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Abstract

Background: To detect changes in biological processes samples are often

measured at several time points. We observe expression data measured at

different developmental stages, or more broadly, historical data. Hence, the main

assumption of our proposed methodology is the independence between the

observed samples over time. In addition, the observations are clustered at each

point in time. The clustering is caused by measuring litter mates from relatively

few mother mice at each development stage. The examination is lethal.

Therefore, we have an independent data structure over the entire history, but a

dependent data structure at a particular point in time. Over the course of the

historical data, we want to identify abrupt changes in the outcome - a change

point.

Results: In this paper, we demonstrate the application of generalized hypothesis

testing using a linear mixed effects model as one possible method for detecting

change points. The coefficients from the linear mixed model are used in multiple

contrast tests. The effect estimates are then visualized with simultaneous

confidence intervals. The figure of the confidence intervals can be used for the

determination of the change point. Multiple contrast tests depend on the choice

of the used contrast. A variety of possible usable contrasts exists. In small

simulation studies, we model different courses with abrupt changes and illustrate

different contrasts. We found two contrasts, both capable of answering different

research questions in change point detection. Sequen contrast to detect

individual points of change or McDermott contrast to illustrate overall

progression. In addition, we show the application on a clinical pilot study.

Conclusion: Simultaneous confidence intervals estimated by multiple contrast

tests using the model fit from a linear mixed model are usable to determine

possible change points in clustered expression data. The confidence intervals

deliver direct interpretable effect estimates on the scale of the outcome for the

strength of the potential change point. Hence, scientists can define biologically

relevant limits of change depending on the research question. We found two

rarely used contrast with the best properties to detect a possible change: the

Sequen and McDermott contrast. We provide R code for the direct application

with examples.

Keywords: simultaneous confidence intervals; change point detection; multiple

contrast tests; linear mixed models; expression analysis

Background

Independent observations over time are counter intuitive. If we observe samples

at different points in time, we would assume a dependent data structure between

these points in time. Each observation is then measured more than once. In our
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work the observations between points in time are independent. The observations

are measured at defined stages during gestation and later life. We call them devel-

opment stages or in a broader sense historical data. We observe such data because

the measurement of the outcome, the gene expression, is lethal at these early stages

of development. Therefore, our motivated endpoint is the gene expression. An on-

going aim of scientists is a better understanding of the underlying fundamental

mechanisms that control organisms development. Scientists have investigated many

genes, transcripts, proteins, etc. and their corresponding roles and have introduced

models of connecting these networks. At each developmental stage, litter mates and

non-littermates are observed. Hence, we have a data setting with independent de-

velopment stages but a dependent and independent data structure at each stage.

The described setting is not common but can be observed in development studies in

small mammals. Therefore, we want to present a novel methodology to find abrupt

changes - so called change points - in clustered historical gene expression data.

At first glance, there are two possible approaches of how the data could be ana-

lyzed. Our motivating biological data consists of independent developmental stages

of the mouse. These developmental stages naturally run over time. Therefore, two

methodological approaches can be identified. On the one hand, change point detec-

tion could be applicable, and on the other hand, a dose-response analysis. However,

both ignore important aspects of our research question. A change point analysis

assumes that the same subject is measured repeatedly over time. The data would

therefore be dependent over time. However, repeated measurement over time is not

given in our data structure with lethal measurement on the mice (pups). Therefore,

classical change point detection algorithms cannot be applied. Moreover, not only

the position of the change point, hence the corresponding developmental stage, is

of interest. We also want to report the effect of the change in expression at the

change point position. The effect size is of great biological interest here. Further,

we do not want to simply report the mean difference or the median difference, but

also be able to adjust the effect of the change point for possible confounders. This

is not possible with classical machine learning methods for change point detection.

In our view, the significance is not as important as the relevance [1]. Therefore, the

focus on the point estimator and the overall course of the confidence interval is more

important. The shift to informative effect estimates is therefore required to make

sure that findings can be reproduced on the way from basic research to clinical trials

[2, 3]. Our approach allows estimating the effect of the change point. In our work

we used a log-normal transformation of measured expression values. Depending on

the outcome, the linear mixed models also have a generalized implementation to

model the full range of the exponential family [4].

The other methodological approach would be to analyze the data in the setting

of a dose-response analysis. In the setting of a dose-response analysis, different in-

creasing doses are administered. The goal of the analysis is to find the dose at

which the response changes relevantly which is in our data case the gene expres-

sion. The analysis for each dose is mostly lethal but basically independent for each

dose. Therefore, the setting would fit in principle. Nevertheless, dose-response data

is a type of progression. Doses would correspond to developmental stages in our

biological setting. However, the developmental stages do not lead to a monotonic
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increase in gene expression but can be up- and down-regulated over the course.

In a dose-response setting a monotonic increase would be expected or an increase

with an sudden decrease. In addition, the dose has defined units and therefore the

distance between each dose is nearly the same. In the dose-response setting, the

multiple contrast tests are widely used [5, 6, 7]. The developmental stage intervals

are not equidistant. This is caused by the gene expression data analysis based on

snapshots of the transcriptome of many individuals at one development stage. It is,

nevertheless, possible that the expression level of certain genes changes consider-

ably during the lifetime of an individual, particularly during specific developmental

stages. Changes in expression could be due to maturation of certain organs or at

time of birth [8, 9, 10]. The change could be gradual over time or very abrupt. The

point in development of an abrupt major change in gene expression is called a change

point in our work. The multiple contrast test using for example the Changepoint

contrast has been checked for statistical properties [11, 12, 4], but not discussed for

the purpose of detecting outside of the dose-response setting. Hothorn (2006) [13]

shows the properties and visualization of the Williams and Changepoint contrast in

the setting of a randomized dose-response trials with a confidence interval oriented

approaches without clustering effects. In addition, Hothorn (2006) [13] presents user

specific contrasts, which might be to complicated to build for a practitioner.

Therefore, a change point algorithm is required to analyze historical data and

return estimands for detected points. We define historical data in our case as data

consisting of a dependent structure between points in time and a mixture depen-

dence and independence at each time point. In this work, we applied generalized

hypothesis testing by using a linear mixed effect model as a possible change point

detection method. We selected three potential contrast matrices for the generalized

hypothesis testing. When using a linear regression model, one can decide between

effect parameterization and mean parameterization. In case of effect parameteriza-

tion, one fits a model where the intercept is determined during the fitting process

and all β-coefficients are dependent on and compared to the intercept. In case of

mean parameterization, the intercept is set to zero and the calculated β-coefficients

represent the mean of the corresponding variable. As we wanted to calculate the

adjusted mean value for possible confounder effects for every time point, we decided

to use mean parameterization. A linear mixed effect model with mean parameteriza-

tion allows inclusion of the mix of dependent and independent data, while leaving

the focus on the predictor of interest, the developmental time point in our case.

Generalized hypothesis testing offers the possibility to include multiple contrast

scenarios. To our knowledge, this combination of methods has not been used on

data with the goal of change point detection with an interpretable effect estimate.

We present the application of three different established types of contrast matrices

to provide an overview on their applicability for this specific data setting. There-

fore, we are able to achieve confounder adjusted effect estimates to detect change

points. The effect at each possible change point can be easily interpreted by the

practitioner.

Methods

In the following, we present a combination of model fitting and multiple contrast

testing for the detection of change points in data which consists of both, independent
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and dependent data points. However, dependence is not between data points at

different but at the same time points. Our observations are nested in each time

point. As example, we use a development data set. The respective pups are nested

through their mothers. At each time point, there are three new mother animals.

Measurement of the expression levels is lethal for both, mother mice and their

offspring. The aim was to find change points in historical gene expression data.

In more detail, we want to find time points where the expression level of a gene

majorly changed compared to the expression levels measured before, incorporating

the underlying data characteristics. We tested our method on four biological sets

of historical gene expression data and eleven simulated data sets. The simulation

settings were designed by (basic research) scientists to ensure applicability.

Biological expression data

We present a biological data set as a motivational example. In the case of gene ex-

pression across developmental stages, e.g. in mice, the collection time points must be

as few as possible but as many as necessary [14]. To assess relevant gene expression

changes throughout the lifetime of relatively short-lived organisms like mice, one has

to acquire data at specific, predefined time points during all developmental stages

like embryonic, fetal, postnatal and adult. Predefined mouse development stages

may be Theiler Stages (TS) and the day of birth (postnatal day: P) [15]. Data series

in those cases consists of around 12-15 independent development stages. Addition-

ally, at certain developmental stages and with certain data acquisition techniques,

the examination is lethal and an individual can only be tested once. However, when

lethal data acquisition is performed, ethical reasons demand examination of all pups

in a litter [16]. To reduce the bias from one mother mouse and increase the sample

size, pups from at least three mother mice are examined at each time point. The

nesting leads to so-called mother effects and therefore dependency between certain

data points. As each litter introduces its own variance, this information has to be

taken into account when analyzing the data.

The expression data set is an extraction of a so-far unpublished study. We used

the biological data as received (full course, not cleaned) and illustrate our proposed

method. It is on the researcher to decide which developmental stages should be

included depending on the research question. In detail, our example data consists

of two genes in two mouse organs. We analyzed mouse livers and kidneys from thir-

teen developmental stages (embryonic to adult) for glucose transporter 1 (Glut1)

and carbonic anhydrase 9 (Car9) expression by probe-based qPCR against a stan-

dard curve. The expression levels are displayed as Glut1 or Car9 molecules per

106β − Actin(Actb) molecules. We used log-transformed expression values for our

analysis to meet normality assumptions of the linear mixed model. We provide more

information on the biological data in the supplementary material 2.1. The four data

sets were chosen because both genes showed a stable basal expression and a change

of expression in only one of the organs. Expression changes from high-to-low (liver

Glut1 ) and low-to-high (kidney Car9 ) were used to visualize our approach.

Artificial expression data

The physicians in the study defined four hypothetical historical gene expression data

courses, representing biologically realistic and interesting scenarios. We simulated
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data with respect to the described data structure shown in figure 1. In detail,

theoretical curves of the mean of the measured expression values for the respective

time points in a time series were acquired. On the theoretical courses, we were

able to determine the properties of the different contrast tests. In total, four overall

relevant courses of the means of the gene expression in the historical data were

defined and are as follows: a) no change, b) steady change, c) stepwise change and

d) partly dropped. In addition, we also simulated both directions (increase and

decrease), if possible, simulating a linear increase as well as a linear decrease and

so on.

Figure 1 Possible courses of included historical data. Each subplot a) to d) represents one group
of scenarios of courses within historical data. Points in time are on the x-axis, outcome on the
y-axis. Scenario a) shows a course with no change. Steady changes b) and stepwise changes c)
each include increase and decrease of outcome values within the historical data. Scenario d)
represents a partly dropped course which readjusts to previous outcomes after a while. The values
may drop down to zero. These hypothetical time courses were provided. For scenarios a) and b),
one would not expect any change points. In contrast, one would predict finding change points for
scenarios c) and d).

We would not expect the detection of change points in the historical data repre-

senting scenarios a) and b). Therefore, both scenarios are our control or null models.

However, for scenarios c) and d), we would expect detection of at least one change

point. In addition, the confidence intervals should also provide more details on our

findings. For each of the defined historical data scenarios, gene expression data for

12 distinct time points were simulated. As our biological example data had 13 de-

velopmental stages, we removed the adult stage to generate congruent data sets.

The number has also good properties for the generation of the time points. For
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simulation of the expression data, we used the statistical programming language R

3.6 and the R package simstudy [17]. For each time point, we first generated three

data points sampled from a normal distribution with a mean of zero and a variance

of 5, the mother effects. These simulated mother values represented the individual

effects each of the selected mother mice introduced on their respective litters. We

do expect some mother effect, but no drastic differences at the same time point.

We have chosen a high mother variance, to achieve a more drastic setting. A very

low variance would generate very distinct expression values. We do not believe that

this is a very realistic setting. The amount of pups per litter were sampled from a

Zero-truncated Poisson distribution with a lambda of 10. Therefore, each mother

has an average of roughly 10 pups. The expression values of the mouse pups from

the different litters were then generated by sampling from a normal distribution.

The mean was based on the respective intercept and sampled mother effect. The

variance was set to 2 since we expected only small differences between the expres-

sion values of the pups. We conducted a small simulation study for the variance of

the mother effects with the values of 2, 6, and 10. We found no effect on the course

of the confidence intervals. Therefore, the linear mixed model is able to take into

account the different mother variance. The simulation results can be seen in the sup-

plementary section 5. In consequence, we had simulated expression values for pups

from three different mothers for each of the 12 time points per defined course. For

the more programming-oriented reader, we present the R code on a GitHub reposi-

tory (https://github.com/msieg08/clustered data changepoint detection) and code

chunks in the supplementary material section 6.

We did not run different simulations with different sample sizes because the prop-

erties of the estimates from a linear mixed model in multiple contrast test is already

well known. A general tutorial on linear mixed models using contrasts in R and the

theoretical background can be found in Schad et al. (2020) [18]. Also Bretz et al.

(2011) [19] and Hothorn et al. (2008) [20] deliver the theoretical background. Linear

mixed models used in multiple contrast test will deliver unbiased estimates and will

produce simultaneous confidence intervals on a 95% significance level. The proper-

ties are checked for heterogeneity [11], complex data models [12], and even under

overdispersion and small sample sizes [4]. Therefore, we consider the use of linear

mixed models a valid and unbiased way to determine the estimates for the multiple

contrast testing.

Change point detection with linear mixed models and multiple contrast tests

To determine change points in our specific time series data, we first fit a simple linear

mixed effects model with mean parametrization. The expression data for one gene

was set as the response. The different measurement time points were set as the fixed

effects. The random effects part of the model were the mothers of the mouse pups.

Therefore, the litter effect is accounted for and possible overdispersion is reduced.

Our simple linear mixed model with mean parameterization can be written with

fewer time points, for simplicity, as follows:

150×1

︷︸︸︷
y =

150×1

︷ ︸︸ ︷

X
︸︷︷︸

150×5

β
︸︷︷︸

5×1

+

150×1

︷ ︸︸ ︷

Z
︸︷︷︸

150×15

u
︸︷︷︸

15×1

+

150×1

︷︸︸︷
ε (1)
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with

y =









26.45

23.71
...

12.10









X =









1 0 0 0 0

1 0 0 0 0
...

...
...

...
...

0 0 0 0 1









β =










24.13

20.25

18.23

13.52

10.81










t1

t2

t3

t4

t5

Z =









1 0 . . . 0

1 0 . . . 0
...

...
. . .

...

1 0 . . . 1









u =









0.08

5.69
...

−4.71









where

• y is the 150× 1 vector of normally distributed expression values,

• X is the 150×5 design matrix for the fixed effects considering five time points

(t1, ..., t5),

• β is the 5×1 vector of the fixed effects coefficients due to mean parametrization

the mean of each of the five time points (t1, ..., t5),

• Z is the 150× 15 design matrix for the random effects of the fifteen mothers

with a constant intercept,

• u is the 15 × 1 vector of the random effects coefficients i.e. the effect of the

mother on the expression with u ∼ N(0, 5).

As a result, the β-coefficients represent the estimated mean values of the respec-

tive time points without the random effects variance introduced by the mothers.

Using this approach, even more complex models with more confounders would

be possible. Here, we concentrate on a simple model. The aim of this work is

to illustrate the general framework. The effects of the time points can be ad-

justed as in any other multiple linear regression analysis. For further clarifica-

tion, we present a very short R code chunk as an example with the Change-

point contrast. The R terms can be matched to the formula 1 as follows. The

expression indicates the y, the variable timepoint the Xβ as fixed effect, and

the term (1 | mother) the Zu as random effects. The 1 in (1 | mother) in-

dicates a constant intercept for all mothers. Mean parameterization is achieved

by removing the intercept and placing 0 at the beginning of the lmer() formula.

More complex code chunks are available in the supplementary material. In addi-

tion, we provide further R code and functions on a connected GitHub repository

(https://github.com/msieg08/clustered_data_changepoint_detection).

Therefore, we used the lme4 package [21] in R to fit the linear mixed models

using the function lmer(). The function lmer() uses restricted maximum likeli-

hood estimation by default to fit models that include varying random effects. The

functionality determines the variances introduced by the random effects, here the

mother effects. With respect to the variances, the rest of the model is fitted and the

mean of each time point estimated. In the next step, change points are determined

applying generalized linear hypotheses testing. Generalized linear hypotheses test-

ing utilizes contrast matrices and directly performs multiple testing adjustment by
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applying a multivariate t-distribution. We test different contrast matrices on the

data to compare biologically relevant scenarios. In general, other endpoint distribu-

tions are possible by modifying the proposed linear regression model. The function

glmer() allows to fit the full range of the exponential distribution family. If needed

and the sample size is high enough, one could add additional fixed or random effect

variables like id of the Polymerase Chain Reaction run or gender of the pups.

Tables 1, 2, and 3 show different contrast matrices. In the context of our work, the

columns in a contrast matrix represent each existing time point and the rows rep-

resent possible scenarios. The scenarios can be considered as weighted comparisons

between the time points. Each cell contains an assigned weight for the corresponding

time point at the respective contrast. The sum of the weights equals zero for each

row. There are different methods to calculate the respective weights depending on

the type of a contrast matrix. In the context of this study, the following three types

of contrast matrices were tested to detect change points: Changepoint, Sequen, and

McDermott [22] from the R multcomp package [20]. Constructions of the contrast

matrices to represent each of these types can be found in the supplementary material

section 4.

Table 1 Changepoint contrast for five points in time and the resulting four contrasts. In C1 the first
time point t1 is compared to the average of the other time points. In C2 the average of t1 and t2 is
compared to the average of t3, t4, and t5.

t1 t2 t3 t4 t5
C 1 -1.00 0.25 0.25 0.25 0.25
C 2 -0.50 -0.50 0.33 0.33 0.33
C 3 -0.33 -0.33 -0.33 0.50 0.50
C 4 -0.25 -0.25 -0.25 -0.25 1.00

Table 2 Sequen contrast for five points in time and the resulting four contrasts. In C1 the first time
point t1 is compared to the time point t2. In C2 the timepoint t2 is compared to t3 and so on. A zero
indicates, that the time point is ignored for this specific contrast.

t1 t2 t3 t4 t5

1-2 -1.00 1.00 0.00 0.00 0.00
2-3 0.00 -1.00 1.00 0.00 0.00
3-4 0.00 0.00 -1.00 1.00 0.00
4-5 0.00 0.00 0.00 -1.00 1.00

Table 3 McDermott contrast for five points in time and the resulting four contrasts. In C1 the first
time point t1 is compared to the second time point t2. In C2 the average of t12 and t2 is compared
to t3. In comparison to the Sequen contrast the average of on increasing number of time points is
compared to a single time point. Therefore, in the last contrast C5 the average of t1 to t4 is
compared to t5.

t1 t2 t3 t4 t5
C 1 -1.00 1.00 0.00 0.00 0.00
C 2 -0.50 -0.50 1.00 0.00 0.00
C 3 -0.33 -0.33 -0.33 1.00 0.00
C 4 -0.25 -0.25 -0.25 -0.25 1.00

We designed the contrast matrices in our work as follows: Each row of a contrast

matrix consists of one possible single change point scenario with respect to the

selected construction method. Hence, the contrast matrix represents all possible

single change point scenarios for the respective time series and selected method.

Table 1 shows an example of the Changepoint contrast. If the Changepoint contrast

is selected, the data is first divided into two groups for each row of a contrast matrix.

One group contains the time points before the potential change point, the other
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group the time points at and after the potential change point. Then, the relative

weight for each time point with respect to its group is calculated. Basically, the

sample sizes from all time points of a group are summed and the sample size of

each time point is divided by the respective sum. The sum of the weights from

each group therefore adds up to one and the sum of the weights of both groups

equals zero. The weights belonging to the time points before and at the possible

change point are negated. If the Sequen contrast method is selected, only the time

point directly before and at the possible change point are considered. All other time

points are set to 0. The time point directly before the possible change point is set

to -1 and the possible change point is set to 1. Table 2 shows an numerical example.

Lastly, the McDermott contrast is a mixture between the Changepoint and the

Sequen contrasts. Table 3 presents a numeric example. The weights of the time

points of the time series before the possible change point are calculated the same

way as for the Changepoint contrast. The sample sizes of each time point in this

part of the time course are divided by summed sample sizes of this group. The

possible change point itself is set to 1 and the rest of the time series is set to 0. The

McDermott contrast matrix was originally invented for ordered means. A significant

contrast in our setting would therefore suggest an overall significant change in the

historical data, especially since our means are not ordered. In summary, Change-

point considers all data points in the time series, Sequen considers data points at

and just preceding the potential change point, and McDermott only the data points

at the time points before and at each potential change point.

Taken together, we fitted linear mixed effect models for different biologically rel-

evant time courses and for each of the four in vivo historical gene expression data.

To each fitted model, we applied three varying generalized hypotheses testing con-

trasts. The contrasts returned effect estimates for each scenario and respective 95%

confidence intervals. The contrasts were evaluated on the basis of whether the re-

spective contrast could be used to determine change points and whether it would

potentially return the positions and directions of change points.

Maximal number of usable steps

The presented approach has a theoretical limitation in the number of significant

detectable differences. If many comparisons are included, we will correct each com-

parison for the type I error. Therefore, at a given number of comparisons depending

on the maximal observed effect size δmax and the corresponding standard deviation

s, no significant change point will be detected as significant. However, the point

estimator of the confidence interval will not be influenced. In addition, the ap-

proximation also depends on the chosen contrast matrix. In the following, we will

examine an approximation of how many comparisons can be analyzed. The scientist

must estimate a δmax and the corresponding s from the literature or the observed

data. Then, we can calculate the z-score:

z =
δmax

s
(2)

The absolute value of the Z-score can be used by the probability density function

of the normal distribution to calculate a p-value. In R, this can be achieved by the
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function pnorm(), which returns the integral from −∞ to z of the probability den-

sity function of the normal distribution. We multiply the result by two to account

for a two-sided test resulting in the pmax. We simplify by assuming a Bonferroni

adjustment. Dividing 0.05 by pmax will determine the maximal number of theoret-

ically possible detectable significant change points. The emphasis is on theoretical,

because if we are not able to find any significant p-value, we will also not find

any significant confidence intervals. We illustrate here only an approximation, see

the discussion section for further considerations. A small numeric example is given

from Figure 2.a) which shows a δmax of 3 between the two plateaus. If we assume

a standard deviation of 1, we can calculate a z of 3

1
equal 3. Using the function

pnorm(-3) we get a p-value of 0.00135. Hence, we are able to run approximately

37 comparisons in our analysis with at least one significant confidence interval. We

recommend not to concentrate on the significance but to consider the course of the

point estimators. Since the confidence intervals directly represent the effect estima-

tor, the user must decide whether the change point is relevant for the biological

question. The confidence intervals provide a measure for the uncertainty, but it

must be considered that the number of comparisons is included in the width of the

confidence intervals.

Results

The following section is divided into two parts. First, we present four biological

motivation data examples, two of which can be found in the supplementary material.

The mouse development data set underlines the biological necessity of our approach.

Second, we simulate different course settings inspired by the biological data. We

show the resulting confidence interval plots for each simulation and contrast and

separately report the effect estimates.

In all presented plots, subplot a) shows the respective data with time points on

the x-axis and the observed expression values on the y-axis. We assume here to

have at least a log-normal distributed outcome. Each dot in the plot represents

one observed value. The colors represent the data dependencies, meaning that dots

with the same color belong to the same cluster, e.g. pups from the same mother.

Subplots b) to d) show the estimated mean difference including the 95%-confidence

interval (x-axis) for each respective change point scenario (y-axis).

Biological gene expression data

We present as a motivation example biological data of the Glut1 gene expression

in the liver in figure 2 and kidney in the supplementary material, respectively.

Supplementary figure 1 shows the biological data of the Car9 expression in the

kidney. The estimation of the model parameters shown in supplementary figure

1 caused converting problems. We observed singular fits. Supplementary figure 2

presents the Car9 expression data from liver. Supplementary figure 3 presents the

Glut1 expression data from kidney. Table 4 shows the numerical effect estimates

for the Glut1 data from kidney. All plots have the same structure and consist of

the same subplots. The subplot a) shows the biological data separated into three

developmental stages. Each dot represents a single pup nested into a single mother

which is indicated by the same (litter) color. Please note that the expression data is
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log-transformed. The other subplots show the results of the different contrast tests:

b) Changepoint, c) Sequen, and d) McDermott. The scattered line indicates the

biological relevance limits. The limits are user-specific and depend on the research

question. We decided to choose ±1 for our example.

Figure 2 Biological example data for Glut1 expression in the developing liver. Subplot a) shows
the biological example data set (log-transformed). Each point in time on the x-axis represents an
independent developmental stage. Each data point represents a pup and each color a mother
animal. The pups are nested into the mothers. We added three broader development stages
(embryonal, fetal, postnatal) for easier reference. The subplots show the confidence intervals of
the Changepoint contrast (b), Sequen contrast (c), and McDermott contrast (d). The red
scattered line indicates the chosen limits of biological relevance

Figure 2 shows an example of a visually obvious change point with severe ex-

pression changes after birth (from P0). The change point is indicated by a gray

line in table 4. The Changepoint contrast visualizes the overall course of the time

points more than the rapid decrease from TS26 to P3 and it does not deliver a clear

interpretable position of the change. The averaging over all time points concealed

the linear increase between the TS17 and TS21 developmental stages because the

decrease at the end of the time points is too severe. In contrast, the Sequen con-

trast detects the change point at the 9-8 position (P0-P1) with an effect of -1.82

[-3.03; -0.61]. Due to the mixed modeling, we were able to account for the high

variance of developmental stage P1. However, no confidence interval falls below the
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lower relevance limit. The McDermott contrast shows confidence intervals below

the relevance limit with an effect of -2.42 [-3.34; -1.50] at birth. In the following,

the confidence intervals have a point estimate around -3.2. In addition, the slight

increase in the beginning is also pictured in the course of the confidence intervals

with an effect around 1.

Table 4 Contrasts and estimates of figure 2. The table shows the numeric values for the Glut1
example data from liver. The C column indicates the contrast, the ∆ the log mean change of the
corresponding contrast C. The gray row indicates a possible change point by visual inspection of
figure 2. A significant confidence interval does not include zero.

Changepoint Sequen McDermott

95% CI 95% CI 95% CI

C† ∆‡ Low Upp C† ∆‡ Low Upp C† ∆‡ Low Upp
C 1 0.22 -0.79 1.23 2 - 1 0.76 -0.62 2.13 C 1 0.76 -0.63 2.14
C 2 -0.17 -0.87 0.53 3 - 2 0.79 -0.44 2.03 C 2 1.19 0.08 2.29
C 3 -0.81 -1.39 -0.23 4 - 3 0.39 -0.82 1.61 C 3 1.06 0.04 2.08
C 4 -1.27 -1.79 -0.75 5 - 4 0.47 -0.73 1.68 C 4 1.24 0.27 2.20
C 5 -1.95 -2.45 -1.46 6 - 5 -0.15 -1.28 0.98 C 5 0.74 -0.11 1.60
C 6 -2.51 -2.99 -2.02 7 - 6 -0.56 -1.70 0.58 C 6 0.03 -0.91 0.96
C 7 -2.90 -3.40 -2.41 8 - 7 -0.71 -1.92 0.50 C 7 -0.69 -1.61 0.23
C 8 -3.19 -3.71 -2.67 9 - 8 -1.82 -3.03 -0.61 C 8 -2.42 -3.34 -1.50
C 9 -3.08 -3.63 -2.52 10 - 9 -1.17 -2.39 0.04 C 9 -3.34 -4.26 -2.42
C 10 -2.73 -3.34 -2.11 11 - 10 0.18 -1.04 1.41 C 10 -2.86 -3.77 -1.95
C 11 -2.46 -3.18 -1.74 12 - 11 0.22 -1.00 1.43 C 11 -2.41 -3.31 -1.51
C 12 -2.26 -3.20 -1.33 13 - 12 -0.05 -1.26 1.17 C 12 -2.24 -3.15 -1.33
C 13 -2.13 -3.46 -0.80 14 - 13 -0.04 -1.69 1.61 C 13 -2.13 -3.57 -0.70
† Given contrast. See Eq.2 for Sequen, Eq.1 for Changepoint, and Eq. 3.
‡ Point estimator of the confidence interval i.e. mean difference given the contrast.

Supplementary figure 1 shows the biological data of the Car9 gene from kidney.

The numerical values can be found in supplementary table 1. The estimation of

the model parameters caused converting problems. We achieve singular fits, there-

fore estimated variance-covariance matrices with less than full rank. The warning

indicates that one or more variances are very close to zero. Therefore, a careful

consideration of the results is required. We are sure to avoid the fitting of overly

complex models [23] and assure consistency of the model with the experimental

design [24]. Therefore, we believe that the mean estimates and the variance /co-

variance matrices are valid, even if mixed models can show converting problems.

The biological data shows a plateau from TS20 to P7 with a high increase of the

expression at P14. The Changepoint contrast again delivers a biased visualization.

The change point might be recognized, but the overall trend is flawed. Therefore,

the Changepoint contrast cannot be recommended. The Sequen contrast detects the

change point significantly and above the relevance limit. The lower limit of the con-

fidence interval exceeds the upper relevance limit with 2.15 [1.64; 2.66]. Finally, the

McDermott contrast visualizes the plateau in conjunction with the rise of expression

with an point estimate of 2.01 [1.64; 2.37]. The last three confidence intervals are all

above the relevance limit with an effect of 2.01, 2.93, and 2.63. In the supplementary

material there is no obvious expression change in the two biological examples, Car9

expression in the developing liver and Glut expression in the developing kidney. All

three contrasts stay within the relevance limits. The examples illustrates that both,

biological visualisation and confidence intervals, are required.
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Simulation data

We simulated eleven simulation settings according to figure 1 and therefore moti-

vated by the biological examples. We fitted one linear mixed effect model on each of

the simulated times series. These fitted models were then used for generalized lin-

ear hypothesis testing with three different contrast matrices. The results of interest

were the mean difference and associated 95% confidence intervals. Depending on

the used contrast matrix, the output suggested the presence or absence of change

points. We present here two out of the eleven simulated settings. Please be referred

to the supplementary material for all simulation results. Figures 3 and 4 show the

course in figure 1 c) and d). Table 5 and 6 present the numeric values. We indicated

the simulated change point by a gray row. In particular, the number of simulations

was increased by the fact that when expression increased, we modeled the decrease

separately.

Figure 3 Confidence intervals of estimates from linear mixed model coupled with contrast
matrix for historical data with two change points. Figure a) shows the points in time (x-axis) of
the sampled historical data in association with gene expression (y-axis) with two expected change
points. Each color is related to one mother mouse. Subfigures b), c) and d) show the estimates
(x-axis) including confidence intervals for the observed contrasts (y-axis) with methods
Changepoint, Sequen and McDermott, respectively. The blue line indicates the simulated effect.

Figures 3 shows a stepwise increase of expression, table 5 the corresponding nu-

meric values. We observe two distinct change points. For illustration purposes, we
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simulated the variance in such a way that a slight overlap of the observations oc-

curred. The simulated effect was 10. Therefore, each rise/expression change in-

creased the average expression by 10, resulting in the gene expression course shown

in subplot a). In contrast to our assumption, the Changepoint contrast does not

detect a change point by looking at subplot b) and the confidence intervals in table

6. Hence, the name of the contrast is misleading - as is the position of all significant

confidence intervals. The Sequen contrast delivers the change points correctly at

contrasts 5-4 and 9-8. We were able to detect the change by the significant confi-

dence intervals or visually by exceeding of the intervals. The direction of the change

is also represented correctly. In addition, there is a slightly lower effect of 7.77 [3.36;

12.17] at the second compared to the first change point with 10.63 [6.22; 15.05] as

in the visualization in subplot a). Hence, the Sequen contrast delivers the correct

direction in conjunction with the correct effect estimates. Finally, the McDermott

contrast mimics the steps of the simulated data. Each rise at C4 and C8 can be

observed by a stronger shift of the confidence intervals to the right with an effect

of 9.53 [6.02; 13.05] and 13.05 [9.70; 16.40], respectively. Hence, position and the

direction of the change point are both correct. The confidence interval itself is not

on the same level because the single time points have slightly different means. These

findings are also true for two positive change points shown in supplementary figure

5 as well as four positive change points presented in supplementary figure 7. The

decreasing setting is presented in supplementary figure 9 for two change points, in

supplementary figure 10 for three change points, and in supplementary figure 11 for

four change points. The findings for the decreasing setting are the same as for the

positive one. In summary, the Sequen and McDermott contrasts are able to detect

the position and direction (Sequen) or the overall course (McDermott) of predefined

change points.

Table 5 Contrasts and estimates to figure 3. The table shows the numeric values form the simulation
for three change points. The C column indicates the contrast, the ∆ the log mean change of the
corresponding contrast C. The gray row indicates the predefined change point(s). A significant
confidence interval does not include zero.

Changepoint Sequen McDermott

95% CI 95% CI 95% CI

C† ∆‡ Low Upp C† ∆‡ Low Upp C† ∆‡ Low Upp
C 1 9.34 6.25 12.42 2-1 -3.82 -8.19 0.55 C 1 -3.82 -8.23 0.58
C 2 12.40 10.10 14.70 3-2 2.68 -1.71 7.08 C 2 0.65 -3.19 4.49
C 3 13.25 11.26 15.25 4-3 -1.91 -6.32 2.50 C 3 -1.44 -5.07 2.19
C 4 15.20 13.37 17.04 5-4 10.63 6.22 15.05 C 4 9.53 6.02 13.05
C 5 14.01 12.25 15.77 6-5 2.74 -1.67 7.15 C 5 10.33 6.89 13.77
C 6 12.97 11.24 14.70 7-6 -1.96 -6.34 2.42 C 6 6.87 3.51 10.24
C 7 13.10 11.34 14.86 8-7 0.34 -4.03 4.71 C 7 6.05 2.71 9.39
C 8 13.90 12.05 15.74 9-8 7.77 3.36 12.17 C 8 13.05 9.70 16.40
C 9 12.92 10.93 14.91 10-9 -0.03 -4.42 4.35 C 9 11.87 8.61 15.14
C 10 11.87 9.56 14.18 11-10 2.61 -1.73 6.95 C 10 12.74 9.49 16.00
C 11 9.23 6.13 12.34 12-11 -2.05 -6.42 2.32 C 11 9.23 5.96 12.51
† Given contrast. ‡ Point estimator of the confidence interval i.e. mean difference given the contrast.

Figure 4 presents a “partly dropped” change point. The corresponding numeric

values are shown in table 6. The expression is reduced at two time points before

it is restored to the original values. In supplementary figure 12 we show a total

expression shot down with an expression of zero over four time points. In figure 4

c), the Changepoint contrast confidence intervals are shown. In contrast to figure
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3, the Changepoint contrast does deliver a change in the confidence interval plot.

However, the indicated change of 2.16 [0.40; 3.92] at C7 does not mimic the simu-

lated data. Again, the Changepoint contrast does not help to indicate the correct

position or effect directions as it indicates a positive change instead of a negative

one (decreased expression). The Sequen contrast indicates both change points at

the correct position. The 6-5 and 8-7 contrasts are significant with an effect of -7.26

[-11.67; -2.85] and 10.34 [5.98; 14.71]. The direction is also correct. The first signif-

icant confidence interval has a negative effect, indicating the drop and the second

significant confidence interval has a positive effect indicating the rise in expression.

In comparison to the Sequen contrast, the McDermott contrast must be interpreted

differently. Again, the two significant confidence intervals are indicating the area

of change with two significant confidence intervals at C5 and C6 with an effect of

-7.63 [-11.07; -4.19] and -8.49 [-11.85; -5.13]. However, the direction of the change

must be calculated by the researcher. The McDermott contrast rather visualizes

the course than giving the concrete direction of the decrease/increase. Depending

on the research question, Sequen or McDermott might be preferred. Supplemen-

tary figure 12 shows the extreme event of four time points with no expression and

therefore no variance at those. In this extreme scenario, all three contrasts deliver

confidence intervals. Again, the Changepoint contrast pictures highly misleading

directions and effects. We observe a lower plateau with a linear increase to another

plateau. This does not emulate the course of the expression data at all. The Sequen

contrast correctly delivers the change point positions and directions at 5-4 and 9-8

with the effects of -8.76 [-12.62; -4.90] and 8.28 [4.43; 12.14]. The McDermott con-

trast has more biased confidence intervals. The drop is visualized by the contrast

but the last confidence intervals falsely indicate a higher plateau of expression than

at the beginning of the time course. In addition, the significant confidence inter-

vals indicating the drop also show a false steady decrease of the effect. Please see

supplementary table 12 for the numeric values of the confidence intervals.

Table 6 Contrasts and estimates to figure 4. The table shows the numeric values from the simulation
for a ”partly dropped” change point. The C column indicates the contrast, the ∆ the log mean
change of the corresponding contrast C. The gray row indicates the predefined change point(s). A
significant confidence interval does not include zero.

Changepoint Sequen McDermott

95% CI 95% CI 95% CI

C† ∆‡ Low Upp C† ∆‡ Low Upp C† ∆‡ Low Upp
C 1 -4.00 -7.08 -0.92 2-1 -3.82 -8.19 0.55 C 1 -3.82 -8.23 0.58
C 2 -2.23 -4.52 0.07 3-2 2.68 -1.71 7.07 C 2 0.65 -3.19 4.49
C 3 -2.66 -4.65 -0.67 4-3 -1.91 -6.32 2.50 C 3 -1.44 -5.07 2.19
C 4 -2.45 -4.28 -0.62 5-4 0.63 -3.78 5.05 C 4 -0.47 -3.98 3.05
C 5 -2.62 -4.37 -0.86 6-5 -7.26 -11.67 -2.85 C 5 -7.63 -11.07 -4.19
C 6 -0.89 -2.62 0.84 7-6 -1.96 -6.34 2.42 C 6 -8.49 -11.85 -5.13
C 7 2.16 0.40 3.92 8-7 10.34 5.98 14.71 C 7 3.30 -0.04 6.64
C 8 1.49 -0.35 3.34 9-8 -2.23 -6.64 2.17 C 8 0.65 -2.70 4.00
C 9 1.61 -0.38 3.60 10-9 -0.03 -4.41 4.35 C 9 0.56 -2.71 3.82
C 10 2.21 -0.10 4.52 11-10 2.61 -1.73 6.95 C 10 3.08 -0.17 6.34
C 11 0.68 -2.42 3.78 12-11 -2.05 -6.42 2.32 C 11 0.68 -2.60 3.95
† Given contrast. ‡ Point estimator of the confidence interval i.e. mean difference given the contrast.

Finally, we simulated no change, linear increase, and linear decrease. Supplemen-

tary figure 3 shows the results of the no change simulation. All contrasts did not

detect any change points, presenting non-significant, overlapping confidence inter-
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Figure 4 Confidence intervals of estimates from linear mixed model coupled with contrast
matrix for historical data with a ”partly dropped” change points. Figure a) shows the increasing
points in time (x-axis) of the sampled historical data in association with gene expression (y-axis)
with two expected change points. Each color is related to one mother mouse. Subfigures b), c)
and d) show the estimates (x-axis) including confidence intervals for the observed contrasts
(y-axis) with methods Changepoint, Sequen and McDermott, respectively. The blue line indicates
the simulated effect.

vals. The supplementary figures 4 and 8 show a linear increase and a linear de-

crease, respectively. The overall tendencies of the confidence intervals are the same

in both settings. Supplementary figure 4 is a mirror of supplementary figure 8. The

Changepoint contrast is significant for all confidence intervals with a strong effect.

The point estimates are the same for nearly all confidence intervals. The Sequen

contrast has some slightly significant confidence intervals. However, all confidence

intervals overlap, indicating no change in expression. The McDermott contrast mim-

ics the linear tendency of the expression data with its positive and negative trends.

As all confidence intervals overlap, we conclude that no change point is present.

A word of caution about the estimated effects and the direction of the effect.

Our approach allows determining the point estimate of the difference between time

points. Depending on the contrast, different effects will be reported. The preferred

contrast is therefore highly dependent on the research question. While the Sequen

contrast provides the point of change, the McDermott contrast visualizes the overall
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course of the change. However, we cannot recommend the original Changepoint

contrast for detection or assessment of the change point as its effect estimates are

biased.

In summary, if Sequen or McDermott were applied as contrast matrices and an

actual change point was present in the simulated data, the confidence interval from

the respective contrast was significant and no (or only a small) overlap with the

confidence interval of the preceding contrast occurred. When there was no change

point, the 95% confidence intervals for each contrast were either not significant or

they overlapped with the confidence interval of the preceding contrast. The respec-

tive patterns can be observed in a more or less defined way on all simulated data

from the Sequen and McDermott contrasts. The Changepoint contrast cannot be

recommended for the detection of a change point in any simulation setting. Overall,

we suggest using McDermott’s method to determine if there is a significant change

within the time frame, while Sequen could be applied to determine the specific

change point(s) and their direction.

Discussion

In a classical longitudinal design, each patient is observed at each inter-dependent

time point. In this study, we examine a different non-intuitive setting: The time

points are independent as the intervention on the pregnant mice is lethal and the

observations, gene expression in the litter organs, at each time point are correlated,

resulting in a mixture of dependent and independent data structures at one time

point. We solve the research question looking for change points in this experimental

setting by using multiple contrast tests and by visualizing the change point with

simultaneous confidence intervals. We have investigated three contrasts which differ

in the research questions they can answer: Should a single change point be found,

or should the overall course rather be pictured? The Sequen contrast answers the

first, the McDermott the second. The Changepoint contrast gives a clearly biased

visualization and is unable to correctly determine change points in our setting. To

summarize, we used generalized hypothesis testing with linear mixed effect models

using various contrast matrices to detect change points in historical data of gene

expression levels with independent and dependent data points.

A connected question is how long such a time line can be to still be able to detect

differences. As generalized hypothesis testing is applied, it automatically adjusts

locally for multiple testing. Therefore, for each model, the respective significance

level is met. The number of time points minus one comparison was evaluated for all

the contrasting methods we chose. The higher the number of time points, the more

contrasts are tested, leading to a stricter change point selection but also higher

run times. In our method section, we only give an approximation of the theoretical

maximal length of historical data because the main aim of our work was to identify

the most informative contrast test for detecting a given change point pattern. We

found the Sequen and McDermott contrasts which both are not intuitively the first

choice. Furthermore, our approximation is based on the Bonferroni adjustment. This

is not the correct one for multiple contrast tests. In future work, the borders of the

number of maximal time points and multiplicity adjustment approaches [25, 26] will

be examined in more detail.
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We have discussed the possible length of historical data in terms of significance.

Thus, if a confidence interval is significant, we would assume a change point. How-

ever, in the biological example data, we could also define a relevance threshold

ranging from (just barely) significant to biologically relevant in our decision mak-

ing. The proper choice of estimands, i.e., effect estimators, is embedded in a more

general discussion of reproducibility. To date, the discussion of estimands has fo-

cused on drug development and clinical trials. Akacha et al. (2017) [27] notes that

certain choices in statistical analysis can partially or completely blur the scien-

tific question. The interested reader might read Mallinckrodt et al. (2019) [28] for

a detailed discussion of estimands, estimators, and sensitivity analyses in clinical

trials.

Many multiple contrast tests are well described in the literature as well as the

application in statistical inference [19]. The most common contrast might be the

all-pairs contrast (also known as the Tukey contrast), or the many-to-one contrast

(also known as the Dunnett contrast). Other types of contrasts are not so widespread

and known. Interestingly, the so-called Changepoint contrast does not deliver any

change point in the context of our experimental design. We do not criticize its

general approach but for our data, it does not deliver the best interpretable change

point(s) in the context of confidence intervals. The Sequen and McDermott contrasts

are both able to detect change points while answering slightly different questions.

Sequen visualizes the point and direction of change, while McDermott visualizes the

course of the change. Of note, if the mean differences in sequential contrasts seem

to be significant but switch between plus and minus, one should evaluate whether

there are multiple change points or just high fluctuations. Consequently, although

change points were detected by these methods, one should still check for validity

and relevance visually. Using generalized hypothesis testing may be a prefilter but

the final decision should still be made by an expert of the respective field based on

the context of the study.

If we would use a simple linear model without taking the nested litter/mother

effects into account, the linear model would cause some type of overdispersion. In

addition, our model would not reflect our true data structure. The results would in-

clude a high amount of false positives. In our case, this would mean that non-existing

change points would be detected. Especially, if we would focus only on significance

for decision making. As a drawback, the lme package sometimes has convergence

or model fitting problems with small sample sizes. In some cases, the lmer() func-

tion displays a is singular warning that the estimated variance-covariance matrix

has some entries of zero. Therefore, the matrix does not have a full rank. In these

cases, it is possible that some standard errors are underestimated and should be

considered with care.

We presented four in vivo expression data sets of developmental stages in mice. We

decided to present different biological courses to provide evidence for its practical

application: Two of the data sets did not show any abrupt changes, one first showed

a steady increase over three time points, stayed at that level for some time and

then increased again. The fourth data set showed no changes apart from two time

points with a drastic drop in expression. The respective R code can be found in

in the supplementary as well on our GitHub repository. Therefore, the presented
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application should easily be replicated by the interested scientist. In our work,

however, we present a solution for historical data with a limited number of observed

genes. If the number of genes goes into the hundreds, a visual inspection will not

be feasible any longer. Hence, the scientist must sort the potential change points by

effect strength in comparison to the respective relevance limits and only perform a

visualization of the top relevance hits. A pattern recognition on confidence intervals

is open to further research.

Conclusion

In summary, we show that multiple contrast tests can be used for change point de-

tection in historical data. Our application is special in the sense that the individual

points in time are independent of each other. Nevertheless, there is a dependent

data structure within the individual development stages. We showed that general-

ized hypothesis testing with linear mixed-effect models can be used to detect change

points in clustered expression data. We deliver an approximation of the maximal

usable points in time in the historical data. The researcher can define relevance

boundaries to guide decision making by the effect estimators. The usage of our al-

gorithm is easy to apply in R. We tested three different contrast matrices and found

Sequen to be the best to detect a concrete change point at a given time point. Con-

fidence intervals deliver a good visualization of the position of the change point as

well as an interpretable estimator of the strength and direction of the change. To

determine if there is an overall significant change within the time frame, we sug-

gest using McDermott’s method as it is good at detecting changes throughout the

historical data course. Both methods can also be used in sequence to verify results

from historical data: First McDermott for a general overview and then Sequen for

a selective examination of the course or an interval of the course.

List of abbreviations Actb: β-Actin; Car9: carbonic anhydrase 9; Changepoint: Multiple contrast name see table 1

Glut1: glucose transporter; McDermott: Multiple contrast name see table 3 Sequen: Multiple contrast name see

table 2
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Figure Legends

Figure 1 Possible courses of included historical data. Each subplot a) to d) represents one group of scenarios of

courses within historical data. Points in time are on the x-axis, outcome on the y-axis. Scenario a) shows a course

with no change. Steady changes b) and stepwise changes c) each include increase and decrease of outcome values

within the historical data. Scenario d) represents a partly dropped course which readjusts to previous outcomes after

a while. The values may drop down to zero. These hypothetical time courses were provided. For scenarios a) and b),

one would not expect any change points. In contrast, one would predict finding change points for scenarios c) and d).

Figure 2 Biological example data for Glut1 expression in the developing liver. Subplot a) shows the biological

example data set (log-transformed). Each point in time on the x-axis represents an independent developmental

stage. Each data point represents a pup and each color a mother animal. The pups are nested into the mothers. We
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added three broader development stages (embryonal, fetal, postnatal) for easier reference. The subplots show the

confidence intervals of the Changepoint contrast (b), Sequen contrast (c), and McDermott contrast (d). The red

scattered line indicates the chosen limits of biological relevance.

Figure 3 Confidence intervals of estimates from linear mixed model coupled with contrast matrix for historical

data with three change points. Figure a) shows the points in time (x-axis) of the sampled historical data in

association with gene expression (y-axis) with two expected change points. Each color is related to one mother

mouse. Subfigures b), c) and d) show the estimates (x-axis) including confidence intervals for the observed contrasts

(y-axis) with methods Changepoint, Sequen and McDermott, respectively. The blue line indicates the simulated

effect.

Figure 4 Confidence intervals of estimates from linear mixed model coupled with contrast matrix for historical

data with a ”partly dropped” change points. Figure a) shows the increasing points in time (x-axis) of the sampled

historical data in association with gene expression (y-axis) with two expected change points. Each color is related to

one mother mouse. Subfigures b), c) and d) show the estimates (x-axis) including confidence intervals for the

observed contrasts (y-axis) with methods Changepoint, Sequen and McDermott, respectively. The blue line indicates

the simulated effect.

Additional files

Additional file 1 — sieg changepoint supplement.pdf

Supplementary material and figures. Additional information on the biological data and additional simulation figures.

Example R code is provided.
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