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Abstract

Triple-negative breast cancer (TNBC) is a subset of breast cancer with adverse prognosis and significant
tumor heterogeneity. Here, we used MRl images from a breast cancer cohort consisting of 860 patients to
construct a radiomic signature that could identify TNBC with an AUC of 0.92 (95% CI: 0.887 to 0.953) and
validated in another cohort. Moreover, we developed radiomic signatures to distinguish TNBC subtypes
with moderate efficacy. Furthermore, we identified peritumoral dependence nonuniformity of the gray
level dependence matrix, which captures the intratumor heterogeneity in the tumor boundary, as the most
significant prognostic factor (P=0.04 for recurrence-free survival and P=0.02 for overall survival). The
integration of transcriptomic and metabolomic data indicated that high peritumor heterogeneity was
related to immune suppression and enhanced metabolism. Our findings suggest that radiomics data can
serve as a noninvasive predictor for molecular subtyping and clinical outcome in patients with TNBC.

Introduction

Breast cancers that lack expression of the estrogen receptor (ER), progesterone receptor (PR) and human
epidermal growth factor receptor 2 (HER2) are classified as triple-negative breast cancers (TNBCs) and
comprise 15% to 20% of newly diagnosed breast cancers (1, 2). TNBCs are characterized by aggressive
biological behavior, a high incidence of relapse, and unfavorable prognosis (3, 4). Recent years have
witnessed increasing recognition that TNBC is a highly heterogeneous disease (5-7) and it thus

requires the identification of subtype-specific therapeutic targets (8-11). With the

largest multiomics database to date, our previous work unveiled the genomic and transcriptomic
landscape of 465 Chinese TNBC patients and classified TNBCs into four transcriptomic subtypes with
distinct characteristics: 1) basal-like immune-suppressed (BLIS), 2) immunomodulatory (IM), 3)
mesenchymal-like (MES), and 4) luminal androgen receptor (LAR).

In the past decade, radiomics has been an emerging field that transforms medical images into mineable
data by acquiring multiple quantitative image features (12, 13). Compared to conventional invasive
biopsies, the radiomic approach has several advantages. First, radiomics is a non-invasive method to
infer tumor characteristics and can be carried out several times during treatment (11, 14, 15). Moreover,
compared to genomic sequencing, which selects only a small part of the tumors, radiomics elucidates the
landscape of a tumor and is not subjected to selection bias, and thus could comprehensively explore
tumor heterogeneity (16-18). Previous studies focused on radiomic texture analysis have quantified
tumor heterogeneity and suggested its associations with unfavorable prognosis in breast cancer (19, 20).
These results warrant further research into evaluating tumor heterogeneity via a radiomic approach.

However, a multiomics TNBC dataset containing radiomics data with a large sample size has yet to be
reported, and the correlation between radiomic features and genomic alterations remains largely
unknown. In this study, we performed radiomic profiling based on contrast-enhanced magnetic resonance
imaging (CE-MRI) images from 860 Chinese breast cancer patients, which composed the largest breast
cancer MRI radiomics dataset to date. This cohort comprised 246 TNBC patients, including 202 samples
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with genomic, transcriptomic or metabolomic data, and aimed to build a radiomics model for non-
invasive TNBC classification and patient outcome stratification. We also integrated radiomic data with
our transcriptomic, metabolomic and clinical data to illustrate the biological basis of prognostic radiomic
features in TNBC.

Results

Identification of TNBC from the Whole Breast Cancer Cohort via a Radiomics Approach

To explore whether a non-invasive radiomics approach could be used to identify TNBCs from non TNBCs,
we first established a FUSCC breast cancer radiomics cohort that included all subtypes of breast

cancer. A total of 860 patients from FUSCC with baseline breast CE-MRI images for radiomics analysis
between August 2009 and June 2019 were retrospectively enrolled (Figure 1A). Hormone receptor
positivity was observed in 468 patients, HER-2 overexpression was observed in 268 patients, and 246
patients had TNBC (Figure 1B). This radiomic cohort was further randomly divided into 50% training and
50% validation cohorts (Figure 1A). Another 54 patients from IPMCH were recruited as an independent
external validation cohort. Four types of ROIs were employed: tumoral, peritumoral, intratumoral and
tumor-peritumoral. To the best of our knowledge, our cohort provides the largest breast cancer radiomic
dataset to date (Figure 1C). The analysis plan of this radiogenomics study is shown in Figure 1D.

Using the training set in the FUSCC breast cancer radiomics cohort, we developed radiomic prediction
models through feature selection and model building. Hormone and HER-2 receptor status determined by
IHC and fluorescence in situ hybridization were regarded as the ground truth to evaluate the prediction
efficacy. Using the 10-fold cross validation LASSO model (a = 0), 11 variables were retained for the
development of TNBC prediction in the training cohort (Supplementary Figure 1). These radiomic features
are presented in Supplementary Table 1. Logistic regression (LR) and support vector machine (SVM) were
applied to establish prediction models based on retained features, and radiomics scores were calculated
for each patient in both the training and FUSCC validation cohorts using these two methods.

Using the LR-based model, the ability of the radiomic signature to classify TNBC versus non-TNBC was
shown to have an AUC of 0.969 (95% CI: 0.951-0.987) in the training cohort and an AUC of 0.92 (95% ClI:
0.887-0.953) in the FUSCC validation cohort, while the SVM-based model demonstrated an AUC of 0.968
(95% Cl: 0.95-0.986) in the training cohort and an AUC of 0.922 (95% CI: 0.89-0.954) in the FUSCC
validation cohort (Figure 2A). We further calculated that the Jaccard similarity index was 0.881 and 0.894
in the validation cohort for the LR and SVM models, respectively. To validate the effectiveness of this
radiomic signature in images from different MRl machines, we calculated the accuracy of these
prediction models separately according to MRl machines. To expand the usage of this radiomics
signature to a larger extent, we further validated the efficacy of the prediction models in the IPMCH
validation cohort. The LR and SVM models yielded AUCs of 0.723 (95% CI: 0.552-0.894) and 0.704 (95%
Cl: 0.534-0.874), respectively (Figure 2B). Among these retained features, the mean of tumor zone
entropy, which characterizes the mean heterogeneity during different MRI sequences, was significantly
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higher in TNBC (Figure 2C, P < 0.001), and post hoc analysis indicated that tumor heterogeneity was
highly distinctive in identifying TNBC patients, while tumor heterogeneity was not significantly different
between luminal and HER2-enriched tumors. In summary, these results implied a satisfactory separation
of TNBC versus non-TNBC via a radiomics approach and suggested that high intratumoral heterogeneity
was a crucial feature of TNBC.

Predictive Value of Radiomics in Distinguishing TNBC Molecular Subtypes

Since the radiomic signature could identify TNBC with high accuracy, we further explored whether
radiomic signatures could distinguish different TNBC molecular subtypes. We employed CE-MRI images
from 202 patients who were enrolled in the FUSCC breast cancer radiomics cohort as well as the FUSCC
TNBC cohort, which is the largest TNBC multiomics cohort to date (n = 465), to validate this hypothesis.
The baseline characteristics of this subcohort are shown in Supplementary Table 2. A total of 167
samples with radiomic data also had transcriptomic data, and 138 samples also had metabolomic data
(Supplementary Figure 2). Transcriptomic TNBC subtypes were regarded as the ground truth to evaluate
the prediction efficacy(7).

LASSO and Student’s t test retained 4, 11, 2 and 7 radiomic features that were most relevant to BLIS, IM,
MES and LAR subtypes (Supplementary Figure 3A-3D) in the training cohort. These

features are presented in Supplementary Table 3. LR and SVM were used to construct prediction models
in the training cohort and validation cohort based on the selected features. Radiomics scores were
calculated for each patient using these three methods.

The AUCs and confidence intervals of the prediction models for each TNBC subtype using different
methods are shown in Figure 3A-3D and Supplementary Table 4. In the FUSCC validation cohort,
distinguishing the MES subtype (based on the LR model) yielded an AUC of 0.796 (95% CI: 0.65-0.941),
and the prediction models of the BLIS (based on the SVM model) and IM (based on the LR

model) subtypes obtained AUCs of 0.719 (95% Cl: 0.57-0.867) and 0.669 (95% CI: 0.481-

0.858), respectively, while the AUC of identifying the LAR (based on the SVM model) subtype only reached
0.598 (95% Cl: 0.416-0.781). As a retained feature of the MES prediction model, tumor elongation was
significantly larger in the MES subtype than in the other TNBC molecular subtypes (P = 0.021 in the
training cohort and P = 0.019 in the FUSCC validation cohort, Supplementary Figure 4A-4B). This easy-to-
use radiomic feature could facilitate the classification of MES subtype in clinical practice.

A previous study developed an IHC-based method that specifically used the staining results of AR, CD8A,

FOXC1 and DCLK1 to classify TNBC molecular subtypes (21). We further explored the discriminatory

power of prediction models combining radiomic features and IHC data. Since IHC alone could

identify the LAR subtype with outstanding efficacy (AUC = 0.932) (21) and a satisfactory radiomic model

was established for MES subtype identification, we built combined signatures for identifying BLIS and IM

subtypes. For predicting BLIS subtype, the SVM-based combined prediction model

reached an AUC of 0.975 (95% Cl, 0.906-1) in the validation cohort (Figure 3E-3F). For predicting IM

subtype, the LR-based combined prediction model displayed an AUC of 0.731 (95% Cl, 0.373-1) in the
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validation cohort (Figure 3G-3H). Combined signatures showed better performance in the BLIS subtype
than individual IHC and radiomics-based models, but no statistical significance was found in the IM
subtype. The limited sample size (n = 42 in the training cohort and n = 14 in the validation cohort with
radiomics, transcriptomics and IHC staining data) restricted the performance of this combined signature
and warrants further research with a larger sample size.

Prognostic Value of Peritumoral Heterogeneity Derived from Radiomics

With the detailed clinical follow-up data of our TNBC cohort, we evaluated robust prognostic radiomic
features. According to stringent filtering criteria, variance among the MRI sequences of

dependence nonuniformity extracted from peritumoral ROls (Peri_V_DN), a feature from the gray level
dependence matrix group, was identified (Figure 4A). Typical breast CE-MRI images with high and low
Peri_V_DN values are shown in Figure 4B. The stratification of patients with survival differences

using the median value as the cutoff was verified in both the training cohort and validation cohort (Figure
4C). The multivariate Cox proportional hazards model also revealed that low Peri_V_DN independently
predicted better recurrence-free survival (RFS) and overall survival (OS) in TNBC patients (Table 1). As a
risk-increasing feature, Peri_V_DN represents the variation pattern of peritumoral heterogeneity through
different sequences, with a lower value indicating less change in peritumoral heterogeneity among the
sequences of the image.

Moreover, we systematically analyzed the correlation between the Peri_V_DN value and tumor
characteristics. We observed larger tumor sizes and more pathologically confirmed metastatic lymph
nodes (P=1.8x10® and P=0.00661, respectively) in the high Peri_V_DN group than in the low Peri_V_DN
group (Figure 4D). The high Peri_V_DN group included more patients with the BLIS subtype, and the low
Peri_V_DN group comprised more patients with the IM subtype (P = 0.02), while the distribution of the
PAMS50 subtypes was balanced (Figure 4E). We analyzed the correlation between the Peri_V_DN value
and TNBC microenvironment clusters according to TNBC microenvironment subtypes (22). The results
revealed a tendency for the high Peri_V_DN group to consist of more “immune-desert” cluster

1 tumors, while the low Peri_V_DN group included more “immune-inflamed” cluster 3 tumors (P = 0.09,
Figure 4E). Fibrosis and necrosis grade evaluated by H.E. sections showed no difference between the
two Peri_V_DN groups (Supplementary Figure 5A). Other molecular biomarkers that putatively predict
TNBC precision treatment efficacy, including stromal tumor-infiltrating lymphocytes (TILs), IHC CD8
readings, tumor mutation burden (TMB) and homologous recombination deficiency (HRD)

score, displayed balanced distributions between the Peri_V_DN groups as well (Supplementary Figure 5B-
5E). Overall, we demonstrated that a high value of the radiomic feature Peri_V_DN predicted poor
prognosis for TNBC and more aggressive tumor characteristics.

Integrative Analysis Elucidated Metabolic Reprogramming in High Peri_V_DN Patients

We further investigated the molecular characteristics associated with Peri_V_DN. Using paired
transcriptomics (n = 167) (7) and metabolomics (n = 138) data, metabolite abundance and gene

Page 5/23



expression were compared between the Peri_V_DN groups (Supplementary Figure 6A-6C and
Supplementary Table 5-7). Differentially abundant polar metabolites mainly consisted of lipids.
Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome-based GSEA
demonstrated similar results (FDR < 0.1) that high Peri_V_DN was significantly associated with aberrant
metabolism and suppressed immune-related pathways (Figure 5A, Supplementary Table 8).

Previous differentially abundant metabolites and pathway enrichment analyses revealed that metabolic
reprogramming was related to high Peri_V_DN. On this basis, we performed DA score analysis

between the Peri_V_DN groups. Among 53 pathways in which more than three metabolites were
annotated, 21 were upregulated and four were downregulated in high Peri_V_DN patients (Supplementary
Table 9). Three pathways were upregulated with DA scores no less than 0.25, namely, fatty acid
biosynthesis, primary bile acid biosynthesis and glutathione metabolism (Figure 5B). This result was
consistent with that of a previous analysis and further highlighted fatty acid metabolism reprogramming
in high Peri_V_DN. We conducted a transcriptomic-metabolomic integrative analysis to depict a more
meticulous fatty acid metabolism alteration in this population and to reveal pivotal metabolic targets.
Metabolic flux analysis of fatty acid metabolism demonstrated that the initial step of fatty acid synthesis
was significantly upregulated, suggesting that FASN played a crucial role in fatty acid synthesis rewiring
(Figure 5C). Acyl carnitines were also highly enriched in high Peri_V_DN and thus sustained an active -
oxidation process. Taken together, these results demonstrated that vigorous de novo fatty acid synthesis
was closely related to a high Peri_V_DN phenotype.

Distinct Tumor Microenvironments in the Different Peri_V_DN Groups

The landscape of the TNBC microenvironment has been delineated, and distinct “hot tumors” and “cold
tumors” have been described (22-24). In this study, we estimated the cell subset composition of the tumor
microenvironment by a published gene signature using transcriptomic data (22). We identified 24
different cell types, including immune and stromal cells. RNA-based immune cell deconvolution
signatures revealed a major difference in the microenvironment between tumors with high and low
peritumor heterogeneity (Figure 6A-6B). Low Peri_V_DN was characterized by a stronger signature for
CD8+ T cells, naive CD4+ T cells, yo6 T cells, activated NK cells, M1 macrophages and regulatory T cells. A
comparison of the estimated cell number between the tumor sites and paired adjacent normal sites also
suggested that tumors with low peritumor heterogeneity were composed of more immune cells, both
immune-promoting and immune-inhibitory cells (Supplementary Figure 7A-7B). Cytolytic activity, which
inferred the activity of effectorimmune cells (25), was lower in high Peri_V_DN cases (P = 0.01, Figure
6C). These results confirmed that high Peri_V_DN was associated with a suppressed immune response.

Moreover, we investigated the possible immune escape mechanisms of both types of tumors. In addition
to the previously described enrichment of regulatory T cells in low Peri_V_DN cases, another inhibitory
immune cell type, myeloid-derived suppressor cells (MDSCs), also had a relatively higher abundance in
low Peri_V_DN cases (P = 0.05, Figure 6D) (26). The expression levels of a wide range of

immune coinhibitors and costimulators, including multiple immune checkpoints, were investigated, and a
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more inhibitory immune context was found in low Peri_V_DN cases (Figure 6E). Overall, the delineation
of the tumor microenvironment implied that the low Peri_V_DN group tended to have hot tumors and
might escape immune surveillance by higher inhibitory immune cell infiltration and stronger immune
checkpoint molecule expression.

Furthermore, the comparison of the two common innate immunity sensing pathways, cGAS-

STING (27) and NLRP3 inflammasome (28), demonstrated weaker immunity activation in high Peri_V_DN
cases (P=0.03 and P = 0.02, respectively, Figure 6F). We also analyzed tumor immunogenicity through
MHC molecule expression comparison. Reduced expression of MHC molecules in the high Peri_V_DN
group is demonstrated in Figure 6G. In summary, the high Peri_V_DN group exhibited a cold tumor
phenotype, and its potential escape mechanisms included a reduction in innate immune sensing and
rejection of immune infiltration.

Discussion

Recent studies have revealed evident tumor heterogeneity of TNBC, and precision treatment based on
molecular profiling has achieved preliminary progress (5, 7, 29, 30). These promising results encouraged
molecular subtyping and genomic sequencing for TNBC in clinical practice, which is traditionally
conducted by invasive biopsies. Herein, we developed a non-invasive radiomic approach for the
identification and molecular classification of TNBC. In addition, we identified prognostic radiomic
features with underlying biological properties. These results demonstrated the potential role

of a surrogate radiomic approach in distinguishing TNBC patients and further differentiating TNBC into
different subtypes and clinical outcomes.

In this study, we first investigated the value of radiomics to distinguish TNBC from other subtypes of
breast cancer. We concluded that the non-invasive radiomic approach could identify TNBC with an AUC
of 0.922 in the FUSCC cohort and 0.723 in the IPMCH cohort. This conclusion not only informed us of the
potential of an MRI-based radiomics approach to identify TNBC with high efficacy but also warned us
that the generalization of radiomic models into medical images acquired from multiple medical centers
and MRI machines remained an important issue to handle. Other studies also explored the value of
radiomics to classify TNBC. Calstaldo and colleagues (31) found that radiomic signatures could identify
TNBC with an AUC of 0.91 in MRI images derived from 91 patients, while Leithner and

colleagues (32) identified TNBC with an accuracy of 0.736 using a radiomic approach in a cohort
consisting of another 91 patients. These results together demonstrated that MRI-based radiomic
signatures could classify TNBC with high accuracy and were consistent with the results of our study.

Previous studies have shown that peritumoral heterogeneity can be used to predict the clinical outcomes
of several types of cancer (33-35). Herein, we found that Peri_V_DN, which represents the variance in
peritumoral heterogeneity on MRI sequences, was associated with adverse clinical outcomes. This
conclusion pointed out the unique significance of the peripheral tumor phenotype. Furthermore, to
decipher the molecular mechanisms underlying the distinct radiomic patterns, the connection between a
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radiomic phenotype and multiomics data needs to be determined, rather than a single driver mutation (11,
36, 37). Several studies have made efforts to explore the association of radiomic features and
transcriptomic data (18, 38). Lee et al (16) found that a four-feature radiomic signature could

predict the clinical outcomes of pathological T1 renal cell carcinoma and was associated

with the abundance of certain immune cell types. This was consistent with our findings, but the exact
mechanisms of forming an immunosuppressive microenvironment in tumors with low peritumoral
heterogeneity were not explored in this article.

Our study has several limitations. First, more refined models are needed to further improve the prediction
efficacy of the radiomic signatures, especially for predicting TNBC molecular subtypes. Second, most
patients were recruited from a single institution, and the sample size of the independent external
validation cohort was limited (n = 54). Third, the biological characteristics associated with the
Peri_V_DN feature were subjected to the nature of exploratory analysis.

In conclusion, we presented a radiomic dataset originating from the largest breast cancer radiomics
cohort to date. The radiomics approach showed promising efficacy in identifying TNBC and predicting
TNBC molecular subtypes in a non-invasive way. Additionally, peritumoral heterogeneity quantified by
radiomics stratified patient outcomes and represented distinct tumor metabolism and immune response
patterns. These results demonstrated the potential application of radiomics analysis in the analysis of
tumor heterogeneity and the clinical management of TNBC.

Material And Methods

Patient Cohorts and Data Sets

We retrospectively recruited patients diagnosed with malignant breast cancer whose baseline breast CE-
MRI images were suitable for radiomics analysis. A total of 860 Chinese patients who were treated at
Fudan University Shanghai Cancer Center (FUSCC) from 1 August 2009 to 31 May 2015 were enrolled
according to the following defined criteria: 1) female patients diagnosed with unilateral invasive ductal
carcinoma with known ER, PR and HER2 phenotypes (39); 2) no evidence of distant metastasis at
diagnosis.

To further explore whether radiomics could distinguish different TNBC molecular subtypes, 202 TNBC
patients was selected from the FUSCC breast cancer radiomics cohort. These patients were also included
in our TNBC multi-omics dataset, which has been published recently (7). Among the 202 patients eligible
for the radiomics analysis, transcriptomic sequencing (n = 167), metabolomics (n = 138), hematoxylin
and eosin (H.E.)-stained sections with IHC staining (n = 56) for the expression of AR, CD8A, FOXC1 and
DCLKT1, and clinical follow-up data were also available. The studies were conducted in accordance with
the Declaration of Helsinki. All analyses were approved by the independent ethics committee/institutional
review board of Fudan University Shanghai Cancer Center, and written informed consent was obtained
from each patient.
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To evaluate the ability of radiomic signatures to generalize to additional populations, we collected CE-MRI
images and ER, PR and HER2 phenotype information from 54 patients diagnosed with malignant breast
cancer at the International Peace Maternal and Children Hospital (IPMCH). These patients were recruited
from 1 January 2013 to 31 June 2019. Data collection was under approval of the IPMCH institutional
review boards.

CE-MRI and Regions of Interest (ROI) Delineation

All patients underwent breast MR examination before biopsy, and CE-MRI images were used for radiomic
analysis in this study. The imaging parameters are listed in Supplementary Table 10.

ROIs were delineated semiautomatically on the peak enhanced phase of CE-MRI by 3D slicer software
(https://www.slicer.org/). ROIs were placed on all slices that contained the whole tumor or the largest
lesion (in the case of multicentric or multifocal tumors). Two radiologists (C.Y. and D.D.Z. with 9 and 4
years of experience in breast MRI, respectively) were blinded to the pathological and biochemical findings
of each patient and were chiefly responsible for the evaluation of the ROIs. The inter-

and intraobserver reproducibility of the ROIs and radiomic feature extraction were initially analyzed with
the CE-MRI data of 60 randomly selected patients in a blinded fashion by two radiologists. To ensure
reproducibility, one radiologist repeated the ROl drawing twice with an interval of at least T month

and generated radiomic features following the same procedure. Intraclass correlation coefficients (ICCs)
were utilized to evaluate the intra- and interobserver agreement in terms of feature extraction. Inter-

and intraobserver reproducibility and radiomic feature extraction achieved substantial agreement with
ICC > 0.6 both among the ROIs from the two radiologists and between the ROIs from the same
radiologist (40).

Furthermore, the peritumoral area was obtained by expanding the tumor outward with a 2-pixel width and
subtracting the tumor area, while the intratumoral area was obtained by shrinking with a 2-pixel width. In
addition, tumor and peritumoral regions were integrated as another region. In total, four sets of

ROls, including tumor, peritumor, intratumor and tumor-peritumor regions, were used in the

radiomics feature extraction.

Radiomics Feature Extraction

This study extracted the radiomic features of the contrast-enhanced phase, including shape features,
first-order features, text features and sequential features, using the PyRadiomics package (41). Fourteen
shape-based characteristics, which describe the difference in shape between different types of tumors,
were calculated using the first postcontrast phase of CE-MRI. Ninety-one first-order features were
calculated from the four phases individually, and 364 features were acquired in total; these features
describe the distribution of voxel intensities. Textural features were calculated based on five textural
matrices to describe the radiological pattern of the ROI. Moreover, sequential features were calculated to
consider time dimension information. The extracted sequential features were mainly composed of two
parts: (a) the feature discrepancy between four different phases on the timeline including 364 features

Page 9/23


https://www.slicer.org/

and (b) the mean, variance, kurtosis and skewness of the time curve extracted from each individual
patient, including ninety-one in each group. As described in the ROI delineation, feature extraction was
performed in the tumoral, peritumoral, intratumoral and tumor-peritumoral regions.

Feature Selection and Radiomics Model Building

The least absolute shrinkage and selection operator (LASSO) method was used to select the most useful
predictive features from the training cohort (gimnet R package) (42). Tuning parameter (A) selection in
the LASSO model used 9-fold cross-validation. Radiomics scores were calculated for each patient via
three different methods: 1) multivariate linear regression (glm R package), 2) support vector machine
(SVM; e1071 R package), and 3) deep neural network (DNN; sklearn Python package). The ability to
predict TNBC molecular subtypes was assessed by the area under the receiver operating characteristic
curve (AUC) of the receiver operator characteristic (ROC) curve via the pROC R package (43). Confidence
intervals of AUCs were calculated using the Delong method.

Radiomics Model Validation

The radiomics prediction models were validated internally and externally. First, the trained classifiers were
assessed by cross-validation via the gimnet R package (42). Then, the trained classifiers were further
tested in the validation cohort in terms of the AUC and its confidence intervals of the ROC curve.

Collection and Analysis of Metabolomics and Lipidomics Data

Samples in our multiomics TNBC cohort with adequate tissues for polar metabolites and lipids were
collected. In total, 138 TNBC samples were selected for further metabolomics and lipidomics analysis.
Acetonitrile: methanol: water = 2: 2: 1 solution and MTBE: MeOH= 5: 1 solution were applied to extract
polar metabolites and lipids, respectively. An equal volume (10 pL) of each sample was mixed for quality
control sample preparation. A BEH amide column (2.1 * 100 mm, 1.7 pm, Waters) or Kinetex C18 column
(2.1 * 100 mm, 1.7 ym, Phenomen) coupled with a Triple TOF 6600 mass spectrometer or AB triple TOF
5600 mass spectrometer was deployed to conduct LC-MS/MS experiments for

polar metabolite and lipid detection. Detailed information on sample processing, metabolomics and
lipidomics data generation is contained in the supplementary materials and methods.

Analysis of Differentially Abundant Metabolites and Differentially Expressed Genes

The differential abundance of metabolites was calculated by performing Mann-Whitney U tests for all
detected metabolites. The differential expression of genes was determined via the limma R package (44).
Subsequent gene set enrichment analysis (GSEA) was performed using the clusterProfiler R

package (45). The differential expression analysis outputs of limma were used to generate the ranked list
file. One thousand total permutations were used.

Differential Abundance (DA) Score
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The DA score was calculated first by determining which metabolites were significantly
increased/decreased in abundance, as described above. Then, the DA score was defined as follows:

DA = (Number of metabolites increased - Number of metabolites decreased)/Number of measured
metabolites in that pathway (46)

Thus, the DA score ranges from -1 to 1. A score of -1 indicates that all metabolites in a pathway
decreased, while a score of 1 indicates that all metabolites increased in abundance.

Calculation of Microenvironment Cell Abundance

A signature containing 364 genes representing 24 microenvironment cell types was obtained from one
published high-quality paper (22). This signature modified the CIBERSORT and MCP-

Counter signatures and represented a more comprehensive landscape of the TNBC microenvironment.
Subsequently, we used single-sample gene set enrichment analysis (ssGSEA, “GSVA” function in GSVAR
package) (47) to calculate the abundance of each cell subset in each sample with expression

data. Additionally, we referred to the xCell signature to further validate the composition of the tumor
microenvironment (48).

Statistical Analysis

Student’s t test, Wilcoxon's test and Kruskal-Wallis test were used to compare continuous variables. Prior
to the comparisons, the normality of the distributions was tested with the Shapiro-Wilk test. Pearson’s chi-
square test and Fisher's exact test were employed for the comparison of unordered categorical variables.
To explore the association between radiomics features and survival, Kaplan-Meier analysis and a Cox
proportional hazards model were employed in the training and validation cohorts. The comparison of
survival between groups was conducted via the log rank test. All the tests were two sided, and P< 0.05
was regarded as indicating significance unless otherwise stated. In multiple hypothesis testing, false
discovery rate (FDR) correction was used to decrease false positive rates. All statistical analyses were
performed with R software (version 3.6.1, http://www.R-project.org).
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Tables
Table 1 Multivariate Cox proportional hazard models for RFS and OS
Variables RFS oS
HR (95% CI) P HR (95% CI) P
T stage T1 Ref

T2 0.58 (0.27-1.25) 0.17 0.70 (0.24-2.02) 0.51
T3/T4 0.95 (0.24-3.76) 0.94 1.69 (0.29-9.75)  0.59

N stage pNO Ref
pN1 2.03 (0.81-5.07) 0.13 2.73 (0.77-9.66) 0.12
pN2 5.02 (1.88-13.43) 0.001 5.87 (1.66-20.76) 0.006
pN3 7.62 (2.84-20.43) 5.38e-05 4.85 (1.06-22.24) 0.04

TNBC subtype BLIS Ref
IM 1.12 (0.35-3.52) 0.85 0.67 (0.13-3.49) 0.63
MES 0.93 (0.29-2.96) 0.90 0.82 (0.19-3.46) 0.78
LAR 0.94 (0.34-2.57) 0.90 0.62 (0.16-2.30) 0.47

Peri_V_DN High Ref
Low 0.41 (0.18-0.95) 0.04 0.15 (0.03-0.70)  0.02

Abbreviations: OS, overall survival; Peri_V_DN, variance of dependence non-uniformity
extracted of peritumoral regions; RFS, recurrence-free survival; TNBC, triple-negative breast

cancer.
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Figure 1

Workflow of the radiogenomics analysis and data description. (A) Study cohorts used in this study. (B)
Composition of patients enrolled in the FUSCC breast cancer radiomics cohort according to receptor
status. (C) Sample sizes of the FUSCC breast cancer radiomics cohort and other cohorts based on MRI
images from the TCIA database. (D) Analysis plan of integrative radiogenomics analysis. Abbreviations:
CE-MRI, contrast-enhanced magnetic resonance imaging; FUSCC, Fudan University Shanghai Cancer
Center; HR, hormone receptor; HER-2, human epidermal growth factor receptor-2; IHC,
immunohistochemistry; IPMCH, International Peace Maternity and Children Hospital, LASSO, least
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absolute shrinkage and selection operator; LR, logistic regression; SVM, support vector machine; TNBC,
triple-negative breast cancer;
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Figure 2

Classification of TNBC molecular subtypes via a radiomic approach with machine learning method. (A)
AUCs of the radiomic signature for distinguishing TNBC from other breast cancer subtypes in validation
cohort 1. (B) AUCs of the radiomic signature for distinguishing TNBC from other breast cancer subtypes
in validation cohort 2. (C) Mean of tumor zone entropy, which is a radiomic feature that evaluates tumor
heterogeneity, is significantly higher in TNBC than in other breast cancer subtypes. *** P < 0.001; ** 0.001
<P<0.01;%0.01 < P<0.05 ns P>0.05. Abbreviations: AUC, area under the receiver operating
characteristic curve; HR, hormone receptor; HER-2, human epidermal growth factor receptor-2; LR, logistic
regression; SVM, support vector machine; TNBC, triple-negative breast cancer.
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Efficacy of predicting TNBC molecular subtypes using radiomic and IHC data with machine learning
method. (A-D) AUCs of the radiomic signatures for predicting BLIS (A), IM (B), MES (C) and LAR (D)
subtypes. (E-H) Comparison of the combined model, individual radiomic model and IHC model for
predicting BLIS (E and F) and IM (G and H) subtypes. The sample size of each prediction model was 90 in
the training cohort and 46 in the validation cohort. Abbreviations: BLIS, basal-like immune-suppressed;
DNN, deep neural network; IHC, immunohistochemistry; IM, immunomodulatory; LAR, luminal androgen
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receptor; LR, logistic regression; MES, mesenchymal-like; SVM, support vector machine; TNBC, triple-
negative breast cancer.
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Figure 4

Identification of the prognostic feature Peri_V_DN and its clinicopathological associations. (A) Criteria of
prognostic feature selection (left) and hazard ratios for RFS and OS of the radiomic features (right). (B)
Breast CE-MRI images from one patient with high Peri_V_DN and one patient with low Peri_V_DN. (C)
Kaplan-Meier plots show the prognostic power of Peri_V_DN for RFS and OS. (D) Tumor size and
pathologically confirmed metastatic lymph nodes between the high and low Peri_V_DN groups. (E)
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Distribution of the TNBC mRNA subtypes, PAM50 subtypes and TNBC microenvironment clusters
between the high and low Peri_V_DN groups. Abbreviations: HR, hazard ratio; OS, overall survival,
Peri_V_DN, peritumoral variance in dependence nonuniformity of peritumoral regions; RFS, recurrence-free

survival.
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Identification of differentially expressed pathways and metabolic flux analysis. (A) GSEA revealed that

metabolic pathways were upregulated
Peri_V_DN group compared to the low

and immune-related pathways were downregulated in the high
Peri_V_DN group. (B) The differential abundance score illustrated

major differential metabolic pathways utilizing metabolomic data. (C) Metabolic flux analysis combining

transcriptomic and metabolomic data

showed reprogramming of the fatty acid biosynthesis pathway

between the Peri_V_DN groups. (D) GSVA revealed differences in multiple lipid metabolism pathways. In
total, 167 samples with transcriptomics data and 138 samples with metabolomics data were included for

analysis. Abbreviations: FA, fatty acid;

GSEA, gene set enrichment analysis; GSVA, gene set variation

analysis; NES, normalized enrichment score; Peri_V_DN, peritumoral variance in dependence
nonuniformity of peritumoral regions; ssGSEA, single-sample gene set enrichment analysis.
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Landscape of the tumor microenvironment of the Peri_V_DN groups and distinct escape mechanisms. (A)
Differences in the abundance of immune cell types revealed an immunosuppressive tumor
microenvironment in the high Peri_V_DN group compared with the low Peri_V_DN group. (B) The immune
signature (left) and stromal signature (right) inferred by ESTIMATE (49) supported an
immunosuppressive tumor microenvironment in the high Peri_V_DN group. (C) Comparison of cytolytic
activity showed higher effector immune cell activity in the low Peri_V_DN group. (D) Comparison of the
proportion of MDSCs between the Peri_V_DN groups showed higher MDSC infiltration in the low
Peri_V_DN group. (E) Multiple immune coinhibitors and costimulators had higher expression levels in the
low Peri_V_DN group. (F) Two common innate immunity sensing pathways, cGAS-STING and the NLRP3
inflammasome, were downregulated in the high Peri_V_DN group. (G) Comparison of the log2-fold
changes in mMRNA expression of the MHC molecules between the Peri_V_DN groups. In total, 167 samples
with transcriptomics data were included for analysis. Abbreviations: GSVA, gene set variation analysis;
MDSC, myeloid-derived suppressor cell; Peri_V_DN, peritumoral variance in dependence nonuniformity of
peritumoral regions.
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