HCMV DNA viral load and serological results
We examined the HCMV viral load in 5,664 samples of peripheral blood leukocytes that collected from 3,986 patients by quantitative real-time PCR. Among which 145 whole blood samples were defined as viremia with the HCMV DNA level upper than 500 IU/mL and others with HCMV DNA level lower than 500 IU/mL. Of the 145 whole blood samples, 59 non-repetitive patients with HCMV-IgG seropositive, HCMV-IgM seronegative were enrolled in this study. In the meanwhile, another 60 patients with HCMV-IgG seropositive, HCMV-IgM seronegative and HCMV DNA level below 500 IU/mL were selected as controls (Figure 1). The mean levels of HCMV DNA viral load for total 59 viremia patients were 1 930 (853, 6 810) IU/mL, 1920 (1 100, 3 680) IU/mL in the training cohort and 1 995 (795.5, 9 995) IU/mL in the validation cohort, respectively (Table 1). For the concentrations of anti-HCMV IgG, there was no significant difference between the HCMV viremia patients (n = 59) and the controls (n = 60) (t = 0.7794, P = 0.4373). Similar results were also observed in the training cohort and the validation cohort (t = 0.5766, P = 0.5671 and t = 1.384, P = 0.1709), respectively.
Expression profiles of HCMV-encoded miRNAs by RT-qPCR analysis
In the training cohort, 22 HCMV-encoded miRNAs (http://www.mirbase.org) were measured using RT-qPCR assay in individual serum samples from 23 patients with a HCMV DNA > 500 IU/mL (referred as case set) and 24 patients with a HCMV DNA < 500 IU/mL (referred as control set) (Figure 1). Sixteen of the 22 HCMV-encoded miRNAs were up-regulated in case set when compared with control set (P < 0.05), among which 8 miRNAs were significantly up-regulated with a fold change > 2, and P < 0.01, including hcmv-miR-US25-2-3p, hcmv-miR-US4-5p, hcmv-miR-US25-2-5p, hcmv-miR-US25-1-3p, hcmv-miR-US25-1, hcmv-miR-UL36, hcmv-miR-UL148D and hcmv-miR-US29-3p (Table 2).
Confirmation of the up-regulated HCMV-encoded miRNAs
Subsequently, the 8 up-regulated HCMV-encoded miRNAs were confirmed in an additional cohort including 36 cases and 36 controls (refereed as validation cohort). The 8 miRNAs exhibited consistent alterations as the results from the training cohort (Figure 2a-h). Moreover, when combined the results of the training set and validation set (Figure 2i-p), consistent with our expectations, the concentrations of all the eight hcmv-miRNAs were significantly increased in the viremia patients as compared with control group.
HCMV miRNAs in the autoimmune disease patients
We next analyzed the 8 up-regulated hcmv-miRNAs in the autoimmune disease patient subgroup, and found that seven hcmv-miRNAs were significantly up-regulated except for hcmv-miR-US29-3p. Notably, four miRNAs including hcmv-miR-US25-2-3p, hcmv-miR-US25-2-5p, hcmv-miR-US25-1-3p and hcmv-miR-UL148D were markedly increased with a P value of < 0.01 (Figure 3a-g). Receiver operating characteristic curve (ROC) analysis on the seven selected hcmv-miRNAs yielded areas under ROC curve (AUCs) ranged from 0.72 to 0.80 (Figure 3h). Using the optimal cutoff value, we obtained the following sensitivity and specificity values: hcmv-miR-US25-2-3p (AUC: 0.768, sen: 86.7%, spe: 68.4%, 95%CI: 0.602, 0.935), hcmv-miR-US4-5p (AUC: 0.737, sen: 86.7%, spe:57.9%, 95% CI: 0.565, 0.908), hcmv-miR-US25-2-5p (AUC: 0.765, sen: 80.0%, spe: 68.4%, 95%CI: 0.605, 0.925), hcmv-miR-US25-1-3p (AUC: 0.772, sen: 80.0%, spe: 73.7%, 95%CI: 0.610, 0.934), hcmv-miR-US25-1 (AUC: 0.761, sen: 86.7%, spe: 73.7%, 95%CI: 0.592, 0.931), hcmv-miR-UL36 (AUC: 0.719, sen: 86.7%, spe: 63.2%, 95%CI: 0.544, 0.894) and hcmv-miR-UL148D (AUC: 0.800, sen: 86.7%, spe: 73.7%, 95%CI: 0.645, 0.955).
Viral miRNAs expression pattern in the blood of patients with HCMV disease
In combined samples of the training set and validation set of patients (n = 59), we found that 91.53% patients had detectable expression of at least one hcmv-miRNA (11.86% with only one, 1.69% with two, 8.47% with three, 3.39% with four, 6.78% with five, 3.39% with six, 6.78% with seven and 49.15% with eight) (Figure 4a). Analysis of individual hcmv-miRNA showed that hcmv-miR-US4-5p was the most commonly detected in 77.97% of the patient, followed by hcmv-miR-US29-3p with 76.27%, hcmv-miR-UL36 and hcmv-miR-US25-1-3p with 72.88%, hcmv-miR-US25-2-3p and hcmv-miR-US25-1 with 66.10%, hcmv-miR-UL148D with 61.02%, hcmv-miR-US25-2-5p with 57.63% (Figure 4b).
Association of serum hcmv-miRNAs’ levels with clinical parameters
We subsequently wonder whether serum hcmv-miRNAs’ levels were correlated with clinical parameters. We evaluated the associations between the clinical features and miRNA abundance using Pearson correlation analysis in all of the studied individuals. Hcmv-miR-US25-1-3p levels were significantly correlated with HCMV DNA loads (r = 0.3486, P = 0.0068) (Figure 5a). HCMV DNA levels was significantly correlated with CRP (r = 0.3068, P = 0.0214) (Figure 5b), but not with WBC count (r = 0.0325, P = 0.80). The concentrations of anti-HCMV IgG was significantly correlated with hcmv-miR-US25-1 (r = 0.2619, P = 0.0451) (Figure 5c) but not with other miRNAs. There was no significant difference in WBC count (t = 0.9736, P = 0.3323), CRP (t = 0.6670, P = 0.5062), PCT (t = 1.246, P = 0.2184), and ESR (t = 0.6731, P = 0.4242) between the viremia and the control group.
Independent cohorts or antiviral treatment
Five patients received antiviral therapy, including 2 patients with severe aplastic anemia, one with myelodysplastic syndromes, one with acute myeloid leukemia M2a and acute lymphoblastic leukemia of one case respectively which underwent bone marrow transplantation. Forty-seven serum samples were collected at different time points during the antiviral therapy, and hcmv-miR-US25-1-3p levels was significantly correlated with HCMV DNA levels during the antiviral therapy (Figure 6a-e).
The time of occurrence of viremia in the five patients was on the 33rd day (Figure 6a), 65th day (Figure 6b), 27th day (Figure 6c), 42nd day (Figure 6d), and 33rd day (Figure 6e) after bone marrow transplantation, respectively. Of the five patients, the No. 3 patient developed viremia on 27th day (Figure 6c) after allogeneic stem cell transplant, both HCMV DNA and hcmv-miR-US25-1-3p were at high levels at this time and decreased upon antiviral therapy. On 130th day after transplantation, the patient’s hematopoietic disease relapsed and worsened again, and was transferred to the ICU for emergency treatment. In the late phase of monitoring, the viral DNA showed a certain degree of volatility, while the expression of hcmv-miR-US25-1-3p level does not rise significantly. The No. 4 Patient developed viremia on day 42 (Figure 6d) after transplantation. HCMV DNA levels was consistent with antiviral therapy, while hcmv-miR-US25-1-3p expressed earlier than the expression of HCMV DNA and decreased later than HCMV DNA during the antiviral therapy. Dynamic changes of HCMV DNA and hcmv-US25-1-3p levels in the 5 patients during antiviral therapy was showed in Additional file 1 Table S1.