansen, T. Briem, M. Dzietko, M. Sifringer, A. Voss, W. Rzeski, B. Zdzisinska, F. Thor, R. Heumann, A. Stepulak, P. Bittigau, C. Ikonomidou, Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain., Neurobiol. Dis. 16 (2004) 440–453. https://doi.org/10.1016/j.nbd.2004.03.013.
[5] D. Ma, P. Williamson, A. Januszewski, M.-C. Nogaro, M. Hossain, L.P. Ong, Y. Shu, N.P. Franks, M. Maze, Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain., Anesthesiology. 106 (2007) 746–753. https://doi.org/10.1097/01.anes.0000264762.48920.80.
[6] L.X. Lu, J.-H. Yon, L.B. Carter, V. Jevtovic-Todorovic, General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain., Apoptosis. 11 (2006) 1603–1615. https://doi.org/10.1007/s10495-006-8762-3.
[7] H. Viberg, E. Pontén, P. Eriksson, T. Gordh, A. Fredriksson, Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly., Toxicology. 249 (2008) 153–159. https://doi.org/10.1016/j.tox.2008.04.019.
[8] B.P. Lemkuil, B.P. Head, M.L. Pearn, H.H. Patel, J.C. Drummond, P.M. Patel, Isoflurane neurotoxicity is mediated by p75NTR-RhoA activation and actin depolymerization., Anesthesiology. 114 (2011) 49–57. https://doi.org/10.1097/ALN.0b013e318201dcb3.
[9] B.P. Head, H.H. Patel, I.R. Niesman, J.C. Drummond, D.M. Roth, P.M. Patel, Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system., Anesthesiology. 110 (2009) 813–825. https://doi.org/10.1097/ALN.0b013e31819b602b.
[10] M.A.E. Ramsay, D.L. Luterman, Dexmedetomidine as a total intravenous anesthetic agent., Anesthesiology. 101 (2004) 787–790. https://doi.org/10.1097/00000542-200409000-00028.
[11] S.M. Walker, R.F. Howard, K.A. Keay, M. Fitzgerald, Developmental age influences the effect of epidural dexmedetomidine on inflammatory hyperalgesia in rat pups., Anesthesiology. 102 (2005) 1226–1234. https://doi.org/10.1097/00000542-200506000-00024.
[12] D. Ma, M. Hossain, N. Rajakumaraswamy, M. Arshad, R.D. Sanders, N.P. Franks, M. Maze, Dexmedetomidine produces its neuroprotective effect via the alpha 2A-adrenoceptor subtype., Eur. J. Pharmacol. 502 (2004) 87–97. https://doi.org/10.1016/j.ejphar.2004.08.044.
[13] R.D. Sanders, J. Xu, Y. Shu, A. Januszewski, S. Halder, A. Fidalgo, P. Sun, M. Hossain, D. Ma, M. Maze, Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats., Anesthesiology. 110 (2009) 1077–1085. https://doi.org/10.1097/ALN.0b013e31819daedd.
[14] D.S. Carollo, B.D. Nossaman, U. Ramadhyani, Dexmedetomidine: a review of clinical applications., Curr. Opin. Anaesthesiol. 21 (2008) 457–461. https://doi.org/10.1097/ACO.0b013e328305e3ef.
[15] M. Benggon, H. Chen, R. Applegate, R. Martin, J.H. Zhang, Effect of dexmedetomidine on brain edema and neurological outcomes in surgical brain injury in rats., Anesth. Analg. 115 (2012) 154–159. https://doi.org/10.1213/ANE.0b013e31824e2b86.
[16] Y.-M. Zhu, C.-C. Wang, L. Chen, L.-B. Qian, L.-L. Ma, J. Yu, M.-H. Zhu, C.-Y. Wen, L.-N. Yu, M. Yan, Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats., Brain Res. 1494 (2013) 1–8. https://doi.org/10.1016/j.brainres.2012.11.047.
[17] F. Zhang, T. Ding, L. Yu, Y. Zhong, H. Dai, M. Yan, Dexmedetomidine protects against oxygen-glucose deprivation-induced injury through the I2 imidazoline receptor-PI3K/AKT pathway in rat C6 glioma cells., J. Pharm. Pharmacol. 64 (2012) 120–127. https://doi.org/10.1111/j.2042-7158.2011.01382.x.
[18] S. Dahmani, D. Rouelle, P. Gressens, J. Mantz, Characterization of the postconditioning effect of dexmedetomidine in mouse organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation., Anesthesiology. 112 (2010) 373–383. https://doi.org/10.1097/ALN.0b013e3181ca6982.
[19] V. Degos, T. Le Charpentier, V. Chhor, O. Brissaud, S. Lebon, L. Schwendimann, N. Bednareck, S. Passemard, J. Mantz, P. Gressens, Neuroprotective effects of dexmedetomidine against glutamate agonist-induced neuronal cell death are related to increased astrocyte brain-derived neurotrophic factor expression., Anesthesiology. 118 (2013) 1123–1132. https://doi.org/10.1097/ALN.0b013e318286cf36.
[20] S.A. Johnson, C. Young, J.W. Olney, Isoflurane-induced neuroapoptosis in the developing brain of nonhypoglycemic mice., J. Neurosurg. Anesthesiol. 20 (2008) 21–28. https://doi.org/10.1097/ANA.0b013e3181271850.
[21] L. Slomianka, I. Amrein, I. Knuesel, J.C. Sørensen, D.P. Wolfer, Hippocampal pyramidal cells: the reemergence of cortical lamination., Brain Struct. Funct. 216 (2011) 301–317. https://doi.org/10.1007/s00429-011-0322-0.
[22] L.-H. Yao, C.-H. Li, W.-W. Yan, J.-N. Huang, W.-X. Liu, P. Xiao, Cordycepin decreases activity of hippocampal CA1 pyramidal neuron through membrane hyperpolarization., Neurosci. Lett. 503 (2011) 256–260. https://doi.org/10.1016/j.neulet.2011.08.048.
[23] J.-H. Yon, J. Daniel-Johnson, L.B. Carter, V. Jevtovic-Todorovic, Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways., Neuroscience. 135 (2005) 815–827. https://doi.org/10.1016/j.neuroscience.2005.03.064.
[24] A.W. Loepke, S.G. Soriano, An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function., Anesth. Analg. 106 (2008) 1681–1707. https://doi.org/10.1213/ane.0b013e318167ad77.
[25] X. Wu, Y. Lu, Y. Dong, G. Zhang, Y. Zhang, Z. Xu, D.J. Culley, G. Crosby, E.R. Marcantonio, R.E. Tanzi, Z. Xie, The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-α, IL-6, and IL-1β., Neurobiol. Aging. 33 (2012) 1364–1378. https://doi.org/10.1016/j.neurobiolaging.2010.11.002.
[26] G. Stratmann, J.W. Sall, J.S. Bell, R.S. Alvi, L. d V May, B. Ku, M. Dowlatshahi, R. Dai, P.E. Bickler, I. Russell, M.T. Lee, M.W. Hrubos, C. Chiu, Isoflurane does not affect brain cell death, hippocampal neurogenesis, or long-term neurocognitive outcome in aged rats., Anesthesiology. 112 (2010) 305–315. https://doi.org/10.1097/ALN.0b013e3181ca33a1.
[27] G. Orliaguet, B. Vivien, O. Langeron, B. Bouhemad, P. Coriat, B. Riou, Minimum alveolar concentration of volatile anesthetics in rats during postnatal maturation., Anesthesiology. 95 (2001) 734–739. https://doi.org/10.1097/00000542-200109000-00028.
[28] Y. Li, F. Wang, C. Liu, M. Zeng, X. Han, T. Luo, W. Jiang, J. Xu, H. Wang, JNK pathway may be involved in isoflurane-induced apoptosis in the hippocampi of neonatal rats., Neurosci. Lett. 545 (2013) 17–22. https://doi.org/10.1016/j.neulet.2013.04.008.
[29] H.K. Happe, D.B. Bylund, L.C. Murrin, Alpha-2 adrenergic receptor functional coupling to G proteins in rat brain during postnatal development., J. Pharmacol. Exp. Ther. 288 (1999) 1134–1142.
[30] M.J. Millan, Descending control of pain., Prog. Neurobiol. 66 (2002) 355–474. https://doi.org/10.1016/s0301-0082(02)00009-6.
[31] R.M. Venn, A. Bryant, G.M. Hall, R.M. Grounds, Effects of dexmedetomidine on adrenocortical function, and the cardiovascular, endocrine and inflammatory responses in post-operative patients needing sedation in the intensive care unit., Br. J. Anaesth. 86 (2001) 650–656. https://doi.org/10.1093/bja/86.5.650.
[32] D.N. Wijeysundera, J.S. Naik, W.S. Beattie, Alpha-2 adrenergic agonists to prevent perioperative cardiovascular complications: a meta-analysis., Am. J. Med. 114 (2003) 742–752. https://doi.org/10.1016/s0002-9343(03)00165-7.
[33] K. Sato, T. Kimura, T. Nishikawa, Y. Tobe, Y. Masaki, Neuroprotective effects of a combination of dexmedetomidine and hypothermia after incomplete cerebral ischemia in rats., Acta Anaesthesiol. Scand. 54 (2010) 377–382. https://doi.org/10.1111/j.1399-6576.2009.02139.x.
[34] Z. Liao, D. Cao, X. Han, C. Liu, J. Peng, Z. Zuo, F. Wang, Y. Li, Both JNK and P38 MAPK pathways participate in the protection by dexmedetomidine against isoflurane-induced neuroapoptosis in the hippocampus of neonatal rats., Brain Res. Bull. 107 (2014) 69–78. https://doi.org/10.1016/j.brainresbull.2014.07.001.
[35] W.E. Hoffman, M.A. Cheng, C. Thomas, V.L. Baughman, R.F. Albrecht, Clonidine decreases plasma catecholamines and improves outcome from incomplete ischemia in the rat., Anesth. Analg. 73 (1991) 460–464. https://doi.org/10.1213/00000539-199110000-00016.
[36] S. Dahmani, D. Rouelle, P. Gressens, J. Mantz, Effects of dexmedetomidine on hippocampal focal adhesion kinase tyrosine phosphorylation in physiologic and ischemic conditions., Anesthesiology. 103 (2005) 969–977. https://doi.org/10.1097/00000542-200511000-00011.
[37] R.D. Sanders, P. Sun, S. Patel, M. Li, M. Maze, D. Ma, Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain., Acta Anaesthesiol. Scand. 54 (2010) 710–716. https://doi.org/10.1111/j.1399-6576.2009.02177.x.
[38] S. Dahmani, A. Paris, V. Jannier, L. Hein, D. Rouelle, J. Scholz, P. Gressens, J. Mantz, Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an alpha 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors., Anesthesiology. 108 (2008) 457–466. https://doi.org/10.1097/ALN.0b013e318164ca81.
[39] M. Schoeler, P.D. Loetscher, R. Rossaint, A. V Fahlenkamp, G. Eberhardt, S. Rex, J. Weis, M. Coburn, Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury., BMC Neurol. 12 (2012) 20. https://doi.org/10.1186/1471-2377-12-20.
[40] D.M. Juric, D. Loncar, M. Carman-Krzan, Noradrenergic stimulation of BDNF synthesis in astrocytes: mediation via alpha1- and beta1/beta2-adrenergic receptors., Neurochem. Int. 52 (2008) 297–306. https://doi.org/10.1016/j.neuint.2007.06.035.
[41] S. Finkbeiner, CREB couples neurotrophin signals to survival messages., Neuron. 25 (2000) 11–14. https://doi.org/10.1016/s0896-6273(00)80866-1.
[42] Q. Shi, P. Zhang, J. Zhang, X. Chen, H. Lu, Y. Tian, T.L. Parker, Y. Liu, Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice., Neurosci. Lett. 465 (2009) 220–225. https://doi.org/10.1016/j.neulet.2009.08.049.
[43] N. Caza, R. Taha, Y. Qi, G. Blaise, The effects of surgery and anesthesia on memory and cognition., Prog. Brain Res. 169 (2008) 409–422. https://doi.org/10.1016/S0079-6123(07)00026-X.
[44] J.P. Mathew, M. V Podgoreanu, H.P. Grocott, W.D. White, R.W. Morris, M. Stafford-Smith, G.B. Mackensen, C.S. Rinder, J.A. Blumenthal, D.A. Schwinn, M.F. Newman, Genetic variants in P-selectin and C-reactive protein influence susceptibility to cognitive decline after cardiac surgery., J. Am. Coll. Cardiol. 49 (2007) 1934–1942. https://doi.org/10.1016/j.jacc.2007.01.080.