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Abstract

Queueing models play a significant role in analysing the performance of power
management systems in various electronic devices and communication systems.
This paper adopts a multiple vacation queueing model with a threshold policy
to analyse the power-saving mechanisms of the wireless sensor network(WSN) us-
ing the Dynamic Power Management technique. The proposed system consists of
a busy state(transmit state), wake-up state, shutdown state and inactive state.
In this model, the server switches to a shutdown state for a random duration of
time after serving all the events(data packets) in the busy state. Events that ar-
rive during the shutdown period cannot be served until the system size reaches
the predetermined threshold value of k and further it requires start-up time and
a change of state to resume service. At the end of the shutdown period, if the
system size is less than k, then the server begins the inactive period; otherwise, the
server switches to the wake-up state. For this system, an explicit expression for
the transient and steady-state solution is computed in a closed-form. Furthermore,
performance indices such as mean, variance, probability that the server is in various
stages of power management modes and mean power consumption are computed.
Finally, graphical illustrations are made to understand the effect of the parameters
on the performance of the system.

Key words: Single server, transient probabilities, steady-state probabilities, threshold
policy, start-up times, mean power consumption .

1 Introduction

WSN is a smart technology used to collect information about the neighbouring en-
vironment by sensing and share the information with the user or with the base station.
WSN uses smart sensors for sensing, computing and collecting information. These sensors
are tiny, low-cost and battery-powered. The WSNs have a far-reaching application that
has transformed human lives in many aspects and paved the way for intelligent living
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technology. It is applied in agriculture, defence, traffic, surveillance, natural disaster,
etc. for tracking and monitoring. Although WSN is popular technology, it has got some
limitations, particularly in battery life. The battery cannot be recharged during the
surveillance because the nodes of WSNs may be deployed in an unfriendly environment.
The lifetime of the WSN depends on the power consumption executed at each sensor
node. Hence, the energy consumption in the WSNs is considered a serious issue that has
attracted many researchers in recent times. To control the power consumption in sensor
nodes, a variety of Dynamic Power Management(DPM) techniques have been proposed
by researchers in recent times. It protocols the WSNs to switch power-saving modes and
selectively shutting down the components during the idle time for saving power. It is also
applied in many portable devices for power management. The DPM policies can be clas-
sified as predictive and stochastic [1]. In this model, a stochastic-based DPM approach
is adopted. This paper analyses the functions of the DPM in WSNs using an M/M/1
queuing system with vacation and threshold policy.

Queueing systems with vacation play a vital role in analysing the power-saving mech-
anism(PSM) of computer and communication systems. Several authors have applied
various vacation policies to study the performance of the PSM in various communication
systems [See Dimitriou [4], Misra and Goswami [13], Sampath et al. [16] and Ren et al.
[15] and references therein]. In these models, the server switches to busy and vacation
states frequently. To avoid frequent switching, the system designers prefer an N-policy
scheme which will be more effective than other vacation schemes. In the N-policy queue-
ing systems, the server is turned OFF or it stays idle when there is no job(data packet)
in the system and the server is turned ON when the system size reaches a threshold
value N. The notion of an N-policy was first studied by Yadin and Naor [18]. Later,
many researchers studied various queueing systems with N-policy in a different context
[See Wang and Ke [17], Parthasarathy and Sudhesh [14] and references therein]. In the
multiple vacations queuing system with N-policy, the server switches to a busy state from
vacation only if the system accumulates N jobs.

Many researchers have analysed the PSM of WSNs based on the vacation queueing
system with N-policy. Jiang et al. [7] analysed the PSM of WSNs using N-policy and
discussed the steady-state results. In this paper, the authors considered two states namely
busy and idle. Huang and Lee [5] studied the PSM of WSNs using an N-policy M/G/1/K
queueing model and presented the steady-state results. Blondia [2] presented the steady-
state analysis of a WSN using energy harvesting. In this paper the author considered two
states namely transmit and vacation. Lee and Yang [10] analysed the PSM of WSNs using
an N-policy Geo/G/1 queueing model. Chen et al. [3] proposed an improved stochastic
model for the WSNs which consists of three power-saving states namely shutdown, wake-
up and inactive. In this paper, the author proposed that power saving can be achieved by
decreasing the number of shutdown and wake-up processes. Jayarajan et al. [6] applied
M/D/1 priority queueing model with threshold policy to study the PSM of sensor network
and obtained the steady-state results. Ma et al. [12] studied the PSM of WSNs using
an M/M/2 queueing model with threshold policy and presented the steady-state results
using the matrix-geometry method. From the literature survey, it is observed that most
research on the mathematical modelling of WSNs has focussed mainly on the steady-state
analysis of the system. Surprisingly the transient analysis of the system has not received
as much attention. In many real-time applications, the system experiences a change and
such changes can be measured by the transient analysis and not by steady-state analysis.
The steady-state results cannot be used to determine the number of data packets waiting
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in the queue during the transmit state or in the vacation state at some time instant t.
This motivates us to study the transient and steady-state analysis of the model.

The functions of the DPM are as follows. The DPM in WSNs consists of a service
requestor (SR), a service provider (SP), a power manager (PM) and an event queue
(EQ). The SR and the SP in the DPM are considered as incoming events and servers
respectively. The incoming event joins the EQ and waits for service. After getting the
service from the SP, the jobs are removed from the EQ. The PM in the DPM monitors
the states of the SR, the SP and the EQ and controls the power management in the
system. The power management modes of the DPM are shutdown state, wake-up state
and inactive state. At the end of a busy period, the SP switches to the shutdown state
during which the jobs can join the EQ. At this stage, the server cannot be activated until
the EQ reaches a threshold value k. Once the EQ reaches a threshold value k, the SP
enters into a wake-up state. From the wake-up state, the SP switches to the active mode.
If no events arrive during the shutdown state, the SP will switch to an inactive state and
wait for jobs to accumulate k jobs.

The significance and the advantages of the model are as follows. The key factors that
affect the WSNs during their operation are power consumption in each state, switching
cost and duration of time spent in each state. To optimize this system, mean power
consumption is discussed in the paper and a threshold value k has been derived to acquire
minimum power consumption for the WSNs while considering each different arrival rate.
The transient analysis made in the paper enables the system analyst to understand the
status of the system at any time t. The DPM with the threshold policy has many
advantages over the other vacation schemes. It reduces the frequent switching of the
wake-up and shutdown states, thereby increasing the life of sensor nodes and controlling
the power consumption. It accumulates k events and then processes the job to make the
system more energy efficient. The key feature of this work is to achieve minimum power
consumption for each arrival rate using a threshold policy.

The remaining part of the paper is structured as follows. The description of the model
is presented in Section 2. The transient probabilities of the wake-up, the shutdown, the
inactive and the busy states are presented in Section 3. The mean, variance and the
probability that the system in power-saving modes are presented in Section 4. The
steady-state probabilities are derived explicitly in Section 5. The performance indices
of the system in the steady-state are presented in section 6. The results obtained in
Sections 3-6 are graphically illustrated in Section 7. The Conclusion and future work are
presented in Section 8.

2 Description of the model

The model description of the WSN with start-up times and threshold policy is pre-
sented in this section.

1. The events join the queue according to a Poisson process with a rate of λ and the
events receive service with a rate of µb which follows an exponential distribution.

2. After serving all the events in the busy state, the server switches to the shutdown
mode of random duration V . The service is only provided in the busy state. During
the shutdown period, events are allowed to join the queue, but the server will not
resume service until the system accumulates k events.
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3. At the end of period V , if the system reaches the threshold value k, then the system
requires a start-up time which is exponentially distributed with the rate θ1 to begin
the service. To start-up, the system requires a change of state. The server switches
from a shutdown state to an wake-up state which is exponentially distributed with
a rate θ2.

4. At the end of the shutdown period V , if the system size is less than k, then the
server switches to an inactive mode with the rate θ2 which follows an exponential
distribution. Events can enter the system during the inactive period. At this epoch
when the system size reaches the threshold value k, the system switches to the
wake-up state

Let {M (t)), t ≥ 0} represent the status of the system at any time t and let Q (t)
denotes the number of events in the system at any time t.

M(t) =















0, the server is in busy mode and operates with the rate µb

1, the server is in wake-up mode
2, the server is in shutdown mode
3, the server is in inactive mode

Then, X(t) = {M (t) , Q (t) , t ≥ 0} represents a continuous time Markov chain with state
space

S = {(0, n) : n = 1, 2, 3, ...} ∪ {(1, n) : n = k, k + 1, k + 2, ...}
× ∪{(2, n) : n = 0, 1, 2, ...} ∪

{

(3, n) : n = 0, 1, 2, ...k − 1.
}

Let

Pi,n(t) = P
{

M(t) = i, Q(t) = n
}

, i = 0 ;n = 1, 2, 3...,

Pi,n(t) = P
{

M(t) = i, Q(t) = n
}

, i = 1 ;n = k, k + 1, k + 2...,

Pi,n(t) = P
{

M(t) = i, Q(t) = n
}

, i = 2 ;n = 0, 1, 2, ...,

Pi,n(t) = P
{

M(t) = i, Q(t) = n
}

, i = 3 ;n = 0, 1, 2, ...k − 1.

Then Pi,n (t) satisfies the following forward Kolmogorov equation. Figure 1 presents the
pictorial representation of the model.

P ′

0,1 (t) = − (λ+ µb)P0,1 (t) + µbP0,2 (t) . (2.1)

P ′

0,n (t) = − (λ+ µb)P0,n (t) + λP0,n−1 (t) + µbP0,n+1 (t) , n = 2, 3, 4, ..., k − 1. (2.2)

P ′

0,n (t) = − (λ+ µb)P0,n (t) + λP0,n−1 (t) + µbP0,n+1 (t) + θ1P1,n (t) , n = k, k + 1, k + 2, ....

(2.3)

P ′

1,k (t) = − (λ+ θ1)P1,k (t) + θ2P2,k (t) + λP3,k−1 (t) . (2.4)

P ′

1,n (t) = − (λ+ θ1)P1,n (t) + θ2P2,n (t) + λP1,n−1(t), n = k + 1, k + 2, k + 3..... (2.5)

P ′

2,0 (t) = − (λ+ θ2)P2,0 (t) + µbP0,1 (t) . (2.6)

P ′

2,n (t) = − (λ+ θ2)P2,n (t) + λP2,n−1 (t) , n = 1, 2, 3, .... (2.7)

P ′

3,0 (t) = −λP3,0 (t) + θ2P2,0 (t) . (2.8)

P ′

3,n (t) = −λP3,n (t) + λP3,n−1 (t) + θ2P2,n (t) , n = 1, 2, ..., k − 1. (2.9)

To setup initial conditions, we assume that the server is on inactive state initially. There-
fore, P3,0(0) = 1, P0,n(0) = 0 for n=1,2,3...; P1,n(0) = 0 for n = k, k + 1, k + 2, ...;
P2,n(0) = 0 for n = 0, 1, 2, ...; P3,n(0) = 0 for n = 1, 2, ..., k − 1.
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Figure 1: Pictorial representation of the model.
.

3 Transient analysis

This section presents the time-dependent probabilities of the wake-up state P1,n(t),
the shutdown state P2,n(t), the inactive state P3,n(t) and the busy state P0,n(t).

3.1 Evaluation of P1,n(t), P2,n(t) and P3,n(t)

Let P̂i,n(s) denote the Laplace transform of Pi,n(t) for i = 1, 2, 3 ;n = 0, 1, 2, ....
Taking Laplace transform on Equations (2.4)-(2.9), we get

sP̂1,k (s) = − (λ+ θ1) P̂1,k (s) + θ2P̂2,k (s) + λP̂3,k−1 (s) , (3.1)

sP̂1,n (s) = − (λ+ θ1) P̂1,n (s) + θ2P̂2,n (s) + λP̂1,n−1 (s) , n = k + 1, k + 2, k + 3, ...,
(3.2)

sP̂2,0 (s) = − (λ+ θ2) P̂2,0 (s) + µbP̂0,1 (s) , (3.3)

sP̂2,n (s) = − (λ+ θ2) P̂2,n (s) + λP̂2,n−1 (s) , n = 1, 2, ..., (3.4)

sP̂3,0 (s)− 1 = −λP̂3,0 (s) + θ2P̂2,0 (s) , (3.5)

sP̂3,n (s) = −λP̂3,n (s) + λP̂3,n−1 (s) + θ2P̂2,n (s) , n = 1, 2, ..., k − 1. (3.6)

Let β1 = λ+ θ1 and β2 = λ+ θ2. Using Equations (3.3) and (3.4), we get

P̂2,n (s) =
λnµb

(s+ β2)
n+1 P̂0,1 (s) , n = 0, 1, 2, ..... (3.7)

5



Substituting Equation (3.3) in (3.5) and further using it in Equation (3.6) after some
algebraic manipulation, we obtain

P̂3,n (s) =
µbθ2λ

n

(s+ λ) (s+ β2)

{

(

1

s+ λ

)n

+
n
∑

i=1

(

1

s+ λ

)n−i(
1

s+ β2

)i
}

P̂0,1 (s)

+
λn

(s+ λ)n+1 , n = 0, 1, 2, ..., k − 1. (3.8)

Using Equations (3.7) and (3.8) in Equation (3.1) after some manipulation, we get

P̂1,k (s) =
θ2µbλ

k

(s+ β1) (s+ β2)

{

1

(s+ β2)
k
+

(

1

s+ λ

)k

+
k−1
∑

i=1

(

1

s+ λ

)k−i (
1

s+ β2

)i
}

× P̂0,1 (s) +

(

λ

s+ λ

)k
1

(s+ β1)
. (3.9)

Using Equations (3.7) and (3.9) in Equation (3.2), we get

P̂1,n (s) =
µbλ

nθ2

(s+ β1) (s+ β2)

[

n
∑

j=k+1

(

1

s+ β1

)n−j(
1

s+ β2

)j

+

(

1

s+ β1

)n−k

×
{

1

(s+ β2)
k
+

(

1

s+ λ

)k

+
k−1
∑

i=1

(

1

s+ λ

)k−i

×
(

1

s+ β2

)i
}]

P̂0,1 (s)

+ λn

(

1

s+ β1

)n−k+1(
1

s+ λ

)k

, n = k, k + 1, k + 2, .... (3.10)

Inversion on Equations (3.10), (3.7) and (3.8) respectively yields

P1,n (t) = λnµbθ2 exp {− (β1) t} ∗ exp {− (β2) t} ∗
[

n
∑

j=k+1

exp {− (β1) t} tn−j−1

(n− j − 1)!

∗ exp {− (β2) t} tj−1

(j − 1)!
+

exp {− (β1) t} tn−k−1

(n− k − 1)!
∗
{

exp {− (β2) t} tk−1

(k − 1)!

+
exp (−λt)k−1

(k − 1)!
+

k−1
∑

i=1

exp (−λt)k−i−1

(k − i− 1)!
∗ exp {− (β2) t} ti−1

(i− 1)!

}]

∗ P0,1 (t)

+
λn exp {− (β1) t} tn−k

(n− k)!
∗ exp (−λt)k−1

(k − 1)!
, n = k, k + 1, k + 2, ..., (3.11)

P2,n (t) =
λnµb exp {− (β2) t} tn

n!
∗ P0,1 (t) , n = 0, 1, 2, ..., (3.12)

P3,n (t) =

{

exp (−λt) tn−1

(n− 1)!
+

n
∑

i=1

exp (−λt) tn−i−1

(n− i− 1)!
∗ exp {− (β2) t} ti−1

(i− 1)!

}

∗ P0,1 (t)

∗ θ2µbλ
n exp (−λt) ∗ exp {− (β2) t}+

λn exp (−λt) tn

n!
, n = 0, 1, 2, ...k − 1. (3.13)

The time-dependent probabilities P1,n(t), P2,n(t) and P3,n(t) are expressed in-terms of
P0,1(t) and an explicit expression for P0,1(t) is given in Equation (3.24).
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3.2 Evaluation of P0,n(t)

The busy-state probability P0,n(t); n=1,2,3,... is obtained using Equations (2.1)-(2.3)
by applying generating function.
Let

H (z, t) =
∞
∑

n=1

P0,n(t)z
n, H (z, 0) = 0.

Using Equations (2.1)-(2.3), we get

∂

∂t
H (z, t) = H (z, t)

[

− (λ+ µb) + µbz
−1 + λz

]

+ θ1

∞
∑

n=k

P1,n (t)z
n − µbP0,1 (t) .

On solving,

H (z, t) = θ1

t
∫

0

∞
∑

m=k

P1,m (w) zm exp
{

−β +
(

λz + µbz
−1
)}

(t− w) dw

− µb

t
∫

0

P0,1 (w) exp
{

−β +
(

λz + µbz
−1
)}

(t− w) dw, (3.14)

where β = λ+ µb. Let κ = 2
√
λµb and ν =

√

λµ−1
b , then

exp
[(

λz +
µb

z

)

(t− w)
]

=
∞
∑

n=−∞

(νz)nIn (κ(t− w)) . (3.15)

where Im(t) represents the modified Bessel function of the first kind of order m. Applying
Equation (3.15) in Equation (3.14) and equating the coefficient of zn on both sides for
n = k + 1, k + 2, k + 3...

P0,n (t) = θ1

t
∫

0

∞
∑

m=k

P1,m (w) exp {−β (t− w)} νn−mIn−m (.) dw

− µb

t
∫

0

P0,1 (w) exp {−β (t− w)} νnIn (.) dw. (3.16)

Equating the coefficients of z−n on both sides of Equation (3.14) for n = k+1, k+2, k+3...
and using I−n (.) = In (.), we get

0 = θ1

t
∫

0

∞
∑

m=k

P1,m (w) exp {−β (t− w)} ν−n−mIn+m (.) dw

− µb

t
∫

0

P0,1 (w) exp {−β (t− w)} ν−nIn (.) dw.. (3.17)
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Multiplying ν2n on both sides of Equation (3.17) and subtracting it from Equation (3.16)
for n=1,2,3..., we arrive

P0,n (t) = θ1

t
∫

0

∞
∑

m=k

P1,m (w) exp {−β (t− w)} νn−m [In−m (·)− In+m (·)] dw. (3.18)

Taking Laplace transform on Equation (3.18), we obtain

P̂0,n (s) =
θ1√

d2 − κ2

∞
∑

m=1

P̂1,m (s) νn−m
(

ς̂(s)n−m − ς̂(s)n+m
)

(3.19)

where

ς̂(s) =
d−

√
d2 − κ2

κ
and d = s+ λ+ µb.

Using Equation (3.10) in Equation (3.19), we obtain

P̂0,n (s) =
θ1√

d2 − κ2

∞
∑

m=k

νn−m

[

µbθ2λ
m

(s+ β1) (s+ β2)

[

m
∑

j=k+1

(

1

s+ β1

)m−j(
1

s+ β2

)j

+

(

1

s+ β1

)m−k
{

1

(s+ β2)
k
+

(

1

s+ λ

)k

+
k−1
∑

i=1

(

1

s+ λ

)k−i(
1

s+ β2

)i
}

P0,1 (t)

]

+ λm

(

1

s+ β1

)m−k+1(
1

s+ λ

)k

ς̂(s)n−m − ς̂(s)n+m

]

.

On inversion,

P0,n (t) = θ1

∞
∑

m=k

νn−m

[

µbθ2λ
m exp {− (β1) t} ∗ exp {− (β2) t}

∗
[

m
∑

j=k+1

{

exp {− (β1) t} tm−j−1

(m− j − 1)!
∗ exp {− (β2) t} tj−1

(j − 1)!

}

+
exp {− (β1) t} tm−k−1

(m− k − 1)!
∗
[

exp {− (β2) t} tk−1

(k − 1)!
+

exp (−λt)k−1

(k − 1)!

+
k−1
∑

i=1

{

exp (−λt)k−i−1

(k − i− 1)!
∗ exp {− (β2) t} ti−1

(i− 1)!

}]]

∗ P0,1 (t) +

{

exp (−λt)k−1

(k − 1)!

∗exp {− (β1) t} tm−k

(m− k)!

}

∗ [In−m (κt)− In+m (κt)] exp {− (λ+ µb) t}
]

. (3.20)

3.3 Evaluation of P0,1(t)

Setting n = 1 in Equation (3.5), we obtain

P0,1 (t) = θ1

t
∫

0

∞
∑

m=k

P1,m (w) exp {−β (t− w)} ν1−m [I1−m (·)− I1+m (·)] dw.
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On inversion

P̂0,1 (s) = 2θ1

∞
∑

m=k

ν1−mP̂1,m (s)
κm−1

(

d+
√
d2 − κ2

)m . (3.21)

where d = s + λ + µb. Substituting Equation (3.15) in Equation (3.19) after some
manipulation, we get

P̂0,1 (s) = θ1

(

1

s+ λ

)k ∞
∑

m=k

ν1−mλm

(

1

s+ β1

)m−k+1
2κm−1

(

d+
√
d2 − κ2

)m

∞
∑

h=0

(

Ĝ1 (s)
)h

,

(3.22)

where

Ĝ1 (s) =
µbθ1θ2

(s+ β1) (s+ β2)

∞
∑

m=k

ν1−mλm

[

m
∑

j=k+1

(

1

s+ β1

)m−j(
1

s+ β2

)j

+

(

1

s+ β1

)m−k
{

1

(s+ β2)
k
+

(

1

s+ λ

)k

+
k−1
∑

i=1

(

1

s+ λ

)k−i

×
(

1

s+ β2

)i
}]

2κm−1

(

d+
√
d2 − κ2

)m . (3.23)

Inversion on (3.20) gives

P0,1 (t) =
θ1 exp (−λt)k−1

(k − 1)!
∗

∞
∑

m=k

λm exp {− (β1) t} tm−k

(m− k)!
∗ ν1−m [I1−m (κt)− I1+m (κt)]

∗
∞
∑

h=0

(G1 (t))
∗h
, (3.24)

where

G1 (t) = θ1θ2µb exp {− (β1) t} ∗ exp {− (β2) t} ∗
∞
∑

m=k

λm

[

m
∑

j=k+1

exp {− (β1) t}

× tm−j−1

(m− j − 1)!
∗ exp {− (β2) t} tj−1

(j − 1)!
+

exp {− (β1) t} tm−k−1

(m− k − 1)!

∗
{

tk−1

(k − 1)!
exp {− (β2) t}+

exp (−λt)k−1

(k − 1)!
+

k−1
∑

i=1

exp (−λt)k−i−1

(k − i− 1)!

∗exp {− (β2) t} ti−1

(i− 1)!

}]

∗ ν1−m
[

I1−m (κt)− I1+m (κt)
]

(3.25)

and ‘∗h’ denotes h-fold convolution. Thus we have obtained an explicit expression for
P0,1(t).

4 Performance measures

The mean and variance of the system size are presented in this section.

9



4.1 Mean

Let Ω(t) denote the expected system size at time t. For t > 0, we have

Ω(t) = E [X (t)] =
∞
∑

n=1

nP0,n (t) +
∞
∑

n=k

nP1,n (t) +
∞
∑

n=1

nP2,n (t) +
k−1
∑

n=0

nP3,n(t).

Then using Equations (2.1)-(2.9), we get

d

dt
Ω (t) = λ− µb

∞
∑

n=1

P0,n (t) + λ

∞
∑

n=k

P1,n (t) + λ

k−1
∑

n=0

P3,n (t).

The above equation gives

Ω (t) = λt− µb

∞
∑

n=1

t
∫

0

P0,n (y) dy + λ

∞
∑

n=k

t
∫

0

P1,n (y) dy + λ

k−1
∑

n=0

t
∫

0

P3,n (y) dy.

4.2 Variance

Let V (t) denote the variance system size at time t. For t > 0,

V (t) = E[X2(t)]− (E[X(t)])2,

where

E
[

X2 (t)
]

=
∞
∑

n=1

n2P0,n (t) +
∞
∑

n=k

n2P1,n (t) +
∞
∑

n=1

n2P2,n (t) +
k−1
∑

n=1

n2P3,n (t) .

Using Equations (2.1)-(2.9), we obtain

d

dt
E
[

X2 (t)
]

= λ− µb

∞
∑

n=0

(2n+ 1)P0,n+1 (t) + 2λΩ(t).

Then

E
[

X2 (t)
]

= λt− µb

∞
∑

n=0

(2n+ 1)

t
∫

0

P0,n+1 (y) dy + 2λ

t
∫

0

Ω(y)dy.

4.3 Probability that the server is in power-saving modes

Let Pui,• (t) ; i = 1, 2, 3 denote the probability that the server is on wake-up state,
shutdown state and inactive state respectively, then

P̂1,• (s) =
∞
∑

n=k

P̂1,n (s),

P̂2,• (s) =
∞
∑

n=0

P̂2,n (s),
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P̂3,• (s) =
k−1
∑

n=0

P̂3,n (s).

Using Equations (3.10), (3.7) and (3.8) in the above expression and taking inversion,
respectively yield

P1,• (t) = µbθ2 exp {− (β1) t} ∗ exp {− (β2) t} ∗
[

λk+1

{

δ′ (t) + (β1) δ (t)

θ2 − θ1

}

∗ exp {− (β2) t} tk−1

(k − 1)!
∗ {exp (−θ1t)− exp (−θ2t)}+

{

λk+1 exp (−θ1t)

+λkδ (t)
}

∗
{

exp {− (β2) t} tk−1

(k − 1)!
+

exp (−λt)k−1

(k − 1)!
+

k−1
∑

i=1

exp (−λt)k−i−1

(k − i− 1)!

∗exp {− (β2) t} ti−1

(i− 1)!

}]

∗ P0,1 (t) +
λk exp (−λt) tk−1 ∗ exp (−θ1t)

(k − 1)!
,

P2,• (t) = µb exp (−θ2t) ∗ P0,1 (t) ,

P3,• (t) = δ (t)− λk exp (−λt) tk−1

(k − 1)!
+ µb [exp (−λt)− exp {− (β2) t}]

∗
[

{δ (t) + λ} ∗
{

δ (t)− λk exp (−λt) tk−1

(k − 1)!

}

+

{

δ′ (t) + λδ (t)

θ2

}

∗
[

λ

{

δ (t)− λk−1 exp (−λt) tk−2

(k − 2)!

}

− λ exp (−θ2t)

∗
{

δ (t)− λk−1 exp {− (β2) t} tk−2

(k − 2)!

}]]

∗ P0,1 (t) .

where δ (t) represents Dirac delta function.

4.4 Probability that the server is in busy state

Let Pb,• (t) denote the probability that the server is on busy state, then

P̂b,• (s) =
∞
∑

n=1

P̂b,n (s).

Using Equation (3.19) and taking inversion, we get

Pb,• (t) = θ1

∞
∑

n=1

∞
∑

m=k

P1,m (t)νn−m∗ [In−m (κt)− In+m (κt)] exp (−βt) .

4.5 Probability that the server is either in busy state or wake-

up state or shutdown state or inactive state

Let P (t) denote the probability that the server is either in busy state or in wake-up
state or in shutdown state or in inactive state, then

P (t) =
∞
∑

n=1

P0,n (t)+
∞
∑

n=k

P1,n (t)+
∞
∑

n=0

P2,n (t) +
k−1
∑

n=0

P3,k−1 (t).
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5 Steady-state probabilities

The system size probabilities of the wake-up state, the shutdown state and the inactive
state are presented in this section.
Let {πk,n; k = v1, v2, c, b, n ≥ 0} represent the steady-state probability distributions for

the model considered. Applying the steady-state condition lim
s→0

sP̂i,n = πi,n on Equations

(2.1)-(2.9), we get

(λ+ µb) π0,1 = µbπ0,2, (5.1)

(λ+ µb) π0,n = λπ0,n−1 + µbπ0,n+1, n = 2, 3, 4, ..., k − 1, (5.2)

(λ+ µb) π0,n = λπ0,n−1 + µbπ0,n+1 + θ1π1,n, n = k, k + 1, k + 2, ...., (5.3)

(λ+ θ1) π1,k = θ2π2,k + λπ3,k−1, (5.4)

(λ+ θ1) π1,n = θ2π2,n + λπ1,n−1, n = k + 1, k + 2, k + 3, ..., (5.5)

(λ+ θ2) π2,0 = µbπ0,1, (5.6)

(λ+ θ2) π2,n = λπ2,n−1, n = 1, 2, 3, ..., (5.7)

λπ3,0 = θ2π2,0, (5.8)

λπ3,n = λπ3,n−1 + θ2π2,n, n = 1, 2, ..., k − 1. (5.9)

Using Equations (5.6) and (5.7), we get

π2,n =

(

λ

β2

)n(
1

β2

)

µbπ0,1, n = 0, 1, 2, ..., (5.10)

where β2 = λ+ θ2.
Substituting Equation (5.10) in Equation (5.9), we get

π3,n = π3,n−1 +
θ2

λβ2

(

λ

β2

)n

µbπ0,1, n = 1, 2, ..., k − 1. (5.11)

Equation (5.11) recursively yields

π3,n = π3,0 +
θ2

λβ2

n
∑

i=1

(

λ

β2

)i

µbπ0,1. (5.12)

Using Equation (5.8) in (5.12), we get

π3,n =
θ2

λβ2

[

1 +
n
∑

i=1

(

λ

β2

)i
]

µbπ0,1, n = 0, 1, 2, ..., k − 1. (5.13)

Using Equations (5.10) and (5.13) in Equation (5.4), we get

π1,k =
θ2

β1β2

k
∑

i=0

(

λ

β2

)i

µbπ0,1, (5.14)

where β1 = λ+ θ1.
Equation (5.5) recursively yields

π1,n =
θ2λ

n

β1β2

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

µbπ0,1 +

(

λ

β1

)n−k

π1,k. (5.15)
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Substituting Equation (5.14) in Equation (5.15), we get

π1,n =
θ2

β1β2

[

λn

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

+

(

λ

β1

)n−k (
β2

θ2

)

{

1−
(

λ

β2

)k+1
}]

µbπ0,1.

(5.16)

The steady-state probabilities of the wake-up mode, the shutdown mode and the inactive
mode are expressed in-terms of π0,1. To get an explicit expression for π0,1, we define a
generating function as follows:

G0 (z) =
∞
∑

n=1

π0,nz
n, (5.17)

G1 (z) =
∞
∑

n=k

π1,nz
n, (5.18)

G′

1 (z) =
∞
∑

n=k

nπ1,nz
n−1. (5.19)

Using Equations (5.1)-(5.3), we obtain

G0 (z)
(

λ+ µb − λz − µb

z

)

= −µbπ0,1 + θ1G1 (z) .

After some algebra, we get

G0 (z) =
zλθ1

{

G1 (z)−G1 (1)
}

(zλ− µb) (1− z)
. (5.20)

Setting z = 1, we get

G0 (1) =
λθ1G

′

1 (1)

µb − λ
.

Using Equation (5.19) for z = 1 and the result (5.16) in the above equation, we get

G0 (1) =
∞
∑

n=k

n

[

λn

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

+

(

λ

β1

)n−k (
β2

θ2

)

{

1−
(

λ

β2

)k+1
}]

µbπ0,1

× ρ

1− ρ

θ1θ2

β1β2

, (5.21)

where ρ = λ
µb

< 1. The normalization condition is given by

∞
∑

n=1

π0,n +
∞
∑

n=k

π1,n +
∞
∑

n=0

π2,n +
k−1
∑

n=0

π3,n = 1.

Substituting the results (5.10), (5.13), (5.16) and (5.21) in the above condition, we obtain

π0,1 =

[

θ1θ2µb

β1β2

∞
∑

n=k

[

(

nρ

1− ρ
+

1

θ1

)

{

λn

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

+

(

λ

β1

)n−k (
β2

θ2

)

(

1−
(

λ

β2

)k+1
)}]

+
1

θ2
+

θ2

λβ2

+
θ2

λβ2

k−1
∑

n=0

{

1 +

(

λ

β2

){

1−
(

λ

β2

)n}
λ

θ2

}]

−1

.

(5.22)
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5.1 Probability that the server is on wake-up state, shutdown

state and inactive state

Let πui•
; i = 1, 2, 3 denote the probability that the server is on wake-up state, shut-

down state and inactive state respectively, then

π1,• =
∞
∑

n=k

π1,n.

π2,• =
∞
∑

n=0

π2,n.

π3,• =
k−1
∑

n=0

π3,n.

Using the results (5.16), (5.10) and (5.13) in the above equation, we obtain

π1,• =
θ2

β1β2

∞
∑

n=k

[

λn

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

+

(

λ

β1

)n−k (
β2

θ2

)

{

1−
(

λ

β2

)k+1
}]

µbπ0,1,

(5.23)

π2,• =
µb

θ2
π0,1, (5.24)

π3,• =
1

λ

[

k − 1

θ2

{

1−
(

λ

β2

)k
}]

µbπ0,1. (5.25)

6 Performance measures

This section presents expected system size in the steady-state. Let E[N0], E[N1],
E[N2] and E[N3] be the mean number of events in the busy, wake-up, shutdown and
inactive states respectively and let E[Ns] denote the expected system size. Then,

E [Ns] = E [N0] + E [N1] + E [N2] + E[N3].

6.1 Expected system size in the busy state

The mean number of events in the the busy state is given by

E(N0) = lim
z→1

G′

0 (z) .

Differentiating Equation (5.20) and setting z = 1, after some algebraic manipulation, we
get

E (N0) =
ρ

1− ρ

θ1θ2

β1β2

∞
∑

n=k

[

λn

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

+

(

λ

β1

)n−k
β2

θ2

{

1−
(

λ

β2

)k+1
}]

×
[

n

1− ρ
+

n(n− 1)

2

]

µbπ0,1. (6.1)

where ρ < 1.
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6.2 Expected system size in the wake-up state

Let E[N1] be the mean number of events in the system during wake-up mode. Then

E [N1] =
∞
∑

n=k

nπ1,n.

Using the result (5.16), we obtain

E[N1] =
θ2

β1β2

∞
∑

n=k

n

[

λn

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

+

(

λ

β1

)n−k
β2

θ2

{

1−
(

λ

β2

)k+1
}

µbπ0,1

]

.

(6.2)

6.3 Expected system size in the shutdown state

Let E[N2] be the mean number of events in the system during shutdown mode. Then,

E [N2] =
∞
∑

n=0

nπ2,n.

Using the result (5.10), we obtain

E [N2] =
λ

θ2
2µbπ0,1. (6.3)

6.4 Expected system size in the inactive state

Let E[N2] be the mean number of events in the system during inactive mode. Then,

E [N3] =
k−1
∑

n=0

nπ3,n.

Using the result (5.13), we obtain

E [N3] =
1

λ

k−1
∑

n=0

n

{

1−
(

λ

β2

)n+1
}

µbπ0,1. (6.4)

6.5 Expected number of events waiting in the system

Let E[Ws] denote the mean number of events waiting in the system. Then,

E [Ws] =
E [Ns]

λ
.

The mean number of events waiting in the queue is given by

E [Wq] =
∞
∑

n=k

nπ1,n +
∞
∑

n=0

nπ2,n +
k−1
∑

n=0

nπ3,n +
∞
∑

n=1

(n− 1) π0,n.
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6.6 Mean power consumption

This section presents the mean power consumed by the sensor node in each cycle. To
minimise the mean power consumption, we define a function

F (k) = ChE (Ns) + C0π0,• + C1π1,• + C2π2,• + C3π3,• + Cµb
µb + Cθ1θ1 + Cθ2θ2.

Using the results (6.1)-(6.4) in the above expression, we get

F (k) =

[

θ2

β1β2

∞
∑

n=k

{

λn

n
∑

i=k+1

(

1

β1

)n−i(
1

β2

)i

+

(

λ

β1

)n−k
β2

θ2

(

1−
(

λ

β2

)k+1
)}

×
{

θ1Ch

ρ

1− ρ

(

n

1− ρ
+

n2 − n

2

)

+ nθ1C0
ρ

1− ρ
+ C1

}

+
Chλ

θ2
2 +

C2µb

θ2

+
Ch

λ

k−1
∑

n=0

n

(

1−
(

λ

β2

)n+1
)

+
C3

λ

{

k − 1

θ2

(

1−
(

λ

β2

)k
)}

+ Cµb
µb

+ Cθ1θ1 + Cθ2θ2

]

µbπ0,1,

The mean power consumption for all cycles can be formulated as

R∑

i=1

iF (k)

R
where

Ch: Power consumed to hold an event,
C0: Power consumed during the busy state,
C1: Power consumed during the wake-up state,
C2: Power consumed during the shutdown state,
C3: Power consumed during the inactive state,
Cµb

: Power consumed during the event transmission,
Cθ2 : Power consumed during the change of state,
Cθ1 : Power consumed during the start-up time, R: Number of cycles.

7 Numerical illustrations

In this section, the results obtained in the sections 3-6 are numerically computed
through MATLAB software and graphically illustrated.

7.1 Numerical illustrations of transient solutions

The system size probabilities and the expected system probabilities in the transient
state are computed and their behaviour in the system is analysed in this section. The
parameter values are chosen as follows: λ = 1, µb = 1.25, θ1 = 0.3, θ2 = 0.5 and k = 5.

Figure 2 illustrates the behaviour of the busy state P0,n(t). From this graph, it is
observed that all the probability curves start at 0 and increases to a certain extent as
‘t’ increases and attains a steady-state. Figure 3 portrays the behaviour of the wake-up
state P1,n(t). The curves of P1,n(t) increase to a certain extent as t increases and then
the curves decrease and further, it attains the steady-state. We also notice that the
probability values of P1,5(t) are greater than P1,n(t), n = 6, 7, 8. This is because during
the inactive state if the system reaches k = 5, the system switches to a wake-up state.
As a result, the curves of P1,n(t) start decreasing. Figure 4 depicts the behaviour of the
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shutdown state P2,n(t). All the probability curves of P2,n(t) start at zero, increase as t

increases and attain the steady-state. Figure 5 demonstrates the behaviour of the inactive
state P3,n(t). The probability curves of P3,0(t) start at 1 and decrease as t increases and
attains the steady-state. The renaming curves of P3,n(t) increase to certain extent as t

increases and attains the steady-state. From Figures 6 and 7, it is evident that as the
arrival rate λ increases, the mean system size decreases.

7.2 Numerical illustrations of steady-state solutions

The system size probabilities and the expected system probabilities in the steady-
state are computed using MATLAB, and their behaviour in the system is analysed in
this section. The parameter values are chosen as follows: λ = 1, µb = 2, k = 10, θ1 = 0.3,
θ2 = 0.4, Ch = 3, Cb = 35, C1 = 5, C2 = 4, C3 = 1,Cµb

= 30, Cθ1 = 6 and Cθ2 = 5.
Figures 8, 9 and 10 demonstrate the probability of n events in the wake-up state π1,n,

the shutdown state π2,n and the inactive state π3,n respectively. These graphs are plotted
against n for varying arrival rate λ. In Figure 8, we notice that for fixed λ as n increases,
the curves of π1,n decrease. This is because the server switches to a busy state from an
wake-up state if the system size reaches the threshold of k = 10. In Figure 9, the curves
of π2,n decrease as n increases for fixed λ. This is because the server immediately switches
to an inactive state after the expiry of the shutdown period. In Figure 10 we notice that
for fixed λ as n increases, the curves of π3,n also increase. As the server turns to this
state from the shutdown state, the system size probability of this state increases as n

increases.
Figure 11 delineates the mean number of events in the functional state E(Nb). From

this figure, we notice that for a fixed value of θ1, the system size increases as the arrival
rate λ increases. It is also observed that for fixed λ, the value of E(Nb) decreases as
θ1 increases. This is because when θ1 increases the server will quickly turn to the busy
state from the wake-up state and hence the system size decreases. Figure 12 explains the
mean number of events in the wake-up state E(N1). This graph is plotted against λ for
fixed θ2 = 0.4 and varying values of θ1. As the server switches to the busy state from the
wake-up state, the curves of E(N1) decrease as the arrival rate λ increases.
Figure 13 and Figure 14 present the mean number of events in the shutdown state E(N2)
and the inactive state E(N3) respectively. The graphs are plotted against λ for varying
values of θ2. As the server turns to an inactive state from the shutdown state, the curves
of E(N2) decrease as the arrival rate λ increases.

7.3 Numerical illustrations of the mean power consumption

Table 1-4 presents the minimum power consumed by the system for a fixed arrival
rate λ and varying threshold value k. In Table 1, we observe that the mean power
consumption F (k) starts decreasing initially as we increase the threshold value k and it
starts increasing at k = 20. Further, we notice that the minimum power consumed at
k = 19. Table 2, 3 and 4 present minimum power is consumed by the system for λ = 1.2,
1.3 and 1.4 respectively. In table 2, the minimum power consumed at k = 50, in Table 3,
the minimum power consumed at k = 74 and in Table 4, the minimum power consumed
at k = 101. We also note that as the arrival rate increases, the threshold value k for which
the power consumption is minimum also increases. Hence, we conclude that there exists
a pair (k, F (k)) for each arrival rate λ for which the power consumption is minimum.
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Figure 2: Probabilities of the busy-state
P0,n(t)
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Figure 3: Probabilities of the wake-up state
P1,n(t)
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Figure 4: Probabilities of the shutdown
state P2,n(t)
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k 7 9 11 13 15 17 19 20 21
F (k) 217.27 191.64 174.79 163.97 157.39 153.98 153.13 153.59 154.65

Table 1: Mean power consumption for λ=1.1

k 17 19 21 30 40 50 51 52
F (k) 21458.7 17162.1 13841.3 5711.08 2583.8 2561.94 2788.57 3163.81

Table 2: Mean power consumption for λ=1.2

k 60 70 72 74 75 76 80
F (k) 254067.42 126767.18 117310.20 113292.47 113487.16 115273.21 140920.50

Table 3: Mean power consumption for λ=1.3

k 98 100 101 102 103 105 110
F (k) 492892.34 66675.07 97.92 55170.46 258280.81 1263740.03 140920.50

Table 4: Mean power consumption for λ=1.4
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8 Conclusion and future work

The performance of the DPM in the WSNs with threshold policy is discussed in
the paper. The transient and steady-state system size probabilities of the system are
obtained in a closed form. The performance indices such as mean, variance, probability
that the system is in power-saving modes and mean power consumption are obtained. It
is observed that there exists a threshold value for each arrival rate to minimise the power
consumption. This work may be extended to an M/M/C queueing model with working
vacation and close-down times.
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