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Abstract
The development of one-dimensional nanostructures has revolutionized electronic and photonic
industries because of their unique properties. The present paper reports the low-temperature green
synthesis of boron carbide nanowires, of diameter 14 nm and length 750 nm, by the condensation
method using castor oil as the carbon precursor. The nanowires synthesized exhibit beaded chain
morphology, and bandgap energy of 2.08 eV revealed through the Tauc plot analysis. The structure of
boron carbide nanowires is revealed by Fourier transform infrared spectroscopy and X-ray diffraction
analyses. The photoluminescence study reveals the nanowire's blue light emission capability under
ultraviolet excitation, which is substantiated by the CIE plot suggesting its potential in photonic
applications.

1 Introduction
Nanoscale materials have received considerable attention employing their unique properties and a wide
range of applications relative to their bulk counterparts [1, 2]. Nanomaterials can be classified into zero-,
one-, and two- dimensional structures depending on the shape and size. Among the one dimensional (1D)
nanostructures, nanowires play a significant role in device fabrication [3–5]. The properties of the
nanomaterials are strongly influenced by their size, shape, and morphology. The diameter (< 10 nm) of
the nanowires (NWs) introduces quantum-confined size effects, modifying the structural, electronic,
optical, thermal, and magnetic properties. This enables its use in micro and nanoelectromechanical
systems, sensors, and photodetectors [1, 6–9]. The wide bandgap exhibited by NWs makes it suitable for
applications in light-emitting diodes, photovoltaics, and nanoscale lasers [1, 10]. NWs having high-
temperature stability and high-frequency performance are essential in the development of electronic and
optoelectronic systems.

Of different materials - metals, polymers, semiconductors, insulators, and ceramics - NWs of ceramic
materials have gained attention recently due to their characteristic properties and widespread
applications in the area of magnetic nanocomposites, quantum electronic materials, gas separations,
and structural reinforcements. Ceramic materials are high strength materials and are chemically and
thermally stable. Among ceramic materials, boron carbide (BC) finds widespread applications -
lightweight armors, blast nozzles, ceramic bearing, brake linings, cutting tools, rocket propellant in the
aerospace industry, and neutron absorber and shielding material in the nuclear industry [11–14] - due to
its unique properties - greater hardness, high thermal and chemical stability, high neutron absorption
cross-section, corrosion resistivity, and high melting point [15–17]. The lower fracture toughness of bulk
BC is overcome by the 1D BC nanostructures having high elastic modulus [18]. The enhanced physical
and electrical properties of BC NWs are responsible for the high temperature and power applications. The
field emission properties of BC NWs make them a potential candidate as cathode materials [19, 20].

The performance of 1D BC nanostructures is greatly influenced by the synthesis condition [21]. Several
methods, such as template-based synthesis, microwave radiation, chemical vapor deposition, and
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synthesis using polymer precursors, are available to produce different morphological structures of BC
[22–28]. Zhang et al. [29] synthesized BC nanowires using a plasma-enhanced chemical vapor deposition
method, and high pure BC NWs are prepared by Ma et al. using the thermal evaporation method [30].
Most of these methods need pre-process conditions such as catalyst preparation, substrate, and template
preparation. Despite these methods, a more convenient low-temperature method for producing BC NWs
has high demand and interest.

The condensation method is one of the low-temperature synthesis methods used for BC’s production
using inexpensive organic precursors such as glycerin, citric acid, and polyvinyl alcohol (PVA) [31–33].
The usage of polymeric precursors enables control over the final product’s properties and structures by
varying the precursor composition at low-temperatures [11, 34, 35]. Based on the above advantages of
polymeric precursors, the bulk BC structure can be tailored to NWs by choosing the correct precursor ratio
and suitable synthesis temperature. In this research work, a low-temperature condensation method is
selected to synthesize BC NWs using readily available natural carbon source, castor oil.

2 Experimental
Of different synthesis methods for the formation of NWs, the solution-based approach is more suitable.
The structure can be controlled by varying the precursor ratio and synthesis temperature. The use of
organic precursors, for the formation of BC, facilitates the dispersibility and uniformity of boron and
carbon sources. Among boron sources, boric acid enhances the esterification process due to the
liberation of hydroxyl groups [31, 36]. For the synthesis of BC, boric acid (Sigma-Aldrich) and castor oil
(Indian pharmaceuticals) are used as the boron and carbon sources in the ratio of 1:4, respectively, by
condensation reaction method. Initially, boric acid is added to the heated castor oil. The mixture is
refluxed with the help of a heating mantle at a temperature of 75–80 °C until all the moisture content is
vaporized from the mixture. The mixture’s golden yellow gel is transferred to white solid after the reaction
and is subjected to pre-treatment at 300 °C for three hours to get the dry powder. The crushed powder is
then heat-treated at 900 °C for two hours in a tubular furnace with a continuous nitrogen gas flow. The
obtained powder is annealed at 600 °C in the air (1 h) to remove unreacted carbon to get the BC sample.

The BC sample synthesized is subjected to different morphological, structural, and compositional
analyses using field emission scanning electron microscope (FESEM - Nova Nano), X-ray diffractometer
(XRD - Bruker d8 Advance), and Fourier transform infrared spectrometer (FTIR - Thermo Fisher iS50) in
attenuated total reflectance mode in the region 4000 − 400 cm− 1. The product’s optical properties are also
studied by UV-visible absorption (UV-Vis- Jasco V550) and photoluminescence (PL- Horiba Fluoromax)
spectroscopic methods.

3 Results And Discussion
The formation of 1D BC NWs can be understood from the FESEM images shown in Fig. 1. The
morphological modifications of the sample before and after the heat treatment at 900 °C are analyzed.
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From Fig. 1, the transformation of morphology to 1D NWs, upon annealing to 900 °C, is evident. The
images given at different magnification (nm to µm scale) indicate the formation of NWs over a large
area. Figure 1 also reveals the formation of 1D NWs, of diameter 14 nm and length up to 750 nm, at
900 °C from the nanolayers appearing at 300 °C. A closer examination of the NWs (from Fig. 1(d)) reveals
a beaded chain morphology responsible for the surface roughness.

(c) and (d) annealed at 900 °C.

The structure of the compounds formed is identified through the XRD analysis. The XRD pattern of the
sample with NW morphology (Fig. 2) shows a high-intensity peak at 27.5° due to the orthorhombic BC
(ICDD file No. 00-026-0232) and the peaks at 30°, 34°, 39°, 42°, 54°, 60°, 66° indicated the presence of
rhombohedral BC (ICDD file No. 00-019-0178 and 00-035-0798). When compared to standard patterns,
the broadening and shifting of peaks at 34° and 39° can be attributed to the crystal defect, twins [37–40].
The FTIR spectrum, Fig. 3, showing the molecular species’ vibrational modes can be used for
understanding the structure of the sample. The characteristic peak at 1398 cm− 1 present in the BC NWs
is assigned to boron icosahedra, indicating more boron in the sample. When the peaks around 627 and
1190 cm− 1 correspond to the B-C stretching vibration, those in the region 550 − 410 cm− 1 (shown as an
inset of Fig. 4) show the C-B-C bending vibrations [35, 41]. B-C and C-B-C bands’ presence indicates the
complete reaction between boric acid and castor oil with the formation of borate ester bonds and hence
confirms the formation of boron rich BC. The other bands around 3200 cm− 1 and

2260 cm− 1 are assigned to –OH and C-O stretching vibrations.

The determination of the bandgap energy of BC is essential for its application in electronics and
optoelectronics. The variation in the stoichiometry of BC varies the bandgap from 0.4 eV to 2.7 eV [41–
43]. Figure 4(a) shows the UV-Vis absorption spectrum of the BC NW and shows a maximum absorption
around 265 nm due to the C = O n-π* transition in the sp3 hybrid region. The direct bandgap energy of the
BC NWs calculated from the Tauc plot (Fig. 4(b)) is obtained as 2.08 eV. The PL spectrum of BC NWs,
Fig. 5(a), for the excitations at 270 nm and 300 nm shows a broad emission with the peak centered
around 410 nm. The human eye’s color perception can be understood from the CIE plot [44] shown in
Fig. 5(b). The CIE coordinates for the two excitations (0.148,0.039) and (0.144,0.047) fall in the
chromaticity diagram’s blue region. The distribution of emitted energy at different wavelengths can be
understood from the power spectrum shown in Fig. 5(c) and (d).

(c) the power spectrum for λex- 270 nm and (d) power spectrum for λex- 300 nm.

4 Conclusion
The present paper reports the low-temperature green synthesis of BC NWs by condensation method using
castor oil as the carbon precursor. The 1D BC nanostructures have emerged as an important class of
technologically significant material. Of various synthesis methods, employing sophisticated equipment
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and toxic chemicals, eco-friendly approaches are highly relevant and became the focus of research. As an
organic precursor, castor oil facilitates the dispersibility with boric acid, boron source, and forms the NWs
through the condensation reaction. The FESEM analysis of the BC NWs exhibit beaded chain morphology
of diameter 14 nm and length 750 nm. The UV-Vis spectroscopic analysis indicates a direct bandgap of
energy 2.08 eV. The XRD analysis shows a high-intensity peak at 27.5° due to the orthorhombic BC, and
the peaks at 30°, 34°, 39°, 42°, 54°, 60°, 66° suggests the presence of rhombohedral BC. The FTIR
spectrum shows the B-C stretching vibration and C-B-C bending vibrations confirming the nanowire to be
boron carbide. The PL spectrum recorded for the excitations 270 and 300 nm shows a peak at 410 nm.
The CIE plot shows the coordinates corresponding to the emission (0.148,0.039) and (0.144,0.047) in the
blue region. The attractive thermal, physical, and electrical properties of BC NWs make it suitable in power
applications and as cathode materials. Thus, the study reveals the possibility of green synthesis of 1D BC
NWs using castor oil as the natural carbon source for potential photonic and electronic applications.
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Figures

Figure 1

FESEM images of the sample: (a) and (b) annealed at 300 °C; (c) and (d) annealed at 900 °C.
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Figure 2

XRD pattern of the BC nanowires synthesized
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Figure 3

FTIR spectrum of the BC nanowires synthesized.

Figure 4

BC NWs - (a) UV-Vis absorption spectrum and (b) Tauc plot.
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Figure 5

(a) PL spectra of BC NWs for λex- 270 nm and 300 nm, (b) CIE plot, (c) the power spectrum for λex- 270
nm and (d) power spectrum for λex- 300 nm.


